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Identification and detection of dendritic spines in neuron images are of high interest in diagnosis and treatment of neurological
and psychiatric disorders (e.g., Alzheimer’s disease, Parkinson’s diseases, and autism). In this paper, we have proposed a novel
automatic approach using wavelet-based conditional symmetric analysis and regularized morphological shared-weight neural
networks (RMSNN) for dendritic spine identification involving the following steps: backbone extraction, localization of dendritic
spines, and classification. First, a new algorithmbased onwavelet transform and conditional symmetric analysis has been developed
to extract backbone and locate the dendrite boundary. Then, the RMSNN has been proposed to classify the spines into three
predefined categories (mushroom, thin, and stubby). We have compared our proposed approach against the existing methods.
The experimental result demonstrates that the proposed approach can accurately locate the dendrite and accurately classify the
spines into three categories with the accuracy of 99.1% for “mushroom” spines, 97.6% for “stubby” spines, and 98.6% for “thin”
spines.

1. Introduction

Dendritic spines are small “doorknob” shaped extensions
from neuron’s dendrites, which can number thousands to
a single neuron. Spines are typically classified into three
types based on the shape information: mushroom, stubby,
and thin. “Mushroom” spine has a bulbous head with a
thin neck; “stubby” spine only has a bulbous head; “thin”
spine has a long thin neck with a small head. Research has
shown that the changes in shape, length, and size of dendritic
spines are closely linked with neurological and psychiatric

disorders, such as attention-deficit hyperactivity disorder
(ADHD), autism, intellectual disability, Alzheimer’s disease,
and Parkinson’s disease [1–5]. Therefore, the morphology
analysis and identification of structure of dendritic spines are
critical for diagnosis and further treatment of these diseases
[6, 7].

Traditional manual detection approach of dendritic
spines detection is costly and time consuming and prone to
error due to human subjectiveness. With the recent advances
in biomedical imaging, computer-aided semiautomatic or
automatic approaches to detect dendritic spines based on
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image analysis have shown the efficacy. SynD method pro-
posed by Schmitz et al. [8] is a semiautomatic image analysis
routine to analyze dendrite and synapse characteristics in
immune-fluorescence images. For the fluorescence imag-
ing, the neurite and soma were captured in the separated
imaging channels. In that case, soma and synapse were
detected without intervention from neurite [9–11] based on
the channel information. However, this method cannot be
extended to the images, of which the information is cap-
tured in the same channel. Therefore, many other methods
were proposed to solve this problem, for instance, ImageJ
[12], NeuronStudio [13], NeuronJ [14], and NeuronIQ [15].
However, these methods have some limitations. For exam-
ple, NeuronIQ was designed for the confocal multiphoton
laser scanning. NeuronJ was used to trace the dendrite
growing in the condition of manually marking the dendrite
first. Koh et al. detected spines from stacks of image data
obtained by laser scanning microscopy [16]. The algorithm
first extracted the dendrite backbone defined as the medial
axis and then geometric information was employed to detect
the attached and detached spines according to the shape of
each candidate spine region. Features including spine length,
volume, density, and shape for static and time-lapse images
of hippocampal pyramidal neurons were used as key points
for the detection. The disadvantage of this method is that
it might lose many spines during the detection because of
the thresholding method used in this case. To overcome
this problem, Xu et al. proposed a new detection algorithm
for the attached spines from the dendrites by two grassfire
steps [17]: a global threshold was chosen to segment the
image and then themedial axis transform (MAT)was applied
to find the centerlines of the dendrites. Then some large
spines (noncenterlines) were removed from the centerlines.
After the backbone was extracted, two grassfire procedures
were applied to separate the spine and dendrite. The results
of the proposed method were similar to the results of the
manual method. Cheng et al. proposed a method using an
adaptive threshold based on the local contrast to determine
the foreground, containing the spine and dendrite, and
detect attached and detached spines [18]. Fan et al. used
the curvilinear structure detector to find the medial axis of
the dendrite backbone and spines attached to the backbone
[19]. To locate the boundary of dendrite, an adaptive local
binary fitting (aLBF) energy level set model was proposed
for localization. Zhang et al. extracted the boundaries and
the centerlines of the dendrite by estimating the second-order
directional derivatives for both the dendritic backbones and
spines [20]. Then a classifier based on Linear Discriminate
Analysis (LDA) was built to classify the attached spines
into true and false types. The accuracy of the algorithm
was calculated according to the backbone length, spine
number, spine length, and spine density. Janoos et al. used
the medial geodesic to extract the centerlines of the dendritic
backbone [21]. He et al. proposed a method based on NDE to
classify the dendrite and spines [22]. The principle of their
method was that spine and dendrite had different shrink
rates. Shi et al. proposed a wavelet-based supervised method
for classifying 3D dendritic spines from neuron images
[23].

