
Research Article
Vaccination Control in a Stochastic SVIR Epidemic Model

Peter J. Witbooi, Grant E. Muller, and Garth J. Van Schalkwyk

University of the Western Cape, Private Bag X17, Bellville 7535, South Africa

Correspondence should be addressed to Peter J. Witbooi; pwitbooi@uwc.ac.za

Received 19 December 2014; Accepted 20 April 2015

Academic Editor: Mini Ghosh

Copyright © 2015 Peter J. Witbooi et al.This is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

For a stochastic differential equation SVIR epidemic model with vaccination, we prove almost sure exponential stability of the
disease-free equilibrium forR

0
< 1, whereR

0
denotes the basic reproduction number of the underlying deterministic model. We

study an optimal control problem for the stochastic model as well as for the underlying deterministic model. In order to solve the
stochastic problem numerically, we use an approximation based on the solution of the deterministic model.

1. Introduction

The discovery of the first vaccine marked a major break-
through in the battle against infectious diseases. The sub-
sequent development of vaccines for various diseases has
brought about remarkable results. Vaccination gained
increasing popularity and success after it eradicated the
smallpox outbreak of 1976 [1].

Vaccination is a commonly used method to control
diseases such as measles, polio, and tuberculosis. Usually
there are different schedules of dosage for different diseases
and vaccines. For some diseases, doses should be taken by
vaccinees several times and there must be some fixed time
interval between two doses (see for instance Gabbuti et al.
[2]). In a given population, the proportion of susceptibles
who goes on to vaccination depends on different factors, one
of which is the availability of the necessary resources.

There are numerous examples of vaccination models in
the literature; see, for instance, the book of Brauer and
Castillo-Chávez [3] or the journal papers [4–10]. With vacci-
nation models one would be interested in the extent to which
a vaccination program would reduce the basic reproduction
number or how one can optimally roll out a vaccination
program over time, in order to reach a certain target. In the
latter case, optimal control theory is the obvious candidate to
employ in the analysis [11–14]. It is usually the proportion of
susceptibles who are admitted into vaccination, which is used
as the control variable.

As a way of accommodating randomness in a com-
partmental epidemic model, several authors have proposed
models with stochastic perturbation. This means that one
modifies a system of ordinary differential equations (ODEs)
by adding stochastic noise or stochastic perturbations, giving
rise to a system of stochastic differential equations (SDEs)
[7, 8, 15–18]. We shall refer to the original system of ODEs
as the underlying deterministic model.

It is known (see the book of Mao [19], for instance) that
the stability of a system can be improved by adding stochastic
perturbations. SDE epidemic models have been studied by
various authors until it was proved in research articles [9,
15, 20, 21] that stochastic perturbation improves stability of
the disease-free equilibrium in the givenmodels. SDEmodels
with vaccination have been studied by Tornatore et al. [7, 8].
In particular in [8] it is shown that the model permits solu-
tions that are almost surely positive, and a theorem on expo-
nential stability in mean square stability is proved.Themodel
of Tornatore et al. [8] will be further analyzed in this paper.

For SDE models in epidemiology, optimal control has
not been studied (or at least not published) extensively. One
of the reasons for this could very well be the difficulty
with high dimensionality of the resulting partial differential
equation (PDE) for the value function; see the paper of
Sulem and Tapiero [22], for instance. A four-compartmental
SIVR model such as in [7, 8] could easily lead to a PDE
having the time variable together with three state variables.
In this contribution we study the exponential stability of
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the stochastic model of Tornatore et al. [8] and control of
vaccination both in the underlying deterministic model and
in the stochastic model. In control problems, our goal is
to characterize the vaccination rate (as control variable)
which, on a finite time interval, minimizes the number of
infected individuals balanced against the cost of vaccination.
In the stochastic case we minimize an expected value. We
use standard methods for the deterministic case and the
Hamilton-Jacobi-Bellman equation in the stochastic case.

In Section 2 we study exponential stability of the disease-
free equilibrium of the stochastic SIVR model that was
introduced in [8]. We prove that almost sure exponential
stability of the disease-free equilibrium prevails whenever
R0 < 1, R0 being the basic reproduction number of the
underlying deterministic model. The deterministic control
problem is treated in Section 3, and we find a numerical
solution for the optimal control problem by using the fourth-
order Runge-Kutta method. The optimal control of the SDE
model is presented in Section 4. We observe a similarity
in the form of the control in the two cases, stochastic
versus deterministic. On this basis, in Section 5 we propose
that the numerical solution of the control problem of the
underlying deterministic model can be used to compute
an approximate solution to the stochastic control problem,
assuming the perturbation parameter to be small. We present
computational examples to illustrate our findings.

2. The Stochastic Model and Stability

In this section we introduce the SVIR model and we analyse
the stability of the disease-free equilibrium. Firstly, we for-
mulate the necessary assumptions for modeling with SDEs.
Let us assume having a filtered complete probability space
(Ω,F, {F

𝑡
}
𝑡≥𝑡0

,P) and let𝑊(𝑡) be a one-dimensionalWiener
process defined on this probability space.

We consider a stochastic SVIR model similar to the sto-
chastic SIVR model of [8]. As in [8], the population is
subdivided into four compartments/classes. These classes
consist of all the individuals who are susceptible to the disease
(𝑆), under vaccination (𝑉), infected with the disease (𝐼), and
removed (𝑅).

