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Objective.The aim of this workwas to assess robustness and reliability of an adaptive thresholding algorithm for the biological target
volume estimation incorporating reconstruction parameters. Method. In a multicenter study, a phantom with spheres of different
diameters (6.5–57.4mm) was filled with 18F-FDG at different target-to-background ratios (TBR: 2.5–70) and scanned for different
acquisition periods (2–5min). Image reconstruction algorithms were used varying number of iterations and postreconstruction
transaxial smoothing. Optimal thresholds (TS) for volume estimation were determined as percentage of the maximum intensity
in the cross section area of the spheres. Multiple regression techniques were used to identify relevant predictors of TS. Results. The
goodness of themodel fit was high (R2: 0.74–0.92). TBRwas themost significant predictor of TS. For all scanners, except theGemini
scanners, FWHMwas an independent predictor of TS. Significant differences were observed between scanners of different models,
but not between different scanners of the same model. The shrinkage on cross validation was small and indicative of excellent
reliability of model estimation. Conclusions. Incorporation of postreconstruction filtering FWHM in an adaptive thresholding
algorithm for the BTV estimation allows obtaining a robust and reliable method to be applied to a variety of different scanners,
without scanner-specific individual calibration.

1. Introduction

In the last years the coregistration of 18F-fluorodeoxyglucose
positron emission tomography (18F-FDG PET) images with
computed tomography (CT) images has gained an increasing
interest in the staging and treatment planning for radiother-
apy of several tumor sites. However, a standardized way of
converting PET signals into target volumes is not yet available
[1].

New semiautomatic and automatic segmentation meth-
ods have been developed implying gradient, region growing,
clustering, statistical methods and other approaches [2–9].
While referring to these promising methods, it should be
pointed out that some of these new methods suffer from the
need of extensive preprocessing of the images (e.g., edge-
detection). Moreover, the majority of these new algorithms
are not widely available, so their use is currently restricted to
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Figure 1: Inserts in the IEC phantom used for the multicenter measurements comprising 9 fillable spheres of different diameters.

the developers and, as a consequence, they are not independ-
ently validated.

Apart from visual inspection of PET scans, which suffers
from interobserver variability [10], thresholding methods
are widely used as PET segmentation approach in clinical
practice for biological target volume (BTV) delineation
for radiotherapy planning. Adaptive thresholding methods
based on contrast-oriented contouring algorithms have been
developed independently by many groups and validated
in patient data in head and neck, in lung cancer, and in
lymph nodes [11–13]. These methods are based on phantom
measurements to derive a relationship between the “true”
volume and the threshold to be applied to PET images.

These threshold-volume curves for one PET/CT scanner
have been previously obtained varying target-to-background
ratio (TBR), target dimensions, and postreconstruction
smoothing [14]. It has been previously demonstrated that
the emission scan duration (ESD) and background activity
concentration, related to the level of image noise, are not
predictors of the thresholding level of PET images [15].
Moreover, adaptive-threshold segmentation algorithms are
not influenced by the different conditions of attenuation and
scatter which may be encountered in different anatomical
districts [16] and by the degree of convergence of iterative
reconstruction algorithms [14].

Although adaptive thresholding methods are applicable
to every PET scanner, it is generally assumed that the
values of the parameters obtained during model building
are system dependent so that a specific calibration for each
PET system is required. On the other hand, a less hardware-
dependent solution to the problem of PET segmentation
could provide a robust algorithm, easily usable with images
acquired by different scanner models without needing any
previous optimization of the individual image quality.

Our hypothesis is that this goal can be accomplished by
incorporating in our algorithm the reconstruction param-
eters that impact on threshold determination. To validate
this hypothesis we firstly developed an original method
to adapt the thresholds (TS) used to estimate the BTV
in PET images. The proposed method incorporates the
PET reconstruction parameters that influence the threshold
determination. Secondly, we investigated in a multicenter

trial the robustness of this method with respect to various
scanner models, reconstruction settings, and acquisition
conditions: amultivariable approachwas adopted to study the
dependence of the TS that define the boundaries of 18F-FDG
uptake on object characteristics (contrast, size), acquisition
parameters (scan duration), and reconstruction modalities
(reconstruction algorithm, number of iterations, and amount
of postreconstruction smoothing) in eleven state-of-the-art
PET/CT scanners installed in eight different institutions.
Finally, we assessed the reliability of the regression models
through the use of split-sample analysis.

