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Undersampled magnetic resonance image reconstruction employing sparsity regularization has fascinated many researchers in
recent years under the support of compressed sensing theory. Nevertheless, most existing sparsity-regularized reconstruction
methods either lack adaptability to capture the structure information or suffer from high computational load. With the aim of
further improving image reconstruction accuracy without introducing too much computation, this paper proposes a data-driven
tight frame magnetic image reconstruction (DDTF-MRI) method. By taking advantage of the efficiency and effectiveness of data-
driven tight frame, DDTF-MRI trains an adaptive tight frame to sparsify the to-be-reconstructed MR image. Furthermore, a two-
level Bregman iteration algorithm has been developed to solve the proposed model. The proposed method has been compared to
two state-of-the-art methods on four datasets and encouraging performances have been achieved by DDTF-MRI.

1. Introduction

Magnetic Resonance Imaging (MRI) is one of the major
diagnostic imaging modalities with noninvasive and nonion-
izing radiation nature. However, relatively low imaging speed
limits its wide application in clinic [1]. To accelerate MRI,
one popular way is to reduce the number of acquired data
[2]. With 𝑓 ∈ C𝑚 and 𝑥 ∈ C𝑛, respectively, denoting the
𝐾-space measurement and the original image, the imaging
model could be described as follows:

𝑓 = 𝑃𝐹𝑥+ 𝜖 = 𝐹
𝑝
𝑥+ 𝜖, (1)

where 𝜖 is the complex additive white Gaussian noise with
standard deviation 𝜎, 𝑃 is the undersampling operator, 𝐹 is
the Fourier operator, and 𝐹

𝑝
= 𝑃𝐹.

Recovering 𝑥 from the undersampled measurement 𝑓
is an ill-posed inverse problem. To address this ill-posed
nature, it is necessary to utilize some prior knowledge to
regularize the MR image so as to make up the missing
information.With the popularity of compressed sensing (CS)
theory [3, 4], the sparsity-promoting regularization for MR

image reconstruction has attracted many researchers [2, 5,
6]. Specifically, the CS theory has shown that if an image
has a sparse representation under certain transform, we can
precisely restore the original image from its partial measure-
ments under the RIP condition [3, 4]. With such a transform,
the MR image reconstruction from its undersampled 𝐾-
space data can be achieved by nonlinear algorithms, like ℓ1
minimization or orthogonal match pursuit (OMP) algorithm
[2, 5, 6].

The commonly used transforms inMR image reconstruc-
tion include total variation (TV) and wavelet transform, both
of which can be regarded as tight frames [7–13]. As the tight
frame satisfies the perfect reconstruction property, which
ensures that the given signal can be perfectly represented by
its canonical representation, it has been leveraged in diverse
inverse problems [7, 11, 12]. However, TV prior assumes
that the image consists of piecewise constant areas which
may not be valid in many real MR images. When the
measurements are highly undersampled, compressed sensing
based MRI using TV regularization (CSMRI-TV) could lead
to severe blocky artifacts [2, 14]. To improve the image quality,
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Liang et al. [15] applied the nonlocal total variation (NLTV)
regularization in parallel MR imaging by replacing the gradi-
ent functional in conventional TV with a weighted nonlocal
gradient function. However, although NLTV reduces the
blocky effects, it is still based on fixed transform, which does
not adapt to the target image. Furthermore, other analytically
designed X-lets [8–10, 16], such as wavelets and shearlets, also
suffer from their intrinsic deficiencies [17], such as the depen-
dency between parent and child wavelet coefficients and the
lack of adaptability. Qu et al. [18] introduced the patch-based
directional wavelet (PBDW) in MR image reconstruction by
exploiting the geometric direction of image patches, which
has shown encouraging performances on edge preservation
and noise removal. Nevertheless, PBDW is still a simplified
form of bandlets and the adaptability can still be explored
[19].