Existing work is encouraging. However, the problems
remain on how to improve accuracy (e.g., accurate extraction
of backbone, accurate detection of attached and detached
spines). Different from existing approaches, in this paper,
we have proposed new algorithms for efficient detection of
dendritic spines using wavelet-based conditional symmetric
analysis and regularizedmorphological shared-weight neural
network. Our contributions include the following:

(1) A new extraction model for dendrite backbone and
its boundary localization using wavelet-based condi-
tional symmetric analysis and pixel intensity differ-
ence, which can allow accurate extraction of back-
bone, the first important step for dendritic spines.

(2) A new way for spine detection based on regular-
ized morphological shared-weight neural networks
(RMSNN) to efficiently detect spines and classify
them into right categories, that is, mushroom, thin,
and stubby.

The rest of this paper is organized as follows. Section 2
describes the proposed methods including wavelet-based
conditional symmetry analysis and pixel intensity difference
for the dendrite detection and localization and regularized
shared-weight neural networks for the spine detection. In
Section 3, we have conducted experimental evaluation and
demonstrated the effectiveness of the proposed algorithm.
Section 4 discusses the results. Section 5 concludes the pro-
posed approach and highlights the future work.

2. Methods

Figure 1 shows the steps of our proposed approach to den-
dritic spines. In the image acquisition phase, we demon-
strated the process for the neuron culture, label, and imaging.
In the second step, we preprocessed the images by reducing
the noise and smoothing the background [24, 25]. Then, we
extracted the dendrite backbone based on the conditional
symmetric analysis and located the dendrite boundary based
on the difference of the pixel intensity. Afterwards, the spines
were detected, classified, and characterized by RMSNN.

2.1. Image Acquisition. The neurons used for imaging in
this paper were cortical neurons, primary cultured from
Embryonic 18th- (E18-) day rat and next cultured until the
22nd day in vitro. Then, the neurons were transfected by
Lipofectamine 2000 and imaged at the 24th day by Leica
SP5 confocal laser scanning microscopy (CLSM) by 63x.
The size of the image is 1024 × 1024, and the resolution
is 0.24 um/pixel at the confocal layer. The images used for
the morphology analysis were obtained by the maximum
intensity projection (MIP) of the original 3D image stack. As
the images were captured as Z-stack series, we projected the
3D image stack onto the 𝑥𝑦, 𝑦𝑧, and 𝑧𝑥 planes, respectively.
Since the slices along the optical direction (𝑧) provided very
limited information and the computation time based on the
3D image stacks is highly increased, it was desired to consider
only the 2D projection onto the 𝑥𝑦 plane. The 2D image
used for analysis was a maximum intensity projection of
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Figure 1: Flowchart of the proposed detection method of the dendritic spines.

the original 3D stack. It was obtained by projecting in the 𝑥𝑦
plane the voxels with maximum intensity values that fall in
the way of parallel rays traced from the viewpoint to the plane
of projection.

We randomly selected 15 different images from Leica SP5
confocal laser scanningmicroscopy to form the spines library
to test our algorithm. All images contain distinct spines
including mushroom, stubby, and thin types. The typical size
of the image is 1024 × 1024. Most spines in the images are
within a rectangle of 20 × 20 in pixel, but the “thin” spine
is within an about 5 × 20 rectangle in pixel. The spines
have variable gray-level intensities. Spines collected from the
image library were employed to build an image base library.
Spine subimages in the library were taken as samples to
test the classification accuracy of RMSNN. In order to cover
as many cases as possible, the image base library contains
distinct sizes and spines with different orientations.

In order to build the golden-standard spine library, five
experts in the neuroscience field were employed to manually
mark the spines in the collected images and classify the spines
into three predefined categories including “mushroom,”
“stubby,” and “thin” types. For the conflict of the manual
marking, the minority was supposed to be subordinated to
themajor.Then according to themarked spines, we computed
the maximum width, length, area, and the center point. The
randomly selected image base library contains about 2700
subimage samples, 900 for each type of spines. Figure 2 shows
some image samples in our image base library. As we can see
from the image sample, spines of “mushroom” type contain a
thin neck and head, the stubby type connects directly with the
dendrite without neck, and the thin type is with the smallest
size with only a thin neck and without head.

2.2. Image Preprocessing. Considering the limitation of imag-
ing technique, we have employed the 2D median filter to
deal with the noise introduced by the imaging mechanism of
the photomultiplier tubes (PMT) and then used the partial

(a) Mushroom

(b) Stubby

(c) Thin

Figure 2: Samples of the subimages used in the image library.

differential equation (PDE) proposed by Wang et al. [26] to
enhance the image. Figure 3 shows an example of the original
image and the preprocessed result.

