
Research Article
Performance Enhancement of Pharmacokinetic
Diffuse Fluorescence Tomography by Use of Adaptive
Extended Kalman Filtering

Xin Wang,1 Linhui Wu,1 Xi Yi,1 Yanqi Zhang,1 Limin Zhang,1,2

Huijuan Zhao,1,2 and Feng Gao1,2

1College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
2Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin 300072, China

Correspondence should be addressed to Feng Gao; gaofeng@tju.edu.cn

Received 9 November 2014; Revised 20 January 2015; Accepted 20 January 2015

Academic Editor: Jianghong Zhong

Copyright © 2015 Xin Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Due to both the physiological and morphological differences in the vascularization between healthy and diseased tissues,
pharmacokinetic diffuse fluorescence tomography (DFT) can provide contrast-enhanced and comprehensive information for
tumor diagnosis and staging. In this regime, the extended Kalman filtering (EKF) based method shows numerous advantages
including accurate modeling, online estimation of multiparameters, and universal applicability to any optical fluorophore.
Nevertheless the performance of the conventional EKF highly hinges on the exact and inaccessible prior knowledge about the
initial values. To address the above issues, an adaptive-EKF scheme is proposed based on a two-compartmental model for the
enhancement, which utilizes a variable forgetting-factor to compensate the inaccuracy of the initial states and emphasize the effect
of the current data. It is demonstrated using two-dimensional simulative investigations on a circular domain that the proposed
adaptive-EKF can obtain preferable estimation of the pharmacokinetic-rates to the conventional-EKF and the enhanced-EKF in
terms of quantitativeness, noise robustness, and initialization independence. Further three-dimensional numerical experiments on
a digital mouse model validate the efficacy of the method as applied in realistic biological systems.

1. Introduction

In diffuse fluorescence tomography (DFT) regime, pharma-
cokinetic imaging means a dynamic modality that ultimately
acquires the spatially varying pharmacokinetic parameters
of administrated fluorescent agent in tissue [1]. Among all
the commercially available fluorescent agents, only indo-
cyanine green (ICG) is approved for human use by the
U.S. Food and Drug Administration. As a blood pooling
agent, ICG has evidently distinct delivery behavior between
cancerous tissue and normal tissue due to the proliferation
of the “leaky” angiogenetic microvessels [2]. Therefore, the
pharmacokinetic-DFT of ICG potentially provides contrast-
and specificity-enhanced information for tumor diagno-
sis, malignancy staging, treatment monitoring, and drug-
delivery assessment, as compared to the static modality that

only discloses the temporally averaged fluorophore concen-
tration image [3].

The current image reconstruction methods for the
pharmacokinetic-DFT can be categorized into explicit and
implicit schemes, both combining the DFT principle with
pharmacokinetic analysis. In the explicit scheme the pharma-
cokinetic images are calculated in a voxel-by-voxel fashion
by fitting a kinetic model to the reconstructed temporal
sequence of the fluorophore concentration [4], while in the
implicit scheme the pharmacokinetic images are directly
reconstructed as a whole by incorporating a deterministic
kinetic model to the inversion procedure [5] or by expressing
the kinetics-to-measurement map in the extended Kalman
filtering (EKF) procedure [6]. Although it is demonstrated
that the implicit scheme substantially improves accuracy
and robustness in pharmacokinetic parameter estimation,
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the methodology is theoretically complex and computation-
ally costly due to the further degradation of ill-posedness
and increased unknowns in the inversion, thus limiting its
application to two-dimensional (2D) scenarios [5, 6]. In
this sense, the explicit scheme is universally applicable and
relatively easy-to-implement but needs to be enhanced for
its performance and robustness in both the concentration
reconstruction and the parameter estimation.