It is assumed that births and deaths occur at the same
constant rate 𝜇 and that all newborns enter the susceptible
class. New infections occur at a rate 𝛽𝑆𝐼, for a constant
𝛽 which is called the contact rate. A fraction 𝛼(𝑡) of the
susceptible class is being vaccinated at time 𝑡.The vaccination
may reduce but not completely eliminate susceptibility to the
disease.Therefore themodel includes a factor 𝜌 in the contact
rate of vaccinated members, such that 0 ≤ 𝜌 ≤ 1. If 𝜌 = 0
the vaccination is perfectly effective while 𝜌 = 1 means the
vaccination has no effect at all. Furthermore, immunity to the
disease is assumed to be permanent so that a fraction 𝛾 of
infectives goes into the removed class.

The total population is constant and the variables are
normalized so that

𝑆 (𝑡) +𝑉 (𝑡) + 𝐼 (𝑡) + 𝑅 (𝑡) = 1 ∀𝑡 ≥ 0. (1)

The stochastic SVIR model is given as follows:

𝑑𝑆 (𝑡)

= (𝜇 − 𝜇𝑆 (𝑡) − 𝛽𝐼 (𝑡) 𝑆 (𝑡) − 𝛼 (𝑡) 𝑆 (𝑡)) 𝑑𝑡

− 𝜎𝑆 (𝑡) 𝐼 (𝑡) 𝑑𝑊 (𝑡) ,

𝑑𝑉 (𝑡)

= (𝛼 (𝑡) 𝑆 (𝑡) − 𝜌𝛽𝑉 (𝑡) 𝐼 (𝑡) − 𝜇𝑉 (𝑡)) 𝑑𝑡

− 𝜌𝜎𝑉 (𝑡) 𝐼 (𝑡) 𝑑𝑊 (𝑡) ,

𝑑𝐼 (𝑡)

= (𝛽𝑆 (𝑡) 𝐼 (𝑡) + 𝜌𝛽𝑉 (𝑡) 𝐼 (𝑡) − 𝛾𝐼 (𝑡) − 𝜇𝐼 (𝑡)) 𝑑𝑡

+ 𝜎 (𝑆 (𝑡) + 𝜌𝑉 (𝑡)) 𝐼 (𝑡) 𝑑𝑊 (𝑡) ,

𝑑𝑅 (𝑡) = (𝛾𝐼 (𝑡) − 𝜇𝑅 (𝑡)) 𝑑𝑡.

(2)

Of course the parameters 𝜇, 𝛾, and 𝛽 are positive constants.
The parameter 𝜎 determines the intensity of the stochastic
perturbation. If 𝜎 = 0, then the model reduces to the
underlying deterministic model.

If 𝛼 is constant then the model above is identical to that
in [8], and the point

𝐸0 = (𝑆0, 𝐼0, 𝑉0, 𝑅0) = (𝑚, 0, 1−𝑚, 0)

with 𝑚 =

𝜇

𝜇 + 𝛼

(3)

is the disease-free equilibrium point of the underlying deter-
ministic model and is the only equilibrium point of the sto-
chastic model.

For some 𝑛 ∈ N, some 𝑥0 ∈ R𝑛, and an 𝑛-dimensional
Wiener process 𝐵(𝑡), consider the general 𝑛-dimensional
stochastic differential equation

𝑑𝑥 (𝑡) = 𝐹 (𝑥 (𝑡) , 𝑡) 𝑑𝑡 +𝐺 (𝑥 (𝑡) , 𝑡) 𝑑𝐵 (𝑡) ,

𝑥 (0) = 𝑥0.
(4)

A solution to the above equation is denoted by 𝑥(𝑡, 𝑥0). We
assume that 𝐹(𝑡, 0) = 𝐺(𝑡, 0) = 0 for all 𝑡 ≥ 0, so that the
origin point is an equilibrium of (4).

Definition 1. The equilibrium 𝑥 = 0 of the system equation
(4) is said to be almost surely exponentially stable if, for all
𝑥0 ∈ R𝑛,

lim
𝑡→∞

sup 1
𝑡

ln 󵄨󵄨󵄨
󵄨
𝑥 (𝑡, 𝑥0)

󵄨
󵄨
󵄨
󵄨
< 0 a.s. (5)

Let us denote by L the differential operator associated with
the function displayed in (4), defined for a function𝑈(𝑡, 𝑥) ∈

𝐶
1,2
(R ×R𝑛) by

L𝑈 =

𝜕𝑈

𝜕𝑡

+𝐹
trp 𝜕𝑈

𝜕𝑥

+

1
2
Trc[𝐺trp 𝜕

2
𝑈

𝜕𝑥
2 𝐺] . (6)

Here Trc means trace and trp denotes the transpose of a
matrix.
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For the remainder of this section we shall study stability
and for this purpose we regard 𝛼(𝑡) to be a positive constant,
𝛼(𝑡) = 𝛼 for all 𝑡 > 0. In [8] it was shown that the system of
SDEs has unique solutions which are almost surely positive.
Thus we shall restrict ourselves to sample paths 𝑤 ∈ Ω for
which the coordinates are positive for all 𝑡 ≥ 0.The following
observation is towards the proof of the stability theorem.
Recall that we have introduced the number 𝑚 = 𝜇(𝜇 + 𝛼)

−1

in expression (3). Let us define, for any constants 𝑎 > 0 and
𝑐 > 0, the stochastic processes:

𝑧 (𝑡) = 𝑎 (𝑆 (𝑡) −𝑚)
2
+ 𝐼 (𝑡) + 𝑐𝑅 (𝑡) ,

𝑢1 (𝑡) = −

2𝑎 (𝑆 (𝑡) − 𝑚) 𝜎𝑆 (𝑡) 𝐼 (𝑡)

𝑧 (𝑡)

,

𝑢2 (𝑡) =
𝜎 (𝑆 (𝑡) + 𝜌𝑉 (𝑡)) 𝐼 (𝑡)

𝑧 (𝑡)

.