2. Materials and Methods

2.1. Phantoms. Measurementswere performed on theNEMA
IEC Body Phantom Set (Data Spectrum Corporation, Hills-
borough, NC). This phantom contains 6 coplanar spheres,
with internal diameters (ID) of 10, 13, 17, 22, 28, and 37mm.
A supplemental set of 2 microhollow spheres of 6.5 and
8.1mm ID and 1 sphere of 57.4mm ID were positioned at the
bottom of the phantom. The experimental setup is depicted
in Figure 1, together with sphere IDs (mm), maximum cross
section areas (𝐴) (mm2), and volumes (mL). The same posi-
tioning of the phantom was ensured through laser localizer
and a scout CT acquisition.

2.2. PET/CT Scanners. Eleven PET/CT scanners were used
for the robustness study: n. 2 Discovery ST (S1, S2) [17], n.
1 Discovery STE (S3) [18], n. 2 Discovery 600 (S4, S5) [19],
and n. 1 Discovery 690 (S6) [20] (GE Healthcare, Milwaukee,
WI), n. 1 Biograph HI-REZ (S7) [21] and n. 1 Biograph
TRUEV (S8) [22] (SIEMENS Medical Solutions, Knoxville,
TN), n. 1 Gemini XL (S9) and n. 2 Gemini TF (S10, S11)
[23] (Philips Medical Systems, Cleveland, OH).The technical
characteristics and physical performances of the PET/CT
scanners were derived from factory data and/or previous
publications and are reported in Table 1.

2.3. Phantom Acquisition. The background of the IEC phan-
tom was filled with 3 kBq/mL activity concentration of
18F-FDG. A standard protocol was designed to generate the
following acquisitions for each scanner model.
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(a) Nine different TBRs (2.5 : 1, 4 : 1, 8 : 1, 16 : 1, 25 : 1, 35 : 1,
47 : 1, 55 : 1, and 70 : 1), determined by the dose calibrator and
dilution, were imaged in different acquisition sessions. The
measured TBRs were determined in the reconstructed image
as the maximum pixel intensity in a region of interest (ROI)
encircling the cross sectional area of the target, divided by the
average pixel intensity of ROIs surrounding the sphere.These
TBRs ranged from 70 down to 2.5 and were within the full
range observed in patients.

(b) Four different ESD (2, 3, 4, and 5min) were acquired
to provide independent replicates of the experiments.

2.4. PET Image Reconstruction

2.4.1. Discovery ST, Biograph HI-REZ, and Biograph TRUEV.
These systems use a 2D Fourier-rebinning (FORE) ordered
subset expectation maximization (OSEM) algorithm with
all corrections (scatter, random, dead time, attenuation, and
normalization) incorporated into the iterative reconstruction
scheme. In these systems the user can independently specify
the number of iterations and subsets and the amount of the
transaxial postreconstruction Gaussian smoothing, through
the filter full-width-at-half-maximum (FWHM) expressed in
mm.

2.4.2. Discovery STE and Discovery 600. The D-600 sys-
tem uses a fully 3D-OSEM algorithm with all corrections
incorporated into the iterative reconstruction scheme. The
reconstruction settings are the same as above with the only
difference that the axial filter is a mean filter with available
kernels of 1 : 2 : 1, 1 : 4 : 1, and 1 : 6 : 1.

2.4.3. Discovery 690. The D-690 system uses a fully 3D-
OSEM algorithm with all corrections incorporated into the
iterative reconstruction scheme. Furthermore, new recon-
struction algorithms are available on the D-690, which add
to the standard configuration the time of flight information
(TOF) and/or a 3D model of the D-690 PET point spread
function (PSF). The activation of TOF and/or PSF does
not require the setting of any new parameter compared to
those used with the 3D-OSEM algorithm (number of subsets,
number of iterations, reconstructed field of view (FOV),
image matrix, and axial and transaxial postfilters). In this
study, both TOF and PSF information were included in the
reconstruction scheme.