Compartmental modeling is a well-established approach
to the pharmacokinetic analysis. This method describes the
concentration dynamics as a result of fluorophore exchange
among kinetically distinct compartments using a set of
coupled ordinary differential equations (ODEs) with its
coefficients representing the exchange rates, referred to
as the pharmacokinetic-rates. A biexponential-curve-fitting
method based on the two-compartment model has been
proposed to demonstrate the feasibility of the ICG phar-
macokinetics in tumor diagnosis [4, 7–9]. Alacam and
Yazici have addressed an EKF framework for estimating
the pharmacokinetic-rates of highly nonlinear nature and
validated the sufficiency of the two-compartment model in
describing ICGkinetics [3]. Furthermore, an EKF study using
the two-compartment model has indicated the superiority of
the pharmacokinetic-rate images to the bulk rates of entire
breast in cancer diagnosis [10]. In comparisonwith the curve-
fitting techniques, the EKF-based method has a number
of advantages: (1) the EKF regards the ICG dynamics as
an evolutionary stochastic process and therefore provides a
better fit to the fluorophoremetabolism than the exponential-
curve-based model; (2) the EKF can readily accommodate
spatiotemporal priors of the kinetic parameters; (3) the
EKF can achieve real-time estimation of a complete set of
the pharmacokinetic parameters including pharmacokinetic-
rates and concentrations in different compartments; and
(4) the method is universally applicable to any optical
fluorophore [3, 6].

However, the performance of the conventional-EKF
highly hinges on the exact prior knowledge about the initial
states, that is, the expectations and covariances of the com-
partmental concentrations and pharmacokinetic parameters,
which are always inaccessible in practice. The inappropriate
initialization can cause the degeneration even the divergence
of the EKF [11–13]. Ozbek et al. have presented an enhanced-
EKF scheme to improve the accuracy of the EKF analysis
[14, 15], where a forgetting-factor is introduced to compensate
the inaccuracy of the initial states and to emphasize the effect
of the current data. This strategy in principle better stabilizes
the online estimation compared with the conventional-EKF
[16]. Nevertheless, a constant forgetting-factor is intrinsically
suboptimal, for example, the larger forgetting-factor results in
a larger Kalman gain means that the filter can quickly adapt
to a new situation but also that it is sensitive to random
errors. By nature, adopting a variable forgetting-factor that
adaptively balances between the convergence and robustness
will further improve the performance of the EKF.

We herein propose an adaptive-EKF for DFT-based
pharmacokinetic imaging, where the forgetting-factor is
updated at each recursive stage, by contrasting the calcu-
lated innovation covariance and the estimated one. For the
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Figure 1: Two-compartmental model of ICG pharmacokinetics.
𝐶𝑝 and 𝐶𝑒 denote the tissue concentrations of ICG in plasma and
EES, that is, the numbers of ICG molecules in plasma and EES
relative to the total tissue volume, respectively, 𝐾𝑝𝑒, 𝐾𝑒𝑝, and 𝐾𝑝

are pharmacokinetic-rates describing the ICG leakage into and the
drainage out of the EES, aswell as the ICGelimination from the body
through circulatory system, respectively, 𝑐𝑎(𝑡) is the arterial input
function (AIF), and 𝐹𝑝 is volume flow.

methodology to be universally applicable, the algorithm is
implemented within the framework of the explicit scheme
that firstly reconstructs the time-course of ICG concentration
with the conventional-DFT and then accordingly estimates
the pharmacokinetic-rate images using the adaptive-EKF
approach for the two-compartmentmodel. Simulation results
of a two-dimensional circular model suggest that the pro-
posed adaptive-EKF can obtain preferable pharmacokinetic-
rate images to both the conventional- and enhanced-EKF in
terms of quantitativeness, noise robustness, and initialization
independence. Further numerical experiments on a three-
dimensional (3D) digital mouse model validate the feasibility
and efficacy of the method as applied in 3D complex biologi-
cal systems.

2. Theory

2.1. Two-Compartment Model. Compartmental modeling
assumes that a biological system is conceptually (not geo-
metrically) divided into a series of compartments, each
representing a well-mixed space of similar tissues within
which the fluorophore is uniformly distributed and its con-
centration changes as a result of the agent exchange among
the compartments.Mathematically, the kinetic changes of the
compartmental concentrations are governed by a collection
of coupled ODEs, ultimately resting on the principle of mass
conservation [17–20]. In the two-compartment model, tissue
is composed of plasma and the extracellular-extravascular
space (EES), as shown in Figure 1, where 𝐶𝑝(r, 𝑡) and 𝐶𝑒(r, 𝑡)
denote the tissue concentrations of ICG in plasma and EES,
that is, the numbers of ICG molecules in the two compart-
ments relative to the total tissue volume, respectively;𝐾𝑝𝑒(r),
𝐾𝑒𝑝(r), and 𝐾𝑝(r) are pharmacokinetic-rates describing the
ICG leakage into and the drainage out of the EES, as well as
the ICG elimination from the body through circulatory
system, respectively; 𝑐𝑎(𝑡) is the arterial input function (AIF),
and 𝐹𝑝 is volume flow [17]. With the above notations, the