Since the fixed tight frame/transform might not be
universally optimal for all images, the data-driven tight
frame/transform has been developed [5, 6, 20, 21] to adap-
tively capture the structure information. One most popular
direction is the incorporation of the dictionary learning
(DL) into MRI [6, 21, 22], among which Ravishankar and
Bresler proposed a benchmark work named DLMRI [5]
with outstanding reconstruction results achieved. However,
dictionary learning based optimization is a large-scale and
highly nonconvex problem, which requires high compu-
tational complexity [6, 20]. More recently, Cai et al. [20]
presented a scheme to learn a data-driven tight frame from
themeasurements and applied it to solve the image denoising
problem. As the data-driven tight frame satisfies the perfect
reconstruction property, it is very efficient to obtain the
results with less artifacts. Therefore, Wang et al. [23] tried to
incorporate data-driven tight frame into dynamicMRI.How-
ever, the proposedmethod relies on a perfect reference image,
which is quite hard to be obtained from its undersampled𝐾-
space data, and the data-driven tight frame is learnt from the
reference image instead of the target image.

Based on these observations and motivated by the
efficiency and effectiveness of the data-driven tight frame
(DDTF), in this work, we propose an undersampled MR
imagingmethod by incorporatingDDTF into the reconstruc-
tion model with the aim of further improving the image
reconstruction accuracy without introducing toomuch com-
putation. Specifically, a tight frame has been adaptively
trained for each to-be-reconstructed MR image. To solve the
proposedmodel, a two-level Bregman iteration algorithmhas
been developed. We name the proposed approach as DDTF-
MRI and compare it to two state-of-the-art MR image recon-
struction algorithms, including CSMRI-TV and DLMRI, on
one simulated MR image and three in vivo datasets under
different undersampling scenarios. The experiments have
shown encouraging performances of the proposed method.

The rest of the paper is organized as follows. Section 2
presents the preliminary and previous work. Our proposed
method DDTF-MRI is illustrated in Section 3. The experi-
mental results are provided in Section 4 demonstrating that
the proposed algorithm has potential to improve the MR

image reconstruction from its undersampled 𝐾-space data.
Finally, conclusions are given in Section 5.

2. Preliminary and Previous Work

2.1. Tight Frame. A system {𝑥
𝑖
} ⊂ 𝐿2(C) is a tight frame [7,

24] of 𝐿
2
(C) if

𝑔 = ∑
𝑖

⟨𝑔, 𝑥
𝑖
⟩ 𝑥
𝑖
, ∀𝑔 ∈ 𝐿2 (C) , (2)

where ⟨⋅, ⋅⟩ is the inner product operator and the space
𝐿2(C) represents the set of all the functions 𝑓(𝜃) satisfying
‖𝑓‖
𝐿2(C)

:= (∫
C
|𝑓(𝜃)|𝑑𝜃)1/2. For a given tight frame, we can

define the corresponding analysis operator𝑊 as

𝑊: 𝑔 ∈ 𝐿2 (C) → {⟨𝑥, 𝑥
𝑖
⟩} ∈ ℓ2 (N) (3)

and the synthesis operator𝑊𝑇 as

𝑊𝑇 : {𝑐
𝑖
} ∈ ℓ2 (N) → ∑

𝑛

𝑐
𝑖
𝑥
𝑖
∈ 𝐿2 (C) . (4)

The system is a tight frame if and only if 𝑊𝑇𝑊 = 𝐼, where
𝐼 is the identity operator. Moreover, a tight frame can be
generated from a filter bank satisfying the Unitary Extension
Principle (UEP) condition [7]. Let {𝑎

𝑖
}𝑖=𝑟

2

𝑖=1 denote the set of
2D filters and the size of 𝑎

𝑖
is 𝑟 × 𝑟 and then the synthesis

operator 𝑊𝑇 ∈ C𝑛×𝑛𝑟
2
and the analysis operator𝑊 ∈ C𝑛𝑟

2
×𝑛

are defined as
𝑊𝑇 = [𝑆

𝑎1
, 𝑆
𝑎2
, . . . , 𝑆

𝑎
𝑟
2 ] ,

𝑊 = [𝑆𝑇
𝑎1
, 𝑆𝑇
𝑎2
, . . . , 𝑆𝑇

𝑎
𝑟
2
]
𝑇

,

(5)

where 𝑆
𝑎
𝑖

∈ C𝑛×𝑛 denotes the convolution matrix associated
with the filter 𝑎

𝑖
, which is a block-wise Toeplitz matrix under

Neumann boundary conditions [7, 24].