(7)

Note that 𝐼(𝑡)/𝑧(𝑡) ≤ 1 and 𝑆(𝑡) + 𝜌𝑉(𝑡) ≤ 𝑆(𝑡) + 𝑉(𝑡) ≤ 1.
Now we calculate

∫

𝑡

0
𝑢
2
1 (𝑠) 𝑑𝑠 ≤ ∫

𝑡

0
4𝑎2 [𝑆 (𝑠) −𝑚]

2
𝜎
2
𝑆
2
(𝑠) 𝑑𝑠 ≤ 4𝑎2𝜎2

𝑡,

∫

𝑡

0
𝑢
2
2 (𝑠) 𝑑𝑠 ≤ ∫

𝑡

0
𝜎
2
[𝑆 (𝑠) + 𝜌𝑉 (𝑠)]

2
𝑑𝑠 ≤ 𝜎

2
𝑡.

(8)

Therefore by the strong law of large numbers for martingales
(see [19]) it follows that

lim
𝑡→∞

sup 1
𝑡

∫

𝑡

0
[𝑢1 (𝑠) + 𝑢2 (𝑠)] 𝑑𝑊 (𝑠) = 0. (9)

Proposition 2. For constants 𝑎 > 0 and 𝑐 > 0, let 𝑧(𝑡) =

𝑎(𝑆(𝑡) − 𝑚)
2
+ 𝐼(𝑡) + 𝑐𝑅(𝑡), and let 𝑈(𝑡) = ln 𝑧(𝑡). Then 𝑧(𝑡)

almost surely (a.s.) converges exponentially to 0 if

lim
𝑡→∞

supL𝑈 (𝑡) < 0 (𝑎.𝑠.) . (10)

Proof. Using the Itô formula and with 𝑢1(𝑡) and 𝑢2(𝑡) defined
as above, we can express 𝑈(𝑡) as

𝑈 (𝑡) = 𝑈 (0) +∫

𝑡

0
L𝑈 (𝑠) 𝑑𝑠

+∫

𝑡

0
(𝑢1 (𝑠) + 𝑢2 (𝑠)) 𝑑𝑊 (𝑠) .

(11)

We have shown that

lim
𝑡→∞

sup 1
𝑡

∫

𝑡

0
(𝑢1 (𝑠) + 𝑢2 (𝑠)) 𝑑𝑊 (𝑠) = 0 (a.s.) , (12)

and hence the claim of the proposition follows readily.

The following observation from [9] is useful in exponen-
tial stability analysis.

Lemma 3. For 𝑘 ∈ N, let 𝑋(𝑡) = (𝑋1(𝑡), 𝑋2(𝑡), . . . , 𝑋𝑘(𝑡))

be a bounded R𝑘-valued function. Let (𝑡0,𝑛) be any increasing
unbounded sequence of positive real numbers. Then there is a
family of sequences (𝑡

𝑙,𝑛
) such that, for each 𝑙 ∈ {1, 2, . . . , 𝑘},

(𝑡
𝑙,𝑛
) is a subsequence of (𝑡

𝑙−1,𝑛) and the sequence 𝑋
𝑙
(𝑡
𝑙,𝑛
)

converges to the largest limit point of the sequence𝑋
𝑙
(𝑡
𝑙−1,𝑛).

Now we present our stability theorem. Recall that R0 is
the basic reproduction number of the underlying determin-
istic model, andR0 = 𝛽/(𝛾 + 𝜇). Also recall from expression
(3) that𝑚 = 𝜇(𝜇 + 𝛼)

−1.

Theorem 4. IfR0 < 1, then the disease-free equilibrium point
(𝑆0, 𝐼0, 𝑉0, 𝑅0) = (𝑚, 0, 1 − 𝑚, 0) is almost surely exponentially
stable.

Proof. The conditionR0 < 1 is equivalent to 𝛽 − (𝛾 + 𝜇) < 0.
Choose any number 𝑐 > 0 such that 𝛽 − (𝛾 + 𝜇) + 𝛾𝑐 < 0.
Choose a number 𝑎 > 0 such that

𝛽− (𝛾 + 𝜇) + 𝛾𝑐 + 𝑎 (2𝛽+ 3𝜎2
) < 0. (13)

Now let 𝑧(𝑡) = 𝑎(𝑆(𝑡)−𝑚)
2
+𝐼(𝑡)+𝑐𝑅(𝑡) and𝑈(𝑡) = ln 𝑧(𝑡). It

suffices to prove that 𝑧(𝑡) converges to 0 exponentially (a.s.).
To this end, by Proposition 2 it suffices to prove that

lim
𝑡→∞

supL𝑈 (𝑡) < 0 (a.s.) . (14)