Computational and Mathematical Methods in Medicine 3

two-compartmentmodel of ICG is described by the following
ODEs set:

[
[
[

[

𝑑𝐶𝑒 (r, 𝑡)
𝑑𝑡

𝑑𝐶𝑝 (r, 𝑡)
𝑑𝑡

]
]
]

]

= [

−𝐾𝑒𝑝 (r) 𝐾𝑝𝑒 (r)
𝐾𝑒𝑝 (r) −𝐾𝑝𝑒 (r) − 𝐾𝑝 (r)

]

⋅ [

𝐶𝑒 (r, 𝑡)
𝐶𝑝 (r, 𝑡)

] + [

0

𝐹𝑝

] 𝑐𝑎 (𝑡) .

(1)

It is important to distinguish the tissue compartmental
concentrations, 𝐶𝜒(r, 𝑡) (𝜒 ∈ {𝑝, 𝑒}), used in the above
ODE from the local compartmental concentrations, 𝑐𝜒(r, 𝑡) =
𝐶𝜒(r, 𝑡)/V𝜒, with V𝑝 and V𝑒 being the fractions of plasma and
EES volumes, respectively [17, 18]. The latter is essentially the
ratio of the ICGmolecule number in plasma or EES compart-
ment to its fractional volume and has been inappropriately
used in the previous works [3, 6, 10, 21].

With the explicit scheme of dynamicDFT, the time course
of the total ICG concentration in tissue, 𝐶(r, 𝑡) = 𝐶𝑒(r, 𝑡) +
𝐶𝑝(r, 𝑡), is tomographically reconstructed at discrete time
instances, 𝐶(r, 𝑘) = 𝐶(r, 𝑘Δ𝑇), (𝑘 = 1, 2, . . . , 𝐾), where Δ𝑇 is
the sampling period. Here we only consider the permeability
of ICG in the EKF process after agent administration. In
order to achieve the joint estimation of the pharmacokinetic-
rates and the ICG tissue concentrations within the EKF
framework, a dynamic model of the parameter vector is
additionally appended to the two-compartment model to
construct a discrete nonlinear state-space model as follows
[3, 6, 17–20]:

[
C𝑒𝑝 (r, 𝑘 + 1)

𝜃 (r, 𝑘 + 1)
] = [
Κ (𝜃 (r, 𝑘))C𝑒𝑝 (r, 𝑘)
𝜃 (r, 𝑘)

] + [
𝜔 (r, 𝑘)
𝜍 (r, 𝑘)

]

𝐶 (r, 𝑘) = EC𝑒𝑝 (r, 𝑘) + 𝜂 (r, 𝑘) ,

(2)

where C𝑒𝑝(r, 𝑘) = [𝐶𝑒(r, 𝑘) 𝐶𝑝(r, 𝑘)]
𝑇 is the vector repre-

senting the compartmental concentrations with 𝐶𝑒(r, 𝑘) =

𝐶𝑒(r, 𝑘Δ𝑇) and 𝐶𝑝(r, 𝑘) = 𝐶𝑝(r, 𝑘Δ𝑇); E = [1 1]; 𝜔(r, 𝑘),
𝜍(r, 𝑘), and 𝜂(r, 𝑘) are independent zero-mean Gaussian
white noise processes with the covariance matrices Q and Z
and the variance 𝑅, referred to as the state driving noise
vector, parameter driving noise vector, and observation noise,
respectively; 𝜃(r, 𝑘) = [𝜏11(r, 𝑘) 𝜏12(r, 𝑘) 𝜏21(r, 𝑘) 𝜏22(r, 𝑘)]

𝑇

is the parameter estimation at time 𝑘Δ𝑇;K(𝜃) is the pharma-
cokinetic-rates-related system matrix for the discrete time
two-compartment model as follows:

K (𝜃) = [
𝜏11 (r) 𝜏12 (r)
𝜏21 (r) 𝜏22 (r)

]

= exp([

−𝐾𝑒𝑝 (r) 𝐾𝑝𝑒 (r)

𝐾𝑒𝑝 (r) − (𝐾𝑝𝑒 (r) + 𝐾𝑝 (r))
]Δ𝑇) .