2.4.4. Gemini XL. This system uses a fully 3D line-
of-response (LOR) based iterative reconstruction algo-
rithm named row-action maximum likelihood algorithm
(RAMLA) [24].The number of iterations is fixed (2 iterations
and 33 subsets) and the reconstruction protocols contain one
modifiable parameter that can be set to adjust the quality of
the images as normal, smooth, or sharp.

2.4.5. Gemini TF. This system uses the TOF maximum like-
lihood expectation-maximization reconstruction algorithm
(TF-MLEM) [24].The reconstruction protocols contain three
modifiable parameters that can be set to adjust the quality of
the images: the first is the number of iterations (3 iterations

and 20 subsets or 3 iterations and 33 subsets); the second is
a so called relaxation parameter that can be set between 1,
0.7 and 0.5 and controls the magnitude of change that each
iteration makes to the image. A third parameter, the kernel
width of the TOF, can be set by the user at two levels (Gemini
TF manual) [25].

The type of reconstruction algorithm, the degree of the
convergence of the iterative algorithm, and the amount of
the postreconstruction smoothing applied on images were
varied starting from the clinical acquisition protocols used
in each institution for radiotherapy planning. Overall, in
each scanner, the maximum of theoretical independent
combinations of acquisition parameters available for the
subsequent model fitting were 9 sphere 𝐴 × 9 TBR × 4 ESD
= 324. The 8.1 and 6.5mm spheres was not always included
in the analysis because they were not clearly visible in all
the phantom acquisitions. The number of reconstruction
modalities available for model fitting depends on the scanner
capabilities: the details of the reconstruction parameters
together with the voxel size of the reconstructed images and
the number of data points that is actually available for model
fitting in each scanner are shown in Table 2.

2.5. Image Analysis. TS were determined as a percentage
of the maximum intensity in the cross section area of the
spheres. Target cross sections of area 𝐴 were selected in the
middle of the spheres, which constitutes the largest cross
section of the sphere. The values of TS were entirely based
on the apparent activity concentration in the images and
not on the known activities actually placed in the spheres.
To find the TS value that yielded an area 𝐴 best matching
the true value, the cross sections were autocontoured in the
attenuation corrected slices varying TS in step of 1%, until
the area so determined differed by less than 10mm2 versus
its known physical value.

The analysis was performed by means of an automatic
routine, EyeLite RT v.1.1 (G-Squared, Vicenza, Italy), to avoid
the influence of the operator in ROIs dimensioning and to
minimize the influence of the operator in the ROIs posi-
tioning. The operator placed six 17mm-diameter ROIs in the
background area surrounding the spheres. The mean inten-
sity of these 6ROIswas used as a background value (BG). ROI
analyses were performed only for visually detectable spheres:
this accounted for the discrepancy between theoretical and
experimental data points collected for each scanner.

2.6. Statistical Analysis. For each combination of EM-
equivalent iteration number (𝑖) and ESD (𝑗), the following
variables were evaluated: 𝑋

1𝑖𝑗
defined as target cross section

𝐴,𝑋
2𝑖𝑗

defined as 1−1/TBR, and𝑋
3𝑖𝑗

defined as the FWHM.
Multiple linear regression analysis was performed in

order to define the relationship between the best TS (TS
𝑖𝑗
)

(providing the most accurate sphere cross sectional area) and
𝑋
1𝑖𝑗
, 𝑋
2𝑖𝑗
, and 𝑋

3𝑖𝑗
. The multiple regression model used for

the fit was

TS
𝑖𝑗
= 𝐵
0
+ 𝐵
1
× 𝑋
1𝑖𝑗
(mm2) + 𝐵

2
× 𝑋
2𝑖𝑗
+ 𝐵
3
× 𝑋
3𝑖𝑗
+ 𝐸,

(1)
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where 𝐵
0
, 𝐵
1
, 𝐵
2
, and 𝐵

3
are the regression coefficients to be

estimated and 𝐸 is the error term. The hypothesis of linear
dependence between TS and independent variables 𝑋 were
already demonstrated in Brambilla et al. and in Matheoud et
al. [14, 15]. However, nonlinear objective functions or even
indicator functions according to the different parameters
range could be investigated for fitting TS.