2.2. Sparsity-Regularized MR Image Reconstruction. This
subsection briefly introduces two representative sparsity-
regularized MR image reconstruction methods, namely,
CSMRI andDLMRI. CSMRI is a classical approach exploiting
sparsity via fixed transform and its mathematical model can
be defined as follows:

min
𝑥

‖𝑊𝑥‖
1
,

s.t. 𝑓 −𝐹
𝑝
𝑥

2
≤ 𝜎2,

(6)

where 𝑊 is the analysis operator of its corresponding frame
system, that is, wavelet or total variation.

DLMRI proposed by Ravishankar and Bresler [5], on
the other hand, employs the𝐾-singular value decomposition
(𝐾-SVD) algorithm [21] to learn an adaptive dictionary
to sparsely represent the patches extracted from the target
image. The DLMRI model can be written as

min
𝑥,𝐷,Γ

∑
𝑖

𝑅𝑖𝑥−𝐷𝛼
𝑖


2
2 +𝜆∑

𝑖

𝛼𝑖
0 ,

s.t. 𝑓−𝐹
𝑝
𝑥

2
≤ 𝜎2,

(7)
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where 𝐷 represents the dictionary, 𝑅
𝑖
denotes the operator

that extracts the 𝑖th patch from the image 𝑥, and Γ denotes
the set of all sparse coefficients {𝛼

𝑖
}.

3. The Proposed DDTF-MRI Method

3.1. Image Reconstruction Model. To enhance the sparsity
in the frame domain, the proposed DDTF-MRI method is
devoted to learning an adaptive data-driven tight frame to
effectively sparsify the target image.The proposed model can
be described as

min
𝑥,𝑊∈Λ

‖𝑊𝑥‖
1
,

s.t. 𝑓−𝐹
𝑝
𝑥

2
≤ 𝜎2,

(8)

where Λ = {𝑊 | 𝑊𝑇𝑊 = 𝐼} and the tight frame 𝑊 is
constructed by the corresponding 2D filters {𝑎

𝑖
}𝑖=𝑟

2

𝑖=1 in the
manner of (5).

3.2. The Proposed Algorithm. A two-level Bregman iteration
algorithm has been developed to attack the target model.

3.2.1. The Outer Bregman Iteration. In the outer-level Breg-
man iteration, we try to solve the following problem [6, 25,
26]:

{𝑥𝑘+1,𝑊𝑘+1} = argmin
𝑥,𝑊∈Λ

‖𝑊𝑥‖1 +
𝜇

2
𝐹𝑝𝑥−𝑓+ 𝑐𝑘


2
2 ,

𝑐𝑘+1 = 𝑐𝑘 + 𝛿
𝑐
(𝐹
𝑝
𝑥𝑘+1 −𝑓) ,

(9)

where 𝜇 > 0 and 𝛿
𝑐
∈ (0, 2) [26].

3.2.2. The Inner Bregman Iteration. With introduction of an
assistant variable, V = 𝑊𝑥, we can obtain the constrained
version of the first subproblem in (9):

min
𝑥,𝑊∈Λ,V

‖V‖1 +
𝜇

2
𝐹𝑝𝑥−𝑓+ 𝑐𝑘


2
2 ,

s.t. V = 𝑊𝑥.