Now we calculate L𝑈(𝑡). The latter can be expressed in the
form

L𝑈 (𝑡) = 𝐴 (𝑡) + 𝐵1 (𝑡) + 𝐵2 (𝑡) + 𝐵3 (𝑡) , (15)

with 𝐴(𝑡), 𝐵1(𝑡), 𝐵2(𝑡), and 𝐵3(𝑡) as follows:

𝐴 (𝑡)

=

2𝑎 [𝑚 − 𝑆 (𝑡)]

𝑧 (𝑡)

[(𝜇 + 𝛼) [𝑆 (𝑡) −𝑚] +𝛽𝐼 (𝑡) 𝑆 (𝑡)]

+

𝐼 (𝑡)

𝑧 (𝑡)

[𝛽𝑆 (𝑡) + 𝜌𝛽𝑉 (𝑡) − 𝛾 − 𝜇]

+

𝑐

𝑧 (𝑡)

[𝛾𝐼 (𝑡) − 𝜇𝑅 (𝑡)] ,

𝐵1 (𝑡) =
2𝑎𝑧 (𝑡) − 4𝑎2 (𝑆 (𝑡) − 𝑚)

2

2𝑧2 (𝑡)
(𝜎𝑆 (𝑡) 𝐼 (𝑡))

2
,

𝐵2 (𝑡)

= −

2𝑎 (𝑆 (𝑡) − 𝑚)

𝑧
2
(𝑡)

𝜎 (𝑆 (𝑡) + 𝜌𝑉 (𝑡)) 𝐼 (𝑡) 𝜎𝑆 (𝑡) 𝐼 (𝑡) ,

𝐵3 (𝑡) = −

1
2𝑧2 (𝑡)

[𝜎 (𝑆 (𝑡) + 𝜌𝑉 (𝑡)) 𝐼 (𝑡)]
2
.

(16)

With reference to 𝐴(𝑡) we note that since 𝜌 ≤ 1, we have

𝛽𝑆 (𝑡) + 𝜌𝛽𝑉 (𝑡) ≤ 𝛽 [𝑆 (𝑡) + 𝜌𝑉 (𝑡)]

≤ 𝛽 [𝑆 (𝑡) +𝑉 (𝑡)] ≤ 𝛽,

(17)

and therefore we obtain the inequality:

𝐴 (𝑡)

≤

2𝑎 [𝑚 − 𝑆 (𝑡)]

𝑧 (𝑡)

[(𝜇 + 𝛼) [𝑆 (𝑡) −𝑚] +𝛽𝐼 (𝑡) 𝑆 (𝑡)]

+

𝐼 (𝑡)

𝑧 (𝑡)

[𝛽 − 𝛾 − 𝜇] +

𝑐

𝑧 (𝑡)

[𝛾𝐼 (𝑡) − 𝜇𝑅 (𝑡)] .

(18)
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In view of Lemma 3 we can define the following limits for a
suitable increasing, unbounded sequence (𝑡

𝑛
):

𝑞 = lim
𝑛→∞

(𝑆 (𝑡
𝑛
) − 𝑚)

2

𝑧 (𝑡
𝑛
)

,

𝑖 = lim
𝑛→∞

𝐼 (𝑡
𝑛
)

𝑧 (𝑡
𝑛
)

,

𝑟 = lim
𝑛→∞

𝑅 (𝑡
𝑛
)

𝑧 (𝑡
𝑛
)

,

𝑠 = lim
𝑛→∞

𝑆 (𝑡
𝑛
) ,

V = lim
𝑛→∞

𝑉 (𝑡
𝑛
) ,

(19)

and with

lim sup
𝑡→∞

L𝑈 (𝑡) = lim
𝑛→∞

L𝑈 (𝑡
𝑛
) . (20)

In particular then we have

𝑎𝑞 + 𝑖 + 𝑐𝑟 = 1, 0 ≤ 𝑠 ≤ 1, 0 ≤ V ≤ 1. (21)

Let

Λ = lim
𝑛→∞

L𝑈 (𝑡
𝑛
) . (22)

We find an upper bound for𝐵1(𝑡)+𝐵2(𝑡)+𝐵3(𝑡). Since 𝑆
2
𝐼 ≤ 1

we have

𝐵1 (𝑡) ≤
1
2
2𝑎𝑧 (𝑡)
𝑧
2
(𝑡)

(𝜎𝑆 (𝑡) 𝐼 (𝑡))
2
≤ 𝑎𝜎

2 𝐼 (𝑡)

𝑧 (𝑡)

,

󵄨
󵄨
󵄨
󵄨
𝐵2 (𝑡)

󵄨
󵄨
󵄨
󵄨
≤ 2𝑎𝜎2

(

𝐼 (𝑡)

𝑧 (𝑡)

)

2
(23)

since |𝑆(𝑡)−𝑚| < 1. Noting that𝐵3(𝑡) ≤ 0 and 𝑖 < 1, we obtain

lim
𝑛→∞

𝐵1 (𝑡𝑛) + 𝐵2 (𝑡𝑛) + 𝐵3 (𝑡𝑛) ≤ 3𝜎2
𝑎𝑖. (24)

Therefore Λ satisfies the following inequality:

Λ ≤ − 2 (𝜇 + 𝛼) 𝑎𝑞

+ 𝑖 [−2𝑎𝛽𝑠 (𝑠 −𝑚) +𝛽𝑠 + 𝜌𝛽V− (𝛾 + 𝜇)] + 𝑐𝛾𝑖

− 𝑐𝜇𝑟 + 3𝑎𝜎2
𝑖.