2.3. Backbone Extraction Using the Wavelet Transforma-
tion Based Conditional Symmetric Analysis. Considering the
attached spines, it is necessary to firstly locate the dendrites in
order to segment the spines from the dendrite.The backbone
extraction and boundary localization are critical for dendritic
spine classification and analysis, which include the following
steps.

Step 1. Remove the noise and small isolated point-set.

Step 2. Locate the backbone of the dendrite.

Step 3. Locate the boundary of the dendrite.

The backbone is defined as the thinning of the dendrite.
Due to the variance of width of dendrite, attached and
detached spines, it is a challenging task to locate the boundary
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(a) Original image (b) Preprocessed image

Figure 3: An example of preprocessed image.

of the dendrite directly from the preprocessed images.There-
fore, we have developed a new extraction model utilizing
wavelet transform based conditional symmetric analysis.The
essence of this model is to conduct a local conditional
symmetry analysis of the contour of the region of interest
(ROI) and then compute the center points to produce the
backbone of the dendrite.

Due to the complexity of the dendrites and dendrite
spines’ distribution, we have employed morphological oper-
ation to remove the small isolated point-set for the dendrite
in the binary image obtained by local Otsu [27–29] via (1),
which could decrease the disconnection rate of the dendrite
detection:

𝑃

=

{

{

{

1, more than 𝑛 positive pixels in its 3-by-3 window,

0, otherwise,

(1)

in which 𝑛 is the threshold of the number of positive pixels.
The value of 𝑛 could be determined by trial and error method
and means that the pixel belongs to the major line if there
are more than 𝑛 positive pixels in its 3 × 3 neighborhood
window. Otherwise, the value of the pixel is forced to be
0, treated as the small isolated point-set. The determination
of the centerline of the dendrite is based on the conditional
symmetric analysis.

The symmetric analysis was accomplished via the wavelet
transform. We have applied the wavelet transform to detect a
pair of contour curves:
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in which 𝑥 and 𝑦 stand for the coordinate of the contour
curve. 𝜑

𝑥
(𝑥, 𝑦)means the partial derivative of 𝑥 and 𝜑
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stands for the partial derivative of 𝑦, respectively. 𝜃(𝑥, 𝑦) is a
low pass filter.
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where ∇ is the gradient vector and the gradient direction is
given as (6).The contour points (𝑥, 𝑦) are the local maxima of
|∇𝑊
𝑠
𝑓(𝑥, 𝑦)| in the direction of𝐴

𝑠
𝑓(𝑥, 𝑦) at scale 𝑠. However,

the local maxima modulus is not the exact edge point.
We selected (7) as the basis function. We set 𝜑−(𝑥) =

−𝜑
+

(−𝑥) and had 𝜑(𝑥) = 𝜑
+

(𝑥) + 𝜑
−

(𝑥) as the wavelet
function, which had the following properties: gray invariant,
slope invariant, width invariant, and symmetric [29, 30]. The
advantage is to make the extraction of a pair of contours with
accurate protrusions. Consider
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The distance between two symmetric points is equal to
the scale of the wavelet transform. If the distance between
two symmetric points is larger than or equal to the width of
regular region, the center point of the symmetric pair can
potentially be located outside of the dendrite. The regular
region is defined as the dendrite is smooth, where the
function has a stable variation along the axis.Thus,we defined
the stable symmetry as follows.

If the scale of wavelet transform is larger than or equal
to the width of regular region, the modulus maxima points
generate two newparallel contours inside the periphery of the
dendrite. All the symmetric pairs of the wavelet transforms
that do not have a counterpart are defined as the unstable
symmetry. In this case, we have considered the width as the
constraint condition. In the direction of the perpendicular to
the gradient direction, we selected the width nearest to the
regular region.

The center of every symmetric pair located on the
centerline of the original regular region of the stroke point.
Finally, the backbone of the regular region was defined by the
curve of all connected symmetric points.