(10)

Employing the Bregman iteration technique again under the
assistance of a dual variable, 𝑏, in the inner-level Bregman
iteration, we target solving

𝑥𝑘+1 = argmin
𝑥

𝜇

2
𝐹𝑝𝑥−𝑓+ 𝑐𝑘


2
2

+
𝜆

2
𝑊𝑥− V𝑘 + 𝑏𝑘


2
2 ,

{V𝑘+1,𝑊𝑘+1} = argmin
V,𝑊∈Λ

‖V‖1 +
𝜆

2
𝑊𝑥𝑘+1 − V+ 𝑏𝑘


2
2 ,

𝑏𝑘+1 = 𝑏𝑘 + 𝛿
𝑏
(𝑊𝑘+1𝑥𝑘+1 − V𝑘+1) ,

(11)

where 𝜆 > 0 and 0 < 𝛿
𝑏
≤ 1 [26].

3.2.3. Subproblems of (11). For the 𝑥-subproblem in (11), as
𝑊𝑇𝑊 = 𝐼, its least squares solution can be obtained as

(𝜇𝐹𝑇
𝑝
𝐹
𝑝
+𝜆𝐼) 𝑥𝑘+1 = 𝜇𝐹𝑇

𝑝
(𝑓− 𝑐𝑘) + 𝜆𝑊𝑇 (V𝑘 − 𝑏𝑘) . (12)

Multiplying both sides of (12) by 𝐹 and letting 𝑆1 = 𝑓 −

𝑐𝑘 and 𝑆2 = 𝐹[𝑊𝑇(V𝑘 − 𝑏𝑘)], we obtain the interpolation
formulation in the frequency domain:

𝐹𝑥𝑘+1 (𝑘
𝑥
, 𝑘
𝑦
)

=

{{{
{{{
{

𝑆2 (𝑘𝑥, 𝑘𝑦) , (𝑘
𝑥
, 𝑘
𝑦
) ∉ Ω,

𝜇𝑆1 (𝑘𝑥, 𝑘𝑦) + 𝜆𝑆2 (𝑘𝑥, 𝑘𝑦)

𝜇 + 𝜆
, (𝑘
𝑥
, 𝑘
𝑦
) ∈ Ω,

(13)

where Ω stands for the subset of 𝐾-space that has been
sampled. The image can then be updated via the inverse
Fourier transform.

Next, we apply the alternating-minimization strategy to
solve the {V,𝑊}-subproblems:

min
V,𝑊∈Λ

‖V‖1 +
𝜆

2
𝑊𝑥𝑘+1 − V+ 𝑏𝑘


2
2 . (14)

With𝑊 temporarily fixed, the V-subproblem becomes

V𝑘+1/2 = argmin
V

‖V‖1 +
𝜆

2
𝑊𝑥𝑘+1 − V+ 𝑏𝑘


2
2 . (15)

Following the iterative shrinkage/thresholding algorithm
(ISTA) [27], it yields

V𝑘+1/2 = shrink (𝑊𝑥𝑘+1 + 𝑏𝑘,
1
𝜆
) , (16)

where shrink(𝑥, 𝑎) = sign(𝑥)max{0, |𝑥| − 𝑎}. Now let V be
kept fixed; the𝑊-subproblem turns to be

𝑊𝑘+1 = argmin
𝑊∈Λ

𝑊𝑥𝑘+1 − V𝑘+1/2 + 𝑏𝑘

2

2 . (17)

Instead of directly optimizing𝑊, we apply the technique
of [20] to solve this subproblem by using SVD to obtain the
corresponding filters {𝑎

𝑖
}.

Furthermore, for a better restoration result, we also
update the variable V in the updated tight frame domain

V𝑘+1 = argmin
V

‖V‖1 +
𝜆

2
𝑊
𝑘+1𝑥𝑘+1 − V+ 𝑏𝑘


2
2 (18)

and obtain

V𝑘+1 = shrink (𝑊𝑘+1𝑥𝑘+1 + 𝑏𝑘, 1
𝜆
) . (19)

To help the readers grasp the overall picture better, we
summarize the entire process in Algorithm 1.
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(a) (b)

Figure 1: (a) Original filters. (b) The corresponding learnt filters in the experiment of Figure 2.