(25)

Now we note that |2𝑎𝛽𝑠(𝑠 − 𝑚)| ≤ 2𝑎𝛽, and so we can write

Λ ≤ − 2 (𝜇 + 𝛼) 𝑎𝑞

+ 𝑖 [𝛽 − (𝛾 + 𝜇) + 𝛾𝑐 + 2𝑎𝛽+ 3𝑎𝜎2
] − 𝑟𝑐𝜇.

(26)

The coefficients of 𝑞, 𝑖, and 𝑟 are negative (see (13)). Further-
more, 𝑞, 𝑖, and 𝑟 cannot all be zero since

𝑎𝑞 + 𝑖 + 𝑐𝑟 = 1. (27)

Therefore Λ < 0, and the proof is complete.
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Figure 1: A simulation of 𝑆 for the deterministic and stochastic
models withR0 = 0.893.
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Figure 2: A simulation of 𝐼 for the deterministic and stochastic
models withR0 = 0.893.

We run two sets of simulations of the deterministic and
stochastic 𝑆 and 𝐼-trajectories over 𝑇 = 300 years. In the
simulations, we use small perturbation parameters and small
values of 𝑉. All parameter values in the computations except
𝛽 and 𝛾 are the same in both scenarios and we also consider
the same initial conditions. The common parameter values
used in the computations are

𝜇 = 0.016, 𝜌 = 0.1, 𝛼 = 0.3 and 𝜎 = 0.65
while the initial conditions are

𝑆0 = 0.7, 𝑉0 = 0.05 and 𝐼0 = 0.15.
In the first run (see Figures 1 and 2) we use 𝛽 = 0.55 and
𝛾 = 0.6, and we obtain R0 = 0.893 < 1. In the second run
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Figure 3: A simulation of 𝑆 for the deterministic and stochastic
models withR0 = 1.724.
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Figure 4: A simulation of 𝐼 for the deterministic and stochastic
models withR0 = 1.724.

(see Figures 3 and 4) we choose 𝛽 = 0.2 and 𝛾 = 0.1, which
yieldsR0 = 1.724 > 1.

For R0 < 1, Theorem 4 guarantees the disease-free
equilibrium to be almost surely exponentially stable and
indeed the 𝐼-curves in Figure 2 appear to converge to 0. For
R0 > 1 the theorem did not predict almost sure exponential
stability and in fact the 𝐼-curves in Figure 4 (and many
simulations with R0 = 1.724 not shown) certainly do not
show any clear intention of converging to 0.

3. The Deterministic Optimal Control Problem

We now formulate and solve the deterministic version of
the control problem. Recall from Section 2 that in our SVIR
model, 𝛼(𝑡) represents the fraction of the susceptible class
being vaccinated at time 𝑡. We wish to design an optimal
vaccination schedule, 𝛼∗(𝑡), which minimizes a combination
of the number of infectives on the one hand and the overall
cost of the vaccination on the other hand, over a certain time
horizon [0, 𝑇]. The cost of the vaccination is assumed to be
proportional to the square of 𝛼(𝑡).

For the purposes of optimization we introduce the func-
tions 𝑓1(𝑡), 𝑓2(𝑡), and 𝑓3(𝑡) appearing in the SDE system (2)
as follows:

𝑓1 (𝑡) = 𝜇 − 𝜇𝑆 (𝑡) − 𝛽𝐼 (𝑡) 𝑆 (𝑡) − 𝛼 (𝑡) 𝑆 (𝑡) ,

𝑓2 (𝑡) = 𝛼 (𝑡) 𝑆 (𝑡) − 𝜌𝛽𝑉 (𝑡) 𝐼 (𝑡) − 𝜇𝑉 (𝑡) ,

𝑓3 (𝑡) = 𝛽𝑆 (𝑡) 𝐼 (𝑡) + 𝜌𝛽𝑉 (𝑡) 𝐼 (𝑡) − 𝛾𝐼 (𝑡) − 𝜇𝐼 (𝑡) .

(28)

Now we can formulate the optimization problem.

Problem 5. Minimize the objective function

𝐷(𝛼 (⋅)) = ∫

𝑇

0
(𝛼

2
(𝑡) + 𝑐𝐼 (𝑡)) 𝑑𝑡 (29)

subject to
̇𝑆(𝑡) = 𝑓1(𝑡), 𝑉̇(𝑡) = 𝑓2(𝑡), ̇𝐼(𝑡) = 𝑓3(𝑡),

𝑆(0) = 𝑆0 ≥ 0, 𝑉(0) = 𝑉0 ≥ 0, 𝐼(0) = 𝐼0 ≥ 0.
The control variable 𝛼(𝑡) is assumed to be a measurable
function of time and bounded: 0 ≤ 𝛼(𝑡) ≤ 𝛼 ≤ 1.