2.4. Boundary Location Based on the Pixel Intensity Difference.
The morphological operation of removing noise blurred
the boundary. Therefore, after localization of backbone, the
boundary of the dendrite was detected via varies of the pixel
intensity of the preprocessed image from Section 2.2. We
can observe that the pixel intensity of the line pixel changes
abruptly at the boundary locations. The boundary location
was performed in two steps. In the first step, we have searched
the image along the two directions perpendicular to the local
line direction until the pixel intensity of the line pixel changed
sharply. We set a threshold for each pixel. The local line
direction is determined as

𝐴
𝑠
𝑓 (𝑥, 𝑦) = arctan(

𝑊
𝑦,𝑠
𝑓 (𝑥, 𝑦)
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𝑥,𝑠
𝑓 (𝑥, 𝑦)

) . (8)

The formulation of each pixel is given by (𝛼, 𝐼(𝑝)), in
which 𝐼(𝑝) is the pixel intensity of point 𝑝 in the original
image and 𝛼 is a predefined pixel intensity value, that is,

if
{

{

{

𝐼 (𝑝) ≥ 𝛼, p belongs to the line pixel

𝐼 (𝑝) < 𝛼, p does not belong to the line pixel.
(9)

In the second step, some boundary points that were not
on the searching path could be missed.Themissed boundary
points were detected from the neighboring boundary points.
Provided that there are two known boundary points, if they
are adjacent, there were no other boundary points between
them; otherwise, the method proposed by Tang and You [31]
was used to find the missed points, which can link the two
points into a discrete line with one point as the starting point
and the other one as the ending point.

There are several advantages of our proposed algorithms
for backbone detection and boundary location. (1) The first
are computing efficiency and noise reduction. Our approach
uses less computing time than the method based on the
derivatives of the Gaussian kernel and is more robust when
dealingwith the noise. (2)Meanwhile, it reduces the error rate
for misclassifying spine pixels as dendrite pixels and sharply
reduces the disconnection rate, which means our approach is
more robust when dealing with the disturbance information
than other methods, such as NDE proposed by He et al. [22].

2.5. Spine Detection Based on Regularized Morphological
Shared-Weight Neural Network (RMSNN). Considering the
dendritic spine’s structure, we have employed the regularized
morphological shared-weight neural networks for the detec-
tion and classification of spines. The regularized morpho-
logical shared-weight neural networks consist of two-phase
heterogeneous neural networks in series as shown in Figure 4:
the first phase is for feature extraction and the second phase is
for classification. In the first phase, it is accomplished via the
gray-scale Hit-Miss transform. The feature extraction phase
hasmultiple feature extraction layers. Each layer is composed
of one or more feature maps. Each feature map is generated
by the Hit-Miss transform with a pair of structure elements
(SEs) from the previous layer and is accompanied by a new
pair of SEs, in which one is for the erosion and the other
one is for the dilation. In the classification stage, it shows
a fully connected Feedforward Neural Network (FNN) [32–
34]. The input of FNN is the direct output of the feature
extraction stage. The output of the classification stage is a
three-node layer, in which each node stands for one type
of spine. Figure 4 shows the structure of the morphological
shared-weight neural network (MSNN) [35]. The MSNN
has been widely applied in the following research fields,
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Figure 4: Structure of morphological shared-weight neural net-
work.

including laser radar (LADAR), forward-looking infrared
(FLIR), synthetic aperture radar, and visual spectrum image.
The existing research demonstrates that the MSNN is robust
for detection with rotation, image intensity translation, and
occlusion variables [36]. In this paper, we have proposed to
apply the regularized morphological shared-weight neural
network to spine classification.

Dilation is defined as

𝐴 ⊕ 𝐵 = {𝑥 | (𝐵)
𝑥

∩ 𝐴 ̸= 0} , (10)

in which 𝐴 and 𝐵 are sets in 𝑍2 and 𝐵 is the reflection of 𝐵.
0 is the empty set. Equation (10) is termed the dilation of 𝐴
by SE 𝐵. Dilation is the reflection of 𝐵 about its origin, then
translated by𝑥, with the set of all𝑥, which allow𝐵 to intersect
𝐴 with at least one element.

Erosion is defined as (11) or (12) by the duality of the
erosion-dilation relationship:

𝐴 ⊖ 𝐵 = {𝑥 | (𝐵)
𝑥
⊆ 𝐴} , (11)

𝐴 ⊖ 𝐵 = (𝐴
𝑐

⊕ 𝐵)
𝑐

, (12)

in which 𝐴𝑐 is defined as the complement of 𝐴.
Hit-Miss transform is defined as an operation that detects

a given pattern in a binary image based on a pair of disjoint
structure elements, one for Hit and the other one for Miss.
The result of the Hit-Miss transform is a set of positions,
where the first SE fits in the foreground of the input image
and the second SE misses it completely:

𝐴 ⊗ 𝐵 = (𝐴 ⊖ 𝑋) ∩ (𝐴
𝑐

(𝑊 − 𝑋)) , (13)

in which𝑋 is a SE that consisted from set𝐵,𝑊 is an enclosing
window of 𝑋, and (𝑊 − 𝑋) is the local background of 𝑋. By
supposing 𝑋 as 𝐻, the Hit SE, and (𝑊 − 𝑋) as𝑀, the Miss
SE, we can get