Additional variables, reflecting the characteristics of the
reconstruction protocol of each considered scanner, were
inserted in the model as independent predictors. Axial
smoothing was considered for the Discovery 690 and voxel
dimensions were inserted for the Biograph Hi-REZ, while
relaxation parameter and TOF kernel width were accounted
for in the Gemini and in the Gemini TF, respectively.

Stepwise forward selection was used as a strategy for
selecting the variables and 𝐹 statistic was used as a criterion
for selecting a model. Goodness of fit for each regression
model was expressed using the adjusted coefficient of deter-
mination (𝑅2). Goodness of fit was reported at each stage
of model building as partial 𝑅2. The criteria for retaining a
variable in a model were 𝐹 > 4 and an increment of at least
0.01 in the 𝑅2 in order to be cautious in including redundant
variables into the models. The weight of the different inde-
pendent variables in explaining TS was quantified by means
of standardized regression coefficients 𝛽𝑖.

The reliability of the regression models was assessed
through split-sample analysis [26]. Using this methodology,
all observations in each scanner model were randomly
assigned to one of two groups, the training group or the
holdout group.The regression models were derived using the
training group and the sample squared multiple correlation
𝑅
2 was obtained. Then the prediction equation for the

training group was used to compute predicted values for the
holdout group. Finally, the univariate correlation 𝑅2∗ (cross
validation correlation) was obtained between these predicted
values and the observed responses in the holdout group. The
reliability of the regression models was expressed by using
the shrinkage on cross validation coefficients 𝑅2 − 𝑅2∗. As a
criterion, shrinkage values of less than 0.10 were considered
as indicative of a reliable model.

In order to compare separate multiple regressions of TS
as a function of the𝑋 independent variables for two different
scanners, an additional dummy variable, coding for each
scanner, was inserted in the model. A regression model was
then built by pooling the data coming from the two scanners
and inserting this dummy variable as a predictor.The criteria
for retaining this variable in themodel were the ones specified
above.

Statistical analysis was performed using the software
Statistica 6.0 (Statsoft Inc., Tulsa OK).

3. Results and Discussion

3.1. Multiple Linear Regression. Figure 2 shows the plots of
averaged TS versus cross sectional areas for a coarse grouping
of TBRs for each scanner model.

The TS versus predictor variables plot was fitted only
for cross sectional area > 133mm2 that is in the range of

clinically relevant volumes comprised between 1 and 100mL.
The cross sectional area of 133mm2 (that corresponds to a
sphere ID of 13mm and approximately the twofold FWHM
of the scanners) was selected as a separator of the data due to
the resolution characteristics of the scanners.

Following (1), the regression equations that best summa-
rize the results obtained in a multiple regression model with
TS as the predicted variable are reported for each scanner in
Table 3 together with the values of the corresponding param-
eters 𝐵

0
–𝐵
3
. In the third column of Table 3 the multiple-𝑅2

of model fitting are reported, while the last column shows
the ranking of the independent predictors together with the
standardized regression coefficients and the amount of TS
variance explained by each predictor.

The emission scan duration and the degree of the con-
vergence of the iterative algorithm were never significant
predictors of TS. This provided a confirmation of previously
reported findings. Also the axial smoothing in the Discovery
690, the voxel size in the Biograph Hi-REZ, the relaxation 𝜆
in the Gemini scanners, and the Kernel width of the time
of flight correction in the Gemini TF were not significant
predictors of TS.

The goodness of the model fit, assessed by the coefficient
of determination 𝑅2, was high, ranging from a minimum
of 0.74 for the Discovery 690 to a maximum of 0.92 for
both the Discovery 600 and the Biograph Hi-REZ. The most
relevant variable for TS prediction was TBR with a partial
𝑅
2 accounting for 74% to 91% of TS variability. In the case

of the Discovery 690, TBR only accounted for 40% of TS
variability, although it remains the best individual predictor.
Second came the amount of smoothing in the transaxial plane
(FWHM) that showed an additional 𝑅2 roughly explaining
from 1 to 5% of TS variability. The only exceptions were the
Gemini scanners, where this parameter cannot be varied by
the user, and the Discovery 690, where its contribution is
significantly increased to 29% of TS variability. Last came the
lesion size (𝐴) that played an independent role only in the
Discovery 690 and in the Gemini scanners accounting for
5%–8% of TS variability.