We solve Problem 5 using well-established control theory
such as in the book [23] of Lenhart and Workman. We con-
struct theHamiltonian function, and to this endwe introduce
Lagrange multipliers 𝜆1(𝑡), 𝜆2(𝑡), and 𝜆3(𝑡), also referred to
as the costate variables. In the theorem below, the control
variable, the state variables, and the costate variables are
functions of time, but this dependence is suppressed except
where required explicitly. The Hamiltonian of Problem 5
has the form

𝐻(𝑡, 𝑆, 𝑉, 𝐼, 𝛼 (𝑡)) = 𝛼
2
+ 𝑐𝐼 + 𝜆1𝑓1 (𝑡, 𝑆, 𝑉, 𝐼, 𝛼)

+ 𝜆2𝑓2 (𝑡, 𝑆, 𝑉, 𝐼, 𝛼)

+ 𝜆3𝑓3 (𝑡, 𝑆, 𝑉, 𝐼, 𝛼) .

(30)

Theorem 6. An optimal solution for Problem 5 exists and sat-
isfies the following system of differentiable equations:

̇
𝜆1 = 𝜆1 (𝜇 + 𝛽𝐼 + 𝛼) − 𝜆2𝛼−𝜆3𝛽𝐼,

̇
𝜆2 = 𝜆2 (𝜌𝛽𝐼 + 𝜇) − 𝜆3𝜌𝛽𝐼,

̇
𝜆3 = − 𝑐 + 𝜆1𝛽𝑆+ 𝜆2𝜌𝛽𝑉−𝜆3 (𝛽𝑆 + 𝜌𝛽𝑉−𝛾−𝜇) ,

(31)

with transversality conditions 𝜆1(𝑇) = 0, 𝜆2(𝑇) = 0, and
𝜆3(𝑇) = 0. Furthermore, the optimal vaccination rate is given
by

𝛼
∗
(𝑡) = min [max(0, 1

2
𝑆 (𝑡) [𝜆1 (𝑡) − 𝜆2 (𝑡)]) , 𝛼] . (32)
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Figure 5: A simulation of 𝑆, 𝑉, and 𝐼 for the deterministic model
subject to the optimal control 𝛼∗.

Proof. In particular theHamiltonian is convexwith respect to
𝛼(𝑡) and the existence of a solution follows.We check the first-
order conditions for this optimization problem. We calculate
the partial derivatives of the Hamiltonian with respect to the
different state variables to obtain the time derivatives ̇

𝜆
𝑖
(𝑡) of

the costate variables. The calculation of
̇

𝜆1(𝑡) = −𝜕𝐻/𝜕𝑆, ̇
𝜆2(𝑡) = −𝜕𝐻/𝜕𝑉, and ̇

𝜆3(𝑡) =

−𝜕𝐻/𝜕𝐼

leads to the equations asserted in the theorem. We now turn
to the final part of the proof, which is about the form of
the optimal control, 𝛼∗(𝑡). Since the function 𝛼

∗
(𝑡) must

optimize the Hamiltonian, we calculate

𝜕𝐻

𝜕𝛼

= 2𝛼− 𝑆 (𝜆1 −𝜆2) . (33)

Consider now a fixed value of 𝑡. If 2𝛼 − 𝑆(𝜆1 − 𝜆2) is zero for
some value 𝛼(𝑡) in the interval [0, 𝛼], then the given value of
𝛼(𝑡) is optimal. If for every𝛼 ∈ [0, 𝛼]we have 2𝛼−𝑆(𝜆1−𝜆2) ≥

0 (resp., 2𝛼 − 𝑆(𝜆1 − 𝜆2) ≤ 0), then we must choose 𝛼(𝑡) = 0
(resp., 𝛼(𝑡) = 𝛼). Thus we must have

𝛼
∗
(𝑡) = min [max (0, 1

2
𝑆 (𝑡) [𝜆1 (𝑡) − 𝜆2 (𝑡)]) , 𝛼] . (34)

In Figure 5 we plot for 𝑇 = 3 years the 𝑆, 𝑉, and 𝐼-
trajectories of the deterministic model subject to the optimal
control 𝛼∗. We simulate 𝛼∗ and 𝛼

∗
/𝑆
∗ for the deterministic

model in Figure 6. In the simulations, we consider the
parameters 𝑐 = 0.3, 𝜇 = 0.016, 𝛽 = 0.55, 𝜌 = 0.1, 𝛾 = 0.45,
and 𝛼 = 0.8 and initial conditions 𝑆0 = 0.7, 𝑉0 = 0.05, and
𝐼0 = 0.2.
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Figure 6: A simulation of 𝛼∗ and 𝛼∗/𝑆∗ for the deterministicmodel.

In Figure 6 the dashed curve represents 𝛼
∗
(𝑡), that is,

the optimal vaccination rate. In this illustration, the optimal
vaccination roll-out starts with initial vaccination of approx-
imately 0.11 and decreases gradually over the next 3 years.