𝐴 ⊗ 𝐵 = (𝐴 ⊖ 𝐻) ∩ (𝐴
𝑐

⊖𝑀) , (14)

in which 𝐵 = (𝐻,𝑀) and it can be written as

𝐴 ⊗ 𝐵 = (𝐴 ⊖ 𝐻) − (𝐴
𝑐

⊕ 𝑀̂) . (15)

As far as the gray scale is concerned, we assume the image
function as 𝐼 = 𝑓(𝑥, 𝑦), in which 𝑓(𝑥, 𝑦) was the intensity
value of the point (𝑥, 𝑦). Meanwhile, we made the SE 𝑏(𝑥, 𝑦).
Themorphological operation can be thought of as a 3Dbinary
set by way of the umbra transform.The umbra of a 3D surface
function is defined as

𝑈 (𝑓) = {(𝑥, 𝑦, 𝑧) | (𝑥, 𝑦) ∈ 𝐷
𝑓
, 𝑧 ≤ 𝑓 (𝑥, 𝑦)} , (16)

where we take 𝐷
𝑓
as the domain of 𝑓. Then the gray scale

dilation can be defined as

(𝑓 ⊕ 𝑏) (𝑠, 𝑡) = max {𝑓 (𝑠 − 𝑥, 𝑡 − 𝑦)

+ 𝑏 (𝑥, 𝑦) | (𝑠 − 𝑥) , (𝑡 − 𝑦) ∈ 𝐷
𝑓
; (𝑥, 𝑦) ∈ 𝐷

𝑏
} .

(17)

Meanwhile, erosion is defined as

(𝑓 ⊖ 𝑏) (𝑠, 𝑡) = min {𝑓 (𝑠 + 𝑥, 𝑡 + 𝑦)

− 𝑏 (𝑥, 𝑦) | (𝑠 + 𝑥) , (𝑡 + 𝑦) ∈ 𝐷
𝑓
; (𝑥, 𝑦) ∈ 𝐷

𝑏
} .

(18)

The gray scale erosion measures the minimum gap
between the image values 𝑓 and the translated SE values over
the domain of 𝑥. The gray scale dilation is the dual of the
erosion and indirectly measures how well the SEs fit above 𝑓.
The Hit-Miss transform measures how a shape ℎ fits under 𝑓
using erosion and how a shape𝑚 fits above𝑓 via dilation.The
high value of Hit-Miss transform means good fit. The gray
scale Hit-Miss transform is independent of shifting in gray
scale.

2.5.1. The Feature Extraction Phase. There are four elements
associated with each layer of feature extraction phase: feature
maps, input, and two structure elements. In the first layer,
the subimage is used as input, and the last layer’s output is
the input of the classification stage. In each feature extraction
layer, a pair of Hit-Miss SEs is shared within all the feature
maps.These SEs are translated as input weights for the feature
map nodes in the feature extraction layer. Table 1 shows the
input parameters and output parameters related to the feature
extraction phase.

According to the above parameters, we can define theHit-
Miss transform as follows:

netℎ
𝑦
= min
𝑥∈𝐷
𝑡𝑦

{𝑎 (𝑥) − 𝑡
ℎ

𝑦
(𝑥)} ,

net𝑚
𝑦
= max
𝑥∈𝐷
𝑡𝑦

{𝑎 (𝑥) − 𝑡
𝑚̂

𝑦
} ,

𝑎
𝑦
= netℎ
𝑦
− net𝑚
𝑦
.

(19)

Here, netℎ
𝑦
stands for the input for Hit operation in node 𝑦

and ℎmeans the Hit operation. net𝑚
𝑦
means the net input for

the Miss operation in node 𝑦. 𝑚 and 𝑚̂ here mean the Miss
operation and reflection of 𝑚, respectively. 𝑎

𝑦
is the result of

Hit-Miss transform performed at node 𝑦. The learning rule
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Table 1: Parameters of the feature extraction phase.