(3)

2.2. The General Framework of EKF. Let Ĉ𝑒𝑝(r, 𝑘) and 𝜃̂(r, 𝑘)
be the estimation of the compartmental concentrations

C𝑒𝑝(r, 𝑘) and the parameters 𝜃(r, 𝑘) at the 𝑘th step, respec-
tively, let Ĉ𝑒𝑝(r, 𝑘 | 𝑘 − 1) and 𝜃̂(r, 𝑘 | 𝑘 − 1) be the one-
step ahead prediction of C𝑒𝑝(r, 𝑘) and 𝜃(r, 𝑘), respectively.
The general framework of an EKF for the two-compartment
model is summarized as a recursive procedure of “Prediction-
Gain-Update” [4, 6, 13–16].

(1) Prediction. Consider

[

Ĉ𝑒𝑝 (r, 𝑘 | 𝑘 − 1)

𝜃̂ (r, 𝑘 | 𝑘 − 1)

] = [
K (𝜃̂ (r, 𝑘 − 1)) Ĉ𝑒𝑝 (r, 𝑘 − 1)

𝜃̂ (r, 𝑘 − 1)

] . (4)

(2) Kalman Gain. Consider

P (r, 𝑘 | 𝑘 − 1) = 𝜆 (r, 𝑘) J (r, 𝑘 − 1)P (r, 𝑘 − 1) J𝑇 (r, 𝑘 − 1)

+ [
Q 0
0 Z

] ,

G (r, 𝑘) = P (r, 𝑘 | 𝑘 − 1)Λ
𝑇

𝐷 (r, 𝑘)

P (r, 𝑘) = [I − G (r, 𝑘)Λ]P (r, 𝑘 | 𝑘 − 1) ,

(5)

whereΛ = [1 1 0 0 0 0], J(r, 𝑘 − 1) is the Jacobian matrix
of the nonlinear EKF system,𝐷(r, 𝑘) = ΛP(r, 𝑘 | 𝑘−1)Λ

𝑇
+𝑅

is referred to as the calculated covariance since it equals the
covariance of the innovation sequence 𝑑(r, 𝑘) = 𝐶(r, 𝑘) −

EĈ𝑒𝑝(r, 𝑘 | 𝑘 − 1) as the model is accurate [13], I is an identity
matrix, and 𝜆 is a forgetting-factor. To obtain the Kalman
gain, G(r, 𝑘), the one-step ahead prediction of the error-
covariance matrix, P(r, 𝑘 | 𝑘−1), is firstly calculated in terms
of the estimated error-covariance matrix at the previous step,
P(r, 𝑘 − 1), and then is updated to reach its estimation at
the current step, P(r, 𝑘), for the next recursion. According
to the forgetting-factor 𝜆, the EKF can be classified as the
conventional (𝜆 = 1) [4, 6, 10] or the enhanced (𝜆 is a constant
larger than 1) [14, 15].

(3) Update. Consider

[

Ĉ𝑒𝑝 (r, 𝑘)

𝜃̂ (r, 𝑘)
] = [

Ĉ𝑒𝑝 (r, 𝑘 | 𝑘 − 1)

𝜃̂ (r, 𝑘 | 𝑘 − 1)

] + 𝑑 (r, 𝑘)G (r, 𝑘) . (6)

Prior to the recursive process, the EKF can be initialized
theoretically for the state, that is, expectations of ICG con-
centrations and 𝜃 and the error covariance matrix, that is,
P0 = [

Cov(C
𝑒𝑝
(r,0)) 0

0 Cov(𝜃(r,0)) ]. In practice, 𝜃̂(r, 0) is always
experientially chosen as the physiologically relevant values.
Ĉ𝑒𝑝(r, 0) can be calculated from the initial quantities of
intravenous injection. It is emphasized that the filter may
degenerate or even diverge with the improper initialization
[11–13].

2.3. Adaptive-EKF with a Variable Forgetting-Factor. Theo-
retically, a linear filter can be considered an optimal one as



4 Computational and Mathematical Methods in Medicine

Table 1: Pharmacokinetic-rates with three contrasts for simulation.