4. The Stochastic Optimal Control Problem

In this section we formulate the stochastic version of the opti-
mization problem and describe its solution. For stochastic
control theory we refer to the book [24] of Øksendal. Our
objective is to find an optimal vaccination rate 𝛼

∗
(𝑡) that

minimizes the objective functional which for an initial state
𝑥0 is defined by

E0,𝑥0 [∫
𝑇

0
(𝛼

2
(𝑠) + 𝑐𝐼 (𝑠)) 𝑑𝑠] . (35)

Here the expectation is obtained on the condition that the
initial state (at time 𝑡 = 0) of the system is 𝑥0. In step with
the deterministic problem of earlier, we assume that there
is a fixed constant 𝛼 ≤ 1 with 𝛼(𝑡) ≤ 𝛼 (a.s.). The class of
admissible control laws is

A = {𝛼 (⋅) : 𝛼 is adapted, and 0≤𝛼≤𝛼 a.s.} . (36)

To solve this stochastic control problem, we define the
performance criterion as follows:

𝐽 (𝑡, 𝑥; 𝛼) = E
𝑡,𝑥

[∫

𝑇

𝑡

(𝛼
2
(𝑠) + 𝑐𝐼 (𝑠)) 𝑑𝑠] , (37)

where the expectation is conditional on the state of the system
being a fixed value 𝑥 at time 𝑡. We define the value function as

𝑈 (𝑡, 𝑥) = inf
𝛼(⋅)∈A

𝐽 (𝑡, 𝑥; 𝛼) = 𝐽 (𝑡, 𝑥; 𝛼
∗
) . (38)

We determine a control law that minimizes the expected
value 𝐽 : A → R

+
given by (37). We now formulate
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the stochastic analogue of the optimal control problem,
subsequent to which we present the solution formulae.

Problem 7. Given the system (4) and givenA as in (36) with
𝐽 as in (37), find the value function

𝑈 (𝑡, 𝑥) = inf
𝛼∈A

𝐽 (𝑡, 𝑥; 𝛼) , (39)

and an optimal control function

𝛼
∗
(𝑡) = arg inf

𝛼∈A
𝐽 (𝑥; 𝛼 (𝑡)) ∈ A. (40)

We can find an expression for the optimal vaccination
strategy 𝛼∗ through the following theorem.

Theorem 8. A solution to the optimal vaccination problem
stated in Problem (36) is of the form

𝛼
∗
(𝑡) = min [max (0, 1

2
𝑆 (𝑡) [𝑈𝑆 (𝑡) − 𝑈

𝑉 (𝑡)]) , 𝛼] .
(41)

Proof. We determine (41) via the dynamic programming
approach. First we calculateL𝑈(𝑡):

L𝑈 (𝑡) = 𝑓1 (𝑡) 𝑈𝑆 (𝑡) + 𝑓2 (𝑡) 𝑈𝑉 (𝑡) + 𝑓3 (𝑡) 𝑈𝐼 (𝑡)

+

1
2
(𝜎𝑆 (𝑡) 𝐼 (𝑡))

2
𝑈
𝑆𝑆 (𝑡)

+

1
2
(𝜌𝜎𝑆 (𝑡) 𝐼 (𝑡))

2
𝑈
𝑉𝑉 (𝑡)

+

1
2
(𝜎 (𝑆 (𝑡) + 𝜌𝑉 (𝑡)) 𝐼 (𝑡))

2
𝑈
𝐼𝐼 (𝑡)

+ 𝜌 (𝜎𝐼 (𝑡))
2
𝑆 (𝑡) 𝑉 (𝑡) 𝑈

𝑆𝑉
(𝑡)

− (𝜎𝐼 (𝑡))
2
𝑆 (𝑡) (𝑆 (𝑡) + 𝜌𝑉 (𝑡)) 𝑈

𝑆𝐼
(𝑡)

− 𝜌 (𝜎𝐼 (𝑡))
2
𝑉 (𝑡) (𝑆 (𝑡) + 𝜌𝑉 (𝑡)) 𝑈𝑉𝐼 (𝑡) .

(42)

Applying the Hamilton-Jacobi-Bellman theory (see, for in-
stance, [24]) we must find the infimum:

inf
𝛼∈A

[𝛼
2
(𝑡) + 𝑐𝐼 (𝑡) +L𝑈 (𝑡)] . (43)

For this purpose, we need to find the partial derivative of the
expression

𝛼
2
(𝑡) + 𝑐𝐼 (𝑡) +L𝑈 (𝑡) (44)

with respect to 𝛼, and this derivative should vanish.This leads
to the equation:

2𝛼 (𝑡) − 𝑆 (𝑡) 𝑈
𝑆
(𝑡) + 𝑆 (𝑡) 𝑈

𝑉
(𝑡) = 0. (45)

We consider the bounds on 𝛼 and by an argument similar
to that in the proof of the deterministic case; the asserted
expression for 𝛼∗(𝑡) emerges.

Table 1

𝑈(0) for different candidates of 𝛼̂ and 𝜎

𝛼̂
𝑖

𝜎 = 0.15 𝜎 = 0.3 𝜎 = 0.45
𝛼̂
−3 29.84672 34.22981 36.21729

𝛼̂
−2 29.26219 34.09944 36.15703

𝛼̂
−1 28.96307 34.07355 36.14670

𝛼̂0 28.91028 33.93111 35.95781
𝛼̂1 29.52337 34.34593 36.26951
𝛼̂2 30.15975 34.56046 36.36480
𝛼̂3 31.01890 34.80816 36.47420
𝛼̂4 29.03129 34.07210 36.05649
𝛼̂5 30.71396 35.24172 36.82271

5. Numerical Example

In the discussion that follows, the computations are done for
𝑇 = 3 years and we consider three different values of the
perturbation parameter, 𝜎. In particular we consider

the 𝜎-values: 𝜎 ∈ {0.15, 0.30, 0.45}

together with the following parameter values and initial con-
ditions:

𝑐 = 0.3, 𝜇 = 0.016, 𝛽 = 0.55, 𝜌 = 0.1, 𝛾 = 0.45, and
𝛼 = 0.8,
𝑆0 = 0.7, 𝑉0 = 0.05, and 𝐼0 = 0.2.