Parameter Definition

Input

𝑎(𝑥) The input to a node 𝑦 from node 𝑥

𝑡
𝑦
(𝑥)

Connections associating the node 𝑦 with
node x

𝑡
ℎ

𝑦
(𝑥
𝑦
) Hit SE associating node 𝑦 with node 𝑥

𝑡
𝑚

𝑦
(𝑥) Miss SE associating node 𝑦 with 𝑥

𝑤
ℎ

𝑦
(𝑥) Weight for Miss SE node 𝑦 with 𝑥

𝑤
𝑚

𝑦
(𝑥) Weight for Hit SE node 𝑦 with 𝑥

Output 𝑎
𝑦

The output of node 𝑦

for the Hit and Miss SE is derived based on the gradient
decent as

Δ𝑡
ℎ

𝑦
= 𝜂𝛿
𝑦

𝜕netℎ
𝑦

𝜕𝑡
ℎ

𝑦
(𝑥)

,

Δ𝑡
𝑚̂

𝑦
= −𝜂𝛿

𝑦

𝜕net𝑚
𝑦

𝜕𝑡
𝑚̂

𝑦
(𝑥)

,

(20)

where 𝜂 is the learning rate of the network and 𝛿
𝑦
is expressed

as

𝛿
𝑦
= 𝛿 (𝑦) = ∑

𝑘
𝛿
𝑘
𝑤
𝑘
(𝑦) . (21)

Equation (21) is for the top level or final extraction layer.
𝛿
𝑦
for the lower layers of multiple-layer feature extraction is

expressed as

𝛿
𝑦
= 𝛿 (𝑦) = ∑

𝑘
𝛿
𝑘
(

𝜕netℎ
𝑦

𝜕𝑎 (𝑦)
−

𝜕net𝑚
𝑦

𝜕𝑎 (𝑦)
) , (22)

in which 𝑘 is the node in the layer next to the node 𝑦.
Based on the back-propagation of error from the classifi-

cation stage with these learning rules, the MSNN learns the
optimized SE to extract the features by each set of Hit-Miss
transforms. Consider

𝐸 =
1

2
∑

𝑜

(𝑡
𝑜
− 𝑂
𝑜
)
2

. (23)

Here, 𝑡
𝑜
stands for the target node output and 𝑂

𝑜
the actual

node output:

𝑂
𝑗
= 𝑓 (net

𝑗
) ,

net
𝑗
= ∑

𝑖

𝑤
𝑗𝑖
𝑂
𝑖
+ Δ
𝑗
,

(24)

in which𝑤
𝑗𝑖
is the connection weight strength to node 𝑗 from

node 𝑖 and Δ
𝑗
is the bias output for node 𝑗. 𝑤

𝑗𝑖
is typically

learned by the back-propagation of error. The update rule
of connecting weight for each connection is expressed as
follows:

Δ𝑤
𝑗𝑖
= −𝜂

𝜕𝐸

𝜕𝑤
𝑘𝑗

= 𝜂𝛿
𝑗
𝑂
𝑗
. (25)

For the output layer nodes, 𝑤
𝑘𝑗

stands for the connection
strength to node 𝑘 from node 𝑗:

𝛿
𝑗
= (𝑡
𝑗
− 𝑂
𝑗
) 𝑓
󸀠

(net
𝑗
) (26)

and for the hidden layer nodes,

𝛿
𝑗
= 𝑓
󸀠

(net
𝑗
)∑

𝑘

𝛿
𝑘
𝑤
𝑗𝑖
. (27)

2.5.2. The Classification Phase. The classification phase takes
the output directly from the last feature extraction layer as
its input. The parameters used for the classification phase are
predefined in the feature extraction phase. There are three
output nodes for the classification stage of our algorithm,
indicating which type of spines the subimage contains.

2.5.3. Acceleration of the MSNN Based on the Regularization.
In order to accelerate the learning rate and decrease the
learning epochs, we employed the regularization factor.
Regularization is used to reduce near-zero connection weight
value to zero, therefore reducing the complexity of the
network. It is defined as

𝑅 (𝑤) = 𝐸
𝑠
(𝑤) + 𝜆𝐸

𝑐
(𝑤) ,

𝐸
𝑐
(𝑤) = ∑

∀𝑤 in network

(𝑤
𝑖
/𝑤
𝑜
)
2

1 + (𝑤
𝑖
/𝑤
0
)
2
,

(28)

where 𝐸
𝑠
(𝑤) is the performance measure of the learning

algorithm, the total network error, and 𝐸
𝑐
(𝑤) is the com-

plexity penalty of the network model. 𝜆 is the regularization
factor. 𝑤

0
is a predefined parameter. Meanwhile, research

shows that a network with proper SEs produces better result
[36]. Therefore, it is essential to choose the suitable SEs. In
this paper, according to the average size of spine and the
comparison result in Table 3, we defined the SE as a disk with
the radius of 4 pixels.

For the training procedure, the RMSNN takes the subim-
age as the input and makes one output value for each image.
For the testing procedure, our proposed algorithm scans the
whole ROI and generates an image named the detection
plane, which is based on the outputs from the target class
nodes.