(1) Initialization: V0 = 0, 𝑏0 = 0, 𝑐0 = 0,𝑊0, 𝑘 = 0
(2) while stop condition is not met do
(3) for 𝑚 = 1 to𝑀 do
(4) update 𝑥𝑘+1 according (13)
(5) update V𝑘+1/2 according (16)
(6) update𝑊𝑘+1 according (17)
(7) update V𝑘+1 according (19)
(8) 𝑏𝑘+1 = 𝑏𝑘 + 𝛿

𝑏
(𝑊𝑘+1𝑥𝑘+1 − V𝑘+1)

(9) end for
(10) 𝑐𝑘+1 = 𝑐𝑘 + 𝛿

𝑐
(𝐹
𝑝
𝑥𝑥+1 − 𝑓)

(11) 𝑘 ← 𝑘 + 1
(12) end while

Algorithm 1: DDTF-MRI.

4. Results and Discussion

4.1. Experimental Setup. We evaluated the proposed DDTF-
MRI on four datasets and compared it to two state-of-the-
art methods, including CSMRI-TV (the CSMRI-TV code is
available inhttp://www.eecs.berkeley.edu/∼mlustig/CS.html)
and DLMRI (the DLMRI code is available in http://www
.ifp.illinois.edu/∼yoram/DLMRI-Lab/DLMRI.html) [5]. The
four datasets consist of one simulated data and three in vivo
datasets. The simulated data is from the paper in [5]. For
the in vivo data, informed consent was obtained from the
volunteer in accordance with the institutional review board
policy. The first in vivo data is a sagittal brain collected on a
GE 3T scanner (GE Healthcare, Waukesha, WI, USA) with
32-channel head coil and 3D T1-weighted spoiled gradient
echo sequence: TE = minimum full, TR = 7.5ms, FOV =
24×24 cm, matrix = 256× 256, and slice thickness = 1.7mm.
The heart dataset was acquired on a 1.5 T Philips scanner
using the steady-state free precession (SSFP) sequence with
a flip angle of 50 degree and TR = 3.45msec. The field of
view (FOV) was 345mm × 270mm and the slice thickness
was 10mm. Retrospective cardiac gating was used with a
heart rate of 66 bpm. The third in vivo data was acquired
on a 3 T commercial scanner (GE Healthcare, Waukesha,

WI, USA) and eight-channel head coil (Invivo, Gainesville,
FL, USA) with a 2D T1-weighted spin-echo protocol (axial
plane, TE/TR = 11/700ms, 22 cm FOV, 10 slices, matrix size
= 256 × 256). The adaptive combination method [28] is
applied to integrate the multichannel data into a single-
channel complex-valued image before we apply the three
methods. Then the full 𝐾-space data corresponding to the
single channel image is retrospectively undersampled under
different sampling schemes.

As shown in Figure 1(a), we employed the 3-level shift-
invariant Haar wavelet filters (the size of each filter is 8 × 8)
as the initialization of the tight frame in DDTF-MRI. As for
the parameter settings, both CSMRI-TV and DLMRI were
implemented with their default settings. For DDTF-MRI, we
set 𝑀 = 3, 𝛿

𝑏
= 1, 𝛿

𝑐
= 1, 𝜇 = 10, and 𝜆 = 10. The

outer-level iteration of DDTF-MRI continues until 𝑘 > 25.
Furthermore, we used both the peak signal-to-noise ratio
(PSNR) (the PSNR is defined as PSNR = 20log10255/RMSE,
where theRMSE is the rootmean error estimated between the
ground truth and the reconstructed image), high-frequency
error norm (HFEN) [5], and structural similarity (SSIM)
index [29] for a quantitative comparison of recovered results.