The comparison of the regression lines obtained from two
scanners of the same model (Discovery ST, Discovery 600,
andGemini TF) did not evidence any relevant difference.The
test of the hypothesis of coincident regression lines for the
two DST scanners provided an 𝐹

3,2145
= 0.73 (𝑃 = 0.53). This

𝐹 statistics is small (𝑃 is large), so we do not reject 𝐻
0
and

therefore have no statistical basis for believing that the two
lines are not coincident.The details of the test are reported in
Table 4. Moreover, the additional 𝑅2 of the “scanner” dummy
variable as predictor of TS variance was below <0.001. Similar
results were found for the D600 and GTF scanners (not
shown). Accordingly, the results of the regression analysis
obtained by pooling all the measurements from scanners of
the same model are reported in Table 3.

3.2. Regression Model Reliability. The results of the reliability
study on regression models are reported in Table 3. The
shrinkage on cross validation was always below 0.07, which
is quite small and indicative of an excellent reliability of



Computational and Mathematical Methods in Medicine 7

Discovery ST (S1-S2)
90

80

70

60

50

40

30

TS
 (%

)

0 1000 2000 3000

Area (mm2)

Discovery STE (S3)
90

80

70

60

50

40

30

TS
 (%

)

0 1000 2000 3000

Area (mm2)

90

80

70

60

50

40

30

TS
 (%

)

40000 2000

Area (mm2)

Discovery 600 (S4-S5)

4000

90

80

70

60

50

40

30

TS
 (%

)

0 2000

Area (mm2)

Discovery 690 (S6)

0 1000 2000 3000

TS
 (%

)

Biograph Hi-REZ (S7)
90

80

70

60

50

40

30

Area (mm2)

Biograph TRUEV (S8)
90

80

70

60

50

40

30

TS
 (%

)

0 1000 2000 3000

Area (mm2)

TB < 4

4 < TB < 15

TB > 15 TB < 4

4 < TB < 15

TB > 15

TB < 4

4 < TB < 15

TB > 15TB < 4

4 < TB < 15

TB > 15

TB < 4

4 < TB < 15

TB > 15 TB < 4

4 < TB < 15

TB > 15

Figure 2: Continued.
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Figure 2: Plots of averaged TS versus cross sectional areas for a coarse grouping of TBRs for each scanner model. Measured data points have
been omitted here to prevent obscuring differences in trends.

estimation. An important aspect related to assessing the
reliability of a model involves considering difference score
of the form TSobserved − TSpredicted, where only holdout cases
are used and when the training sample equation is used to
compute the predicted values.The “unstandardized residuals”
can be subjected to various residual analyses. The most
helpful entails univariate descriptive statistics such as the box
and whiskers plots depicted in Figure 3. In our case a few
large residuals are present, but they are neither sufficiently
implausible nor influential to require further investigations.

In our investigation, we derived the calibration curve
for eleven PET scanners (eight models, three manufacturers,
and eight sites) to apply the adaptive-threshold algorithm for
PET-based contouring. The eight scanner types investigated
in this study differ in scintillation crystal, scanner electronics,
and reconstruction methodologies. Methods of retrospective
image resolution recovery such as PSF-reconstruction or
TOF measurements were also characterized in the present
study.

At present, there is considerable variability in the way
standard PET/CT scans are performed in different centers
[27, 28]. Thus, there was no chance for a multicenter stan-
dardization of all scanners and all imaging protocols in use.
Instead, we chose to directly incorporate in our adaptive
thresholding algorithm the reconstruction parameters that
can be selected by the user and that are relevant for TS
determination. This should increase the robustness of the
proposedmethod by avoiding the need to perform individual
calibrations in each center of the algorithm. Noteworthy,
the comparison of the regression lines obtained from two
scanners of the same model did not evidence any relevant
difference, at least for the three scanner models tested. This
brings another relevant consequence; that is, with the incor-
poration of the reconstruction parameters in the regression

models the calibration curve in a specific scannermodel need
not to be obtained at each site. Instead, it can be derived
once and applied irrespectively of the specific scanner being
utilized provided that is of the same model.