3. Experimental Evaluation

3.1. Experiment Design. We have trained neural networks
with the back-propagation algorithm. The subimages were
submitted to the input nodes of the neural network.The error
of the outputwas propagated through all the connections.The
process repeated until the network converged to a stable state
with required MSE. When the MSE approximated to a preset
value or the maximum epoch was achieved, the algorithm
converged and the training would stop. During the training,
the RMSNN took each subimage as the input and produced
one output value for each of the three categories. Figure 2(a)
shows the samples of subimages containing mushroom type
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spine. Figure 2(b) shows the samples of the subimages con-
taining the stubby type, and Figure 2(c) shows the samples of
thin type subimage.

In the training step, the subimage samples were input
to the network sequentially. The median-squared error was
employed to measure the training effectiveness. For each
subimage, the RMSNN produced one output value, which
indicated the type of spine in the subimage.Then, we scanned
the entiremicroscopy image and finally generated a detection
plane according to the output nodes of RMSNN.

In order to test the classification accuracy, we randomly
selected 900 samples for each type of spine, respectively.
Following common convention and ease of stratified cross
validation, 10 × 10-fold stratified cross validation (CV) was
used for the dataset to perform an unbiased statistical
analysis. The RMSNN was constructed in the form as two
feature extraction layers, one hidden layer with ten hidden
neurons and one output layer with three neurons. The input
subimage size was 20 by 20 pixels, and the size of the structure
elementswaswith the radius of 4 pixels.The initial weightwas
in the range of [−1.0, 1.0]. The learning rate was set to 0.0015.
The maximum training epoch was predefined as 15000. The
expected output values for mushroom, stubby, and thin type
spines were [1 0 0], [0 1 0], and [0 0 1].

3.2. Experiment Results

3.2.1. Backbone Extraction. The extraction result is shown in
Figure 5. Figure 5(a) shows the original image. Figure 5(b)
shows the extracted backbone, of which the width covers
merely one pixel.

3.2.2. Boundary Location. Figure 6(a) shows the mark of the
located backbone of the dendrite based on the original image,
and Figure 6(b) shows the marked boundary of the dendrite
after the backbone is extracted. Figure 6(c) shows themarked
dendrite that determines the starting point of the spine.

3.2.3. Spine Analysis. Figure 7 shows a ROI of our sample
image, and Figure 7(b) shows the detection result of the
spines. The backbone is marked by the purple color and the
boundary is marked by the red color. The spines are marked
by their periphery of blue color.

Figure 8(a) shows the original image with the marked
region of interest. Figure 8(b) shows the classification result
based on the features extracted in the first phase. The corre-
sponding SE gets respect features around each pixel, but it is
blind for readers to understand which features are obtained.
The detected spines contain 8 mushroom types, 8 stubby
types, and 4 thin types. The average of the classification
accuracy of RMSNN is shown in Table 2 based on the 2700
samples in total. We can find that the detection of the
mushroom and thin types has better performance than the
stubby type. It is because the stubby type seems connected
with the major lines, and the neck of the spine is blurred.
Figures 8(c), 8(d), and 8(e) demonstrate partial geometric
attributes of the spines, including the area, perimeter, and
width.We found that the areas of the spines of the ROI ranged
within [10, 23] and the perimeter ranged within [8, 88].

Table 2: Average of the classification accuracy on a 10-by-10 CV.

Spine types Mushroom Stubby Thin
Mushroom 99.1% 1.3% 1.1%
Stubby 0.7% 97.6% 0.3%
Thin 0.2% 1.1% 98.6%

3.3. Optimal Parameter in SE. According to [36], unsuitable
SEs will degrade the performance of the RMSNN; hence,
it is critical to choose the proper SEs. According to the
average size of the spines as 20 by 20 pixels, we selected SEs
with different sizes and shapes to test the performance. The
comparison of classification accuracies based on the 2700
samples is shown in Table 3. We can find that the disk with
a radius of 4 pixels reaches the best performance. Therefore,
we finally defined the SEs as a disk with the radius of 4 pixels.

3.4. Algorithm Comparison. To further validate the efficacy
of our proposed approach, we have compared the proposed
algorithm with Cheng et al.’s method [18] and the manual
method. In Cheng et al.’s paper, the authors employed the
adaptive threshold to segment the image and Chen and
Molloi’s algorithm [37] to extract the backbone and then used
the local SNR for the detection of the detached spine and local
spine morphology for the detection of the attached spines.
The comparison results based on ROI1 in Figure 8 and 15
images collected in our database are shown in Table 4. It is
found from Figure 9 that Cheng et al.’s method missed some
small protrusions whose number of pixels is more than 5.
The number of detected spines via our algorithm is 19, 13
by Cheng et al.’s method, and 20 via the manual method as
shown in Table 4. Cheng et al.’s method is robust at dealing
with the spines detached from the dendrite but weak at spines
attached with the dendrite. However, the detached spines
from the dendrite are caused by the deconvolution to denoise
the image. Our proposed algorithm overcomes the problem
of detecting attached spines.