Target/Background [s−1]
Contrast = 3 Contrast = 2 Contrast = 1

𝐾𝑝𝑒 0.012/0.003 0.009/0.003 0.006/0.003
𝐾𝑒𝑝 0.004/0.001 0.003/0.001 0.002/0.001
𝐾𝑝 0.025/0.025

its innovation sequence is white. According to this criterion,
however, the innovation sequence of the EKF is not white due
to the linearization error. Nevertheless, the performance of
the EKF might still be improved on a condition of temporal
independence of the innovation; that is, the autocovariance of
the innovation sequence is zero. To approach such a condi-
tion, a temporally varying forgetting-factor 𝜆(r, 𝑘) is intro-
duced as [16]

𝜆 (r, 𝑘) = max{1, log(𝐷 (r, 𝑘)
𝐷 (r, 𝑘)

)} , (7)

where 𝐷(r, 𝑘) is referred to as the estimated innovation
covariance:

𝐷 (r, 𝑘) =
{{{

{{{

{

𝑑 (r, 𝑘)2 , 𝑘 < 𝑊

(
1

𝑊
)

𝑘

∑

𝑖=𝑘−𝑊+1

𝑑 (r, 𝑖)2 , 𝑘 ≥ 𝑊.

(8)

The essence of the above equation is to estimate the real
innovation covariance by averaging inside a moving estima-
tion window of size 𝑊 [22]. The windowing strategy in the
calculation helps balance between the confidences in the “old”
observation data and the current data. No optimal criterion
is thus far found for selection of the window width 𝑊 and
some care must be taken with this issue. In principle, the
filtering might fail to mitigate the negative effects of the “old”
observation data with a large 𝑊 and, on the contrary, would
be adversely affected by sudden noise in the new data as𝑊 is
too small.

It is difficult in practice to acquire the exact nonlinear
stochastic equations of the pharmacokinetic system, due to
the unavailability of the noise characteristics.With inaccurate
initialization of the noise characteristics, the calculated inno-
vation covariance 𝐷(r, 𝑘) may be lower than the estimated
one 𝐷(r, 𝑘), leading to a forgetting-factor greater than 1, that
is, 𝜆(r, 𝑘) > 1. The predicted error covariance P(r, 𝑘 | 𝑘 −

1) is then amplified by the forgetting-factor to ameliorate
the inexact modeling and emphasize the role of the current
data. On the other hand, it must be ensured that 𝜆(r, 𝑘) ≥

1 to stabilize the filtering process. Since a sharp variation
of the ratio of the estimated innovation covariance 𝐷(r, 𝑘)
to the calculated one 𝐷(r, 𝑘) may occur during the rapidly
varying early phase of the ICG kinetic process after injection,
due to the inappropriate initialization of the filter or some
unaccounted perturbation [2], a logarithmic ratio value of
𝐷(r, 𝑘) to𝐷(r, 𝑘) is used to avoid the rapid local convergence
under a large forgetting-factor.

3. Simulative Investigations

Using the pharmacokinetic-rates listed in Table 1, the time-
course of the ICG concentration, 𝐶(r, 𝑘), is calculated based
on the two-compartment kinetic model, that is, (2), that are
driven by the zero-meanGaussian noises,𝜔(r, 𝑘), with signal-
to-noise ratio (SNR), SNR𝜔, respectively. The pharmacoki-
netic-rates are assumed to be nearly constant at the clinical-
pathologic stage as the measurement is performed, a high
SNR of SNR𝜍 = 60 dB (0.1%) is used to drive the parameter
vector 𝜃(r, 𝑘) in the simulations. In the calculation, we set the
initial concentration of ICG to 𝐶(0) = 1.0 𝜇M and assume
that all the ICG is in the plasma at 𝑡 = 0 s.

With the time-course of the ICG concentration, 𝐶(r, 𝑘),
we can accordingly calculate the time-varying fluorephore
absorption coefficient, 𝜇af(r, 𝑘), in terms of a linear relation-
ship of 𝜇af(r, 𝑘) = ln 10𝜀𝐶(r, 𝑘), where 𝜀 (= 0.013mm−1
𝜇M−1) is the extinction coefficient of ICG, and finally obtain
the boundary flux by solving the coupled diffusion equations
using the finite element method, as the simulated data for
the reconstruction [23–27]. The investigations herein rely on
combination of the multichannel photon-counting DFT sys-
tem custom-made in our lab [21] and the widely-adopted
normalized Born formulation for DFT reconstruction [23,
27]. This means that both the excitation and emission SNRs,
that is, SNR𝑥 and SNR𝑚, can achieve reasonably high levels of
above 30 dB and 20 dB, respectively, and an optically homo-
geneous background can be used in the forward calculation.