3.3. Comparison with Previous Published Papers. To the best
of our knowledge only three studies have been published
so far on the integration of PET/CT scans from different
hospitals into radiotherapy treatment planning. In the first
study, Öllers et al. [29] used a TBR algorithm to evaluate
head-and-neck tumors. To this purpose only small spheres
of volumes ranging from 2 to 16mL (i.e., sphere ID less
than 3 cm) were used. TBRs, as determined by the dose
calibrators, ranged from 2 to 12. The authors performed
phantom measurements on three scanners of the same
manufacturer (Biograph Accel, Siemens) equipped with Pico
3D (2 scanner) or standard (1 scanner) detector electronics.
Identical acquisition and reconstruction protocols were used.
To study the effect of different reconstruction parameters
on the results PET raw data were reconstructed varying
the number of iterations (IT from 2 to 64) with a fixed
smoothing of FWHM= 5mm.They found that the standard-
ized uptake value (SUV) threshold of the scanner equipped
with standard electronic differed significantly from those of
the other two scanners and that at least 16 iterations are
required in order to produce reliable SUV thresholds. Our
own results support these findings. On the one hand, the
regression lines did not differ significantly between scanners
of the same type equipped with similar electronics, while the
calibration curves for scanners of different type clearly differ
(Figure 2). On the other hand, the number of iteration is not
a significant predictor of TS, provided that this number is
kept above a certain level which is both recommended by the
manufactures and necessary to have good image quality.
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Table 4: Analysis of variance table. Test of𝐻
0
= coincident regres-

sion lines for the two DST scanners.

𝐴 > 133mm2
Sum of
squares
(SS)

Degrees
of

freedom

Mean
square
(MS)

𝐹 𝑃

Reduced model
Regression 281844 2 140922 10445 < 10−6

Residuals 28980 2148 13.5
Full model

Regression 281874 3 93958 6968 < 10−6

Residuals 28951 2147 13.5
𝐹 = (28980,3 − 28950,6)/3/13.48 = 0.73; 𝑃 = 0.53.
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Figure 3: Box and whiskers plot of unstandardized residuals
(TSobserved −TSpredicted) for the different scanners where only holdout
cases are used and when the training sample equation is used to
compute the predicted values.

In a second study, Hatt et al. [30] evaluated the robustness
and repeatability of a TBR algorithm in comparison to
fuzzy C-means clustering and fuzzy locally adaptive Bayesian
algorithm. The authors performed phantom measurements
on four different PET/CT scanners (Philips Gemini and
Gemini TF, Siemens Biograph, and GE Discovery LS) using
a standard acquisition protocol with two TBR (4 and 8) and
Three ESD (1, 2, and 5min). PET raw data were reconstructed
using routine clinical image reconstruction and two voxel size
volume for all scanners. They reported a higher robustness
of the fuzzy locally adaptive Bayesian algorithm while the
repeatability provided by all segmentation methods was very
highwith a negligible variability of<5% in comparison to that
associated with manual delineation. However, as recognized
by the same authors, in order to assess the robustness of
the TBR approach they applied an adaptive thresholding

using the parameters optimized on other scanners to the
image datasets acquired with the Siemens Biograph, which is
sort of misleading since the TBR approach is system depen-
dent. Instead, by adopting scanner-model specific calibration
curves, similar mean classification error (∼10%) and variabil-
ity (∼5%) would have been obtained for the TBR algorithm
and for the fuzzy locally adaptive Bayesian approach. By first
principles, the inclusion of the postreconstruction smoothing
(not considered in the study of Hatt) should increase both the
accuracy and robustness of adaptive thresholding algorithms
possibly leading to results even superior to those achieved
by advanced image segmentation methods. Noteworthy, the
coefficient of regression for the TBR variable reported byHatt
for the Gemini TF is very similar to the one obtained for
the same variable in the present work (𝐵TBR = 61.4 versus
59.3), also considering that the two regression models are
not identical. This provides, although indirectly, a further
confirmation of the robustness of the scanner-model specific
approach in deriving TS calibration curves.