4.2. Test on the Simulated Data. We firstly applied each
algorithm to reconstruct the simulated T2-weighted image
under the 1D Cartesian sampling schemes with accelerating
factor 𝑅 = 6.7 (sampling ratio 15%). The filters learned by
DDTF-MRI are shown in Figure 1(b). Compared with the
initialization filter presented in Figure 1(a), we can see that
the learnt filters have captured more directional information.
Figures 2(a) and 2(b), respectively, present the original image
of size 512 × 512 and the sampling mask. The evolution of
the PSNR, HFEN, and SSIM values over iteration number
is plotted in Figures 2(c), 2(d), and 2(e), which indicates
that our proposed method is superior to the other two
algorithms. The final PSNR values obtained by CSMRI-TV,
DLMRI, andDDTF-MRI are, respectively, 32.97 dB, 35.34 dB,
and 38.03 dB. Figures 2(f), 2(g), and 2(h) provide the absolute
reconstruction differences between the original image and
the results obtained by the three methods, from which we
can see the proposed method produces less estimation error.
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Figure 2: Continued.
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Figure 2: (a) Original image. (b) Cartesian sampling mask with accelerating factor 𝑅 = 6.7. (c), (d), and (e) are the PSNR, HFEN, and
SSIM values versus the number of iterations. (f), (g), and (h) are reconstruction error magnitudes for CSMRI-TV, DLMRI, and DDTF-MRI,
respectively.

Table 1: ROI analysis of mean and standard deviation (std).

Image
Different ROIs

ROI 1 ROI 2 ROI 3
Mean ± Std Mean ± Std Mean ± Std

Reference 35.34 ± 5.55 29.72 ± 2.97 39.08 ± 5.87
CSMRI-TV 35.47 ± 7.31 29.69 ± 3.70 39.01 ± 7.89
DLMRI 35.14 ± 4.77 29.40 ± 2.04 38.83 ± 5.19
DDTF-MRI 35.33 ± 5.35 29.75 ± 2.67 39.09 ± 5.86

Moreover, a region-of-interest (ROI) analysis was performed
by calculating means and standard deviations in selected
ROIs. Table 1 shows the numerical result calculated from
three selected ROIs in this experiment. The numbers of
pixels in ROI 1, ROI 2, and ROI 3 are 1944, 1248, and 1944,
respectively. From Table 1, we can find the values of our
reconstruction result are closest to the values of reference
image, which illustrates that our method can give a more
precise reconstruction result.

4.3. Test on In Vivo Datasets. We then employed these
three methods to reconstruct the sagittal brain and test
their sensitivity to the acceleration factors. Figure 3(c) plots
the PSNR values versus different accelerating factors under
the random sampling trajectory. It shows that DDTF-MRI
performs better than the other twomethods at all the acceler-
ation factors. For a visual comparison, Figure 4 provides the
reconstructed results at accelerating factor 3. For a close-up
comparison, we have enlarged two edge parts, fromwhich we
can see DDTF-MRI provides clearer details.

To investigate the sensitivity of various methods to
noise, CSMRI-TV, DLMRI, and DDTF-MRI were applied to
reconstruct the heart image under pseudoradial sampling
scheme with accelerating factor 𝑅 = 3. Figure 5(c) provides
the PSNR values of the MR images reconstructed by CSMRI-
TV (red curves), DLMRI (green curves), and DDTF-MRI
(blue curves) versus diverse noise levels (𝜎 = 2, 4, 6, 8).

Table 2: Computational time (s) of different algorithms.

Image Different algorithms
CSMRI-TV DLMRI DDTF-MRI

Figure 2(a) 147.3 1600.6 310.2
Figure 4(a) 30.9 2609.2 314.5
Figure 5(a) 37.1 2484.3 315.3
Figure 6(a) 31.5 2503.6 313.7

We can see that our proposed DDTF-MRI exhibits the best
performance for these noise levels. Figures 5(d), 5(e), and
5(f) show the reconstructed errormagnitudes from the 3-fold
radial undersampled data with noise standard deviation as 4.
We can find that our method can preserve more detail and
recover the structures more precisely.