To further obtain the estimated pharmacokinetic param-
eters Ĉ𝑒𝑝(r, 𝑘) and 𝜃̂(r, 𝑘), the DFT-reconstructed ICG con-
centration, 𝐶󸀠(r, 𝑘), is analyzed by conventional-, enhanced-,
and adaptive-EKF procedures, respectively. The constant
forgetting-factor of the enhanced-EKF is set to be 1.1 in the
simulations according to [15], while the adaptive-EKF adopts
a 7-length (𝑊 = 7) window.The noise covariance matrices of
the state and parameter driving noise vectors in the filter are
set to Q = 10

−8
𝐶(0)I and Z = 10

−5
𝜃(0)I, and the variance 𝑅

of the observation noise is dependent on the additive noise
levels in the measurements [6].

3.1. 2D Circular Phantom. A circular phantom with 30mm
diameter is used that embeds a circular tumor-emulating
region of 6mmdiameter, as shown in Figure 2. Its absorption
coefficient and reduced scattering coefficient are set to 𝜇𝑎 =

0.035mm−1 and 𝜇
󸀠

𝑠
= 1.0mm−1 for both the excitation and

emission wavelengths. The domain is discredited by a finite
element mesh with 721 nodes and 1350 elements (triangles)
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Figure 2: Sketch of the 2D phantom model and source-detector
configuration.

for both the forward and inverse calculations and sampled by
16 coaxial source-detector optodes that are placed around the
phantom with equal spacing. To acquire a complete dataset
for the 16 × 16 source-detector combinations, the 16 detectors
collect the photons in parallel as 16 sources illuminate the
surface in serial. The measurement is repeatedly conducted
for 720 s (12minutes) at a sampling period ofΔ𝑇= 10 s, gener-
ating 72 datasets of the time-course for the pharmacokinetic
estimation.

For the pharmacokinetic-rates, 𝐾𝑝𝑒 and 𝐾𝑒𝑝 are set to
represent three target-to-background contrasts in agreement
with the different tumor pathological staging, while 𝐾𝑝 is
assumed to be homogeneous and known throughout the
simulations, as shown in Table 1.

To demonstrate the above dynamic DFT procedure,
Figure 3 illustrates the time-course of the model-simulated
and DFT-reconstructed ICG average concentrations in the
background and target regions, 𝐶(𝑘) and 𝐶

󸀠
(𝑘), as well as the

time-course of the true and reconstructed contrasts, for
the scenario of contrast = 2 in Table 1. Here we define the
contrast as the ratio of the average target variation to the
average background [28]. For the reference, the interimDFT-
reconstructed yield-images and their X-profiles are also given
at six time instants of 100 s to 600 s, which are generated from
the simulated time-course of ICGconcentrationwith SNR𝜔 =
40 dB, SNR𝜍 = 60 dB, SNR𝑥 = 55 dB, and SNR𝑚 = 45 dB.
It is found that the reconstructed concentration features an
increased underestimation with increased true contrast dur-
ing the kinetic process: an adversity originates from the
underestimation of high yield contrasts in DFT-reconstruc-
tion.

3.1.1. Quantitativeness. The images of the pharmacokinetic-
rates,𝐾𝑝𝑒 and𝐾𝑒𝑝, estimated by the conventional-, enhanced-
, and adaptive-EKFs, for the three sets of the true target-to-
background contrasts in Table 1, are illustrated in Figures 4(a)
and 4(b), respectively. In the filtering process, the variance of

the observation noise is chosen as 𝑅 = 3 × 10
−4
𝐶(0), and the

initial pharmacokinetic-rates are set to be same for the three
filters, that is,𝐾𝑝𝑒 = 0.003 s−1 and𝐾𝑒𝑝 = 0.001 s−1.