In the last study Schaefer et al. [31] evaluated the cali-
bration of an adaptive SUV thresholding algorithm in eleven
centers equipped with 5 Siemens Biograph, 5 Philips Gemini,
and one Siemens ECAT ART scanners. They reported only
minor differences in calibration parameters for scanners of
the same type provided that identical imaging protocols were
used, whereas significant differences were found comparing
scanners of different types. Moreover, they reported no
statistically significant differences among SUV thresholds
calculated for each site by use of the “site-specific” calibration
neither among scanners of the same type at different sites nor
among scanners of different types at different sites. Our own
results support these findings only partially. In our study both
acquisition and reconstruction parameters were varied and
relevant parameters were incorporated into the “site-specific”
algorithms so that there is no need to force individual centers
to adopt a fixed protocol of image acquisition and image
reconstruction. Bearing in mind this relevant difference,
also in our study the calibration curves were not signifi-
cantly different between scanners of the same type, whereas
significant differences were found comparing scanners of
different types.On the contrary, both themeasured (Figure 2)
and the calculated TS (Table 3) were significantly different
among scanners of different types. For instance, themeasured
TS averaged over the entire spectrum of acquisition and
reconstruction parameters for larger targets (sphere 𝐴 >
133mm2) for the Discovery 690 (S6) and the Discovery 600
(S4-5) were 39.0 ± 5.8% versus 45.4 ± 10.8, respectively
(𝑃 < 0.0001). This difference largely reflects the hot-contrast
recovery capabilities of the different scanners which, in the
case of theDiscovery 690, are emphasized by the introduction
of PSF techniques in the reconstruction process.

3.4. StudyAdvantages andLimitations. Theproposedmethod
for the definition of BTV has several advantages, even if the
results of this studymust be interpreted in the context of some
limitations.

Our method is feasible in a clinical context in those
lesions presenting a uniform radiotracer uptake, as for
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(a) (b) (c)

Figure 4: Application of the proposed method to a head and neck tumor: CT (a), MR (b), and PET (c) images (acquired on the biograph
Hi-REZ PET scanner). The green ROI corresponds to the GTV delineation manually performed by the radiation oncologist, while the blue
one is the result of the application of the 39% TS derived from the thresholding algorithm (TBR = 12, FWHM = 4mm). The differences
between manual GTV and GTV obtained from the thresholding algorithm is 4.3%.

different oncological lesions. In this case, the proposed
method can be effective for extracting functional biomarkers
and for using PET imaging in image-guided radiotherapy
treatments. As a representative example, Figure 4 shows the
application of the proposedmethod to a head and neck onco-
logical patient, a candidate for image-guided radiotherapy.
In these patients, BTV can be used to optimize radiotherapy
treatment taking advantages from the information of func-
tional imaging.

The effects of lesion movement in lung tumors have been
recently incorporated in an adaptive thresholding algorithm
using multiple regression techniques similar to those in
the present study [32]. Though the effects of lesion move-
ment were not included in this study, we believe that the
conclusions regarding the effect of smoothing and TBR on
thresholds still apply in the case of moving targets.

Threshold techniques do not take into account variations
in tumor heterogeneity. This has motivated the investiga-
tion of advanced segmentation techniques not based on
thresholding. While referring to these important methods
for segmentation of nonuniform tracer concentration it
should be pointed out that until they are further developed
and validated, adaptive threshold segmentation methods are
and will be used in most clinics and therefore need to be
accurately characterized.

Furthermore, it has to be pointed out that in our work
BTVs were fitted only for cross sections larger than 133mm2.
This choice is justified by the fact that several studies found
severe errors in the volume estimation for tumor volume <
2mL corresponding to cross sections < 192mm2 (in terms of
sphere-equivalent cross section) [33–35].

4. Conclusion

This study demonstrated that the calibration curves for the
proposed adaptive thresholding method were not signifi-
cantly different between scanners of the same type at different
sites. The incorporation of the postreconstruction Gaussian
smoothing in the algorithms avoids the need of system-
dependent optimization procedures. This, together with the

demonstrated high level of reliability of this approach, may
provide robust and reliable tools to aid physicians as an initial
guess in segmenting biological volumes on FDG-PET images.
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