4. Discussion

In this paper, we have proposed new algorithms using con-
ditional symmetric analysis and regularized morphological
shared-weight neural network to detect and analyze the
dendrite and dendritic spines.

Figure 5 shows that backbone extraction result based on
the conditional symmetry analysis. Compared to the second-
order directional derivatives method in [14], our proposed
algorithms reduced the computation time of linking the
breaking point of the backbone.

Figure 6 shows the result of the marked backbone and
the boundary of the dendrite, which is used to determine the
starting point of the spines.

Table 2 shows the classification result of the different
types of spines. The row in Table 2 stands for the actual class
and the column in Table 2 stands for the predicted class.
The “mushroom” type has an obvious head and thin neck.
The “stubby” type lacks obvious neck, and the “thin” type
lacks obvious head. In Table 2, the detection accuracy of
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Table 3: Classification accuracy by different SEs (unit is in pixel, bold denotes the best, 𝑟 is radius, and 𝑤 is width).

Disk (𝑟 = 5) Disk (𝑟 = 4) Disk (𝑟 = 3) Square (𝑤 = 3) Square (𝑤 = 4)
Mushroom 98.7% 99.1% 95.4% 85.3% 89.2%
Stubby 96.2% 97.6% 94.1% 87.2% 91.2%
Thin 94.3% 98.6% 96.2% 79.1% 75.3%

(a) Original image (b) Extracted backbone

Figure 5: Backbone extraction result.

(a) Centerline of the dendrite (b) Boundary of the dendrite

(c) Dendrite

Figure 6: Dendrite location results.

(a) (b)

Figure 7: (a) ROI of the original Image. (b) Detection result of the spines.

Table 4: Detection result of ROI1 in Figure 8 and 15 images in our
database.

Methods ROI1 15 images

Manual 20 2021
ALS [18] 13 1750
SRMSNN (proposed) 19 1987

the mushroom type is higher than the other two types, and
part of the stubby type is misclassified into mushroom and
thin types as its head and neck ratio is at the level of average. A
percent of 1.1 of thin spines are misclassified into mushroom
type and 0.3% into stubby type, which is caused by the similar
size of the head and neck. Table 4 shows the result of detected
spines of Figure 8, respectively, by manual, ALS [18], and
our proposed method SRMSNN. The results demonstrate
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(a) Original image (b) Detection plane

0 2 4 6 8 10 12 14 16 18
0

5

10

15

20

25
Width

(c) Histogram of the width distribution
0 2 4 6 8 10 12 14 16 18

0

50

100

150

200

250
Area

(d) Histogram of the area distribution

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

80

90
Perimeter

(e) Histogram of the perimeter distribution

Figure 8: Experiment result with corresponding parameters for characterization.

that our algorithm has better performance than the other
two methods for the images obtained by the confocal laser
scanning microscopy.

5. Conclusion

In this paper, we proposed a new automatic approach to
accurately identify dendritic spines with different shapes.

The novelty of this approach includes (1) a new model using
wavelet-based conditional symmetry analysis for dendrite
backbone extraction and localization, which is the first step
towards identification of dendritic spins; (2) a new algorithm
based on regularized morphological shared-weight neural
networks for classification of spines into the right classes
(i.e., mushroom, stubby, and thin), entitled “RMSNN.” This
research was based on our collected microscopy images. We
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(a) ALS [18] (b) SRMSNN

Figure 9: Detection result based on ALS and SRMSNN.

have applied our approach to image base library containing
around 2700 subimage samples, 900 for each type of spines,
and have compared the proposed method with the existing
methods. The experimental results demonstrate that our
algorithm outperforms existing methods with a significant
improvement in accuracy in terms of classifying spines into
the different spine categories. The classification accuracy is
99.1% for mushroom spines, 97.6% for stubby spines, and
98.6% for thin spines.

The future work will be focusing on further validation
of the robustness of the algorithms through collecting more
samples and testing on different datasets. A user-friendly
interface will be also built for usability improvement and
enhancement. Meanwhile, we will be focusing on reducing
the computation time while improving the classification
accuracy based on the 3D image stacks. Other feature
extraction tools (such as wavelet packet analysis [38], wavelet
entropy [39], and 3D-DWT [40]) and other advanced classifi-
cation tools [41, 42] will be tested. Besides, swarm intelligence
method will be used to find optimal parameters [43].
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