For each value of 𝜎 above, we use the results of the deter-
ministic control problem to find an approximate numerical
solution for the stochastic control problem. In particular, we
use𝜆1−𝜆2 as a proxy for𝑈𝑆−𝑈𝑉 in the calculation of𝛼

∗ in this
case.Wenote that the presence of 𝑆(𝑡)makes𝑈 into a stochas-
tic variable even with the said proxy (in the stochastic case).

For each value of 𝜎, we show in Table 1 the 𝑈(0)-values
obtained as the average over 3000 runs made for different
candidates for 𝛼̂ as we take 𝛼 = 𝑆𝛼̂. In these runs we take
𝜆1 and 𝜆2 of the underlying deterministic model.

Using a contact rate 𝛽0 = 𝛽 − (𝜎
2
/2) instead of 𝛽, we

choose the first candidate

𝛼̂0 (𝑡) =
1
2
[𝜆1 (𝑡) − 𝜆2 (𝑡)] . (46)

The adjustment on the contact rate ismotivated by the general
stabilizing effect of this type of stochastic perturbation and
the perturbation being associated with the parameter 𝛽.

We also take

𝛼̂
𝑖
(𝑡) = 𝛼̂0 (𝑡) + 𝜖𝑖 −

𝜖𝑖

3
𝑡, for 𝑖 = −3, −2, −1, 1, 2, 3 (47)

corresponding to the rate 𝛽 and with 𝜖 = 0.001.
Furthermore, we consider

𝛼̂4 (𝑡) =
1
2
[𝜆1 (𝑡) − 𝜆2 (𝑡)] , (48)

corresponding to the contact rate 𝛽.
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Figure 7: A simulation of 𝑆∗(𝑡) for the deterministic and stochastic
models.

Just for further comparison we choose a linear curve
candidate 𝛼̂5(𝑡), say,

𝛼̂5 (𝑡) = 𝜂 +𝜑𝑡 (49)

with 𝜂 = 0.0001 and 𝜑 = 0.00015, also corresponding to a
contact rate of 𝛽.

Let us use the notation 𝑈
𝑖
(0) for the value of 𝑈(0)

corresponding to the control 𝑆𝛼̂
𝑖
. We notice that 𝑈4(0) and

𝑈5(0) are bigger than 𝑈0(0). Even more interesting is the
pattern 𝑈

−3(0) > 𝑈
−2(0) > 𝑈

−1(0) > 𝑈0(0) and 𝑈0(0) <

𝑈1(0) < 𝑈2(0) < 𝑈3(0).This creates the impression that𝑈0(0)
is close to being a minimum. At least, with all the difficulties
of a more precise solution, the choice of 𝛼̂0 seems like a
viable option in a real application. The inequalities 𝑈

−3(0) >
𝑈
−2(0) > 𝑈

−1(0) > 𝑈0(0) and 𝑈0(0) < 𝑈1(0) < 𝑈2(0) < 𝑈3(0)
has been tested for other parameter choices too, with 𝜎 small.
The simulations tested all revealed the same behaviour.

In Figures 7–9 we simulate the optimal solutions 𝑆∗, 𝑉∗,
and 𝐼
∗ of the deterministic and stochastic (𝜎 = 0.3) models.

We use the same values for the parameters 𝑐, 𝜇, 𝛽, 𝜌, 𝛾, 𝜎,
𝛼, and initial conditions 𝑆0, 𝑉0, and 𝐼0 as in the discussion
preceding these simulations.

An important point to note about our approximation is
that it fully accommodates the stochasticity (embodied and
concentrated in the factor 𝑆 of the expression for 𝛼

∗
(𝑡)).

Therefore it gives a very good approximation, at least in the
sense that in Table 1, the minimum value of𝑈(0) consistently
corresponds to 𝛼̂0.

6. Conclusion

This paper presents some further insights into a stochastic
vaccination model introduced in the paper of Tornatore
et al. [8]. Our investigations covered two important aspects:
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Figure 8: A simulation of𝑉∗(𝑡) for the deterministic and stochastic
models.
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Figure 9: A simulation of 𝐼∗(𝑡) for the deterministic and stochastic
models.

exponential stability of the disease-free equilibrium and
optimal control of vaccination.

Regarding stability, the main result of our paper has a
particularly simple formulation. Essentially it says that we
have almost sure exponential stability whenever the basic
reproduction number of the underlying deterministic model
is below unity. It will be good to know how an increase in
vaccination rate would perhaps lead to better stability of the
stochasticmodel. Nevertheless, the result as it stands is a good
assurance.

As for the control problem, on the basis of a popular type
of objective functional, we designed an efficient strategy for
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the roll-out of vaccination. It roughly amounts tominimizing
the infections, balanced against the cost of vaccination. We
exploit a similarity between the forms of the optimal controls
for the stochastic model and the underlying deterministic
model; then we use the relative simplicity of the latter to find
approximate numerical solutions for the stochastic optimal
control. Numerical simulation enables us to assess the feasi-
bility of the optionwe followed, for a specific example. Amore
formal approach to the numerical solution of the optimal
control problem is far more intricate and labour-intensive,
and our method is a workable alternative. This could be
the starting point for more sophisticated approximation
methods.
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