In Figure 6, we evaluated the proposed method with
another in vivo brain data, which contains more fine-detailed
structures, using the radial sampling trajectory. The recon-
structed results using CSMRI-TV, DLMRI, and DDTF-MRI
with a higher acceleration factor 𝑅 = 4 are displayed in
Figures 6(b), 6(c), and 6(d), respectively.The zoom-in results
are also provided in Figure 6. Compared to the reference
image shown in Figure 6(a), it can be observed that the
result obtained by CSMRI-TV suffers from blocky artifacts.
Meanwhile, the reconstructed image obtained byDDTF-MRI
is clearer and sharper than those reconstructed by CSMRI-
TV and DLMRI. This reveals that our proposed method can
provide a more accurate recovered image.

4.4. Computation Time. In our experiments, all algorithms
were implemented in MATLAB and performed on a laptop
equipped with Intel 2.60GHz CPU and 4GB RAM. Table 2
illustrates the cost time for these experiments. These compu-
tational times were obtained by averaging 10 times for each
experiment. The size of the simulated image (Figure 2(a)) is
512 × 512 and the size of complex-valued images (Figures
4(a), 5(a), and 6(a)) is 256 × 256. As CSMRI-TV is based
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Figure 3: (a) Original image. (b) Random sampling mask. (c) PSNR values versus accelerating factors.

(a) (b)
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Figure 4: (a) Reference. Reconstructed images from the random samplingmask with accelerating factor𝑅 = 3 by (b) CSMRI-TV, (c) DLMRI,
and (d) our proposed DDTF-MRI, respectively.
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Figure 5: (a) Original image. (b) Radial sampling mask. (c) PSNR versus noise standard deviation. The error magnitudes of reconstructed
results from the 3-fold radial sampling mask with noise standard deviation 4 by (d) CSMRI-TV, (e) DLMRI, and (f) our proposed DDTF,
respectively.
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(a) (b)

(c) (d)

Figure 6: (a) Reference. Reconstructed images from the radial sampling mask with accelerating factor 𝑅 = 4 by (b) CSMRI-TV, (c) DLMRI,
and (d) our proposed DDTF-MRI, respectively.

on fixed transform, it is the fastest. However, this efficiency
comes at the cost of accuracy. DLMRI takes the longest time
in all cases. On the other hand, DDTF-MRI has achieved the
best reconstruction result without taking the longest recon-
struction time, which is due to three aspects: (1) ℓ1 norm
is used in DDTF-MRI instead of ℓ0 norm. While ℓ0 norm
minimization is a NP-hard problem, ℓ1 norm minimization
is convex and can be solved with much less time while
promoting sparsity; (2) the tight frame used in this paper
ensures that the given signal can be perfectly represented
by its canonical expansion as 𝑊𝑇𝑊 = 𝐼; therefore it can
be efficiently implemented; (3) two-level Bregman iteration
technique is used in the proposed method, which can further
promote fast and accurate MR image reconstruction. So
the proposed method has improved the accuracy without
sacrificing too much efficiency.

5. Conclusions

A DDTF-MRI method has been proposed in this paper
to effectively reconstruct MR image from undersampled
𝐾-space data. DDTF-MRI trains an adaptive tight frame
for each to-be-reconstructed image. Furthermore, a two-
level Bregman iteration algorithm has been developed to
solve the proposed model. Results on both simulated and
in vivo datasets demonstrate the superior performance of

DDTF-MRI over the other two state-of-the-art MR image
reconstruction methods, including CSMRI-TV and DLMRI,
in artifacts suppression and edge preservation. Although
DDTF-MRI is slower than the fixed transform based method
CSMRI-TV, its accuracy is much higher than CSMRI-TV.
Furthermore, as an adaptive training method, DDTF-MRI is
much faster than the typical training method, DLMRI. This
indicates that our method can improve the reconstruction
accuracy without introducing toomuch computation load. In
the future, we may further optimize the implementation and
consider sparser representations.
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