A good agreement between the true and the estimated
images is observed in terms of the localization and size
of the target. It can be found in terms of the X-profiles
that the adaptive-EKF outperforms the conventional-EKF
and enhanced-EKF in estimation accuracy. For quantitative
assessment of the method, the quantitativeness ratio (QR),
defined as the ratio of the estimated contrast to the true
one of a pharmacokinetic-rate, as shown in Figure 4(c). The
much higher QRs of the𝐾𝑝𝑒- and𝐾𝑒𝑝-images achieved by the
adaptive-EKF exhibit the enhanced ability of the method to
dynamically compensate the initial inaccuracies. This feature
is further quantified with the time-course of the mean square
error (MSE) between the estimated and true compartmental
concentration images, defined as

MSE𝜒 (𝑘) = (
1

𝑁
)

𝑁

∑

𝑛=1

[𝐶𝜒 (𝑛, 𝑘) − 𝐶𝜒 (𝑛, 𝑘)]
2

, (9)

where 𝜒 ∈ {𝑒, 𝑝}; 𝑁 is the number of the nodes in the
region of interest; 𝐶𝜒(𝑛, 𝑘) and 𝐶𝜒(𝑛, 𝑘) are the estimated
and the true compartmental concentrations at the 𝑖th node,
respectively. Figure 5 shows the estimated average time-
course of ICG compartmental concentrations and theirMSEs
in the target and background areas. It is observed, for the
three pharmacokinetic contrasts, that the average 𝐶𝑒 in the
target area estimated by adaptive-EKF converges faster to the
true value and realizes a smaller MSE than the conventional
and the enhanced ones. For 𝐶𝑝 estimation, the three filters
exhibit almost the same performance according to the figure.

3.1.2. Noise Robustness. To evaluate the noise robustness
of the three filters, the estimations are conducted for the
pharmacokinetic contrast of 2, with different levels of the state
driving noise and measurement noise, as shown in Table 2.
The initial pharmacokinetic-rates are set to be same for the
three filters, that is,𝐾𝑝𝑒 = 0.003 s−1 and𝐾𝑒𝑝 = 0.001 s−1.

Firstly, to compare the robustness of the three filters to the
state driving noise, the data is generated with SNR𝜔 = 20 dB,
30 dB, and 40 dB, by fixing reasonably low levels of the mea-
surement noise: SNR𝑥 = 55 dB and SNR𝑚 = 45 dB, that is,
Case 1, Case 2, and Case 3 in Table 2. A fixed observation
noise variance of 𝑅 = 3 × 10

−4
𝐶(0) is used in the filtering

process. Figure 6 contrasts the resultant QRs of 𝐾𝑝𝑒 and 𝐾𝑒𝑝

for the three cases. It is seen that the QRs achieved by the
adaptive-EKF are much higher than the other two schemes.

Next, the robustness of the filters to the measurement
noise is investigated with a fixed high SNR𝜔 of 40 dB but
varying levels of the measurement noise, that is, Cases 4–6
in Table 2. This time the variance of the observation noise, 𝑅,
in the filtering process is set to 3 × 10

−4
𝐶(0), 5 × 10

−4
𝐶(0),

8 × 10
−4
𝐶(0), and 3 × 10

−3
𝐶(0) for Cases 3–6, respectively.

The estimated𝐾𝑝𝑒- and𝐾𝑒𝑝-QRs are shown in Figure 7, from
which it is again found that themuch higherQRs are achieved
by the adaptive-EKF as compared to the other two schemes.



6 Computational and Mathematical Methods in Medicine

100 200 300 400 500 600 700
0

0.5

1

0

1

C
on

tr
as

t

Target
Reconstructed target
Background

Reconstructed background
Contrast
Reconstructed contrast

Av
er

ag
e I

CG
 co

nc
en

tr
at

io
n 

(𝜇
M

)

t (s)

(a)

Yield

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

100 200 300 400 500 600

(b)

0 5 10 15

2
1

3
4
5
6
7
8

−15 −10 −5

Yi
el

d 
(m

m
−
1
)

x (mm)

×10−3

100 s
200 s
300 s

500 s
600 s
700 s

400 s

(c)

Figure 3: The time-course and contrast of the model-simulated and DFT-reconstructed average ICG concentrations in the background and
target areas, 𝐶 and 𝐶

󸀠 (a), as well as the interim yield-images (b) and their X-profiles (c) at 𝑡 = 100, 200, 300, 400, 500, 600 s. The calculations
are performed for the pharmacokinetic-rates of contrast = 2 from the simulated data with SNR𝜔 = 40 dB, SNR𝜍 = 60 dB, SNR𝑥 = 55 dB, and
SNR𝑚 = 45 dB. The black circles indicate the ideal location and size of the targets.

Table 2: SNR setting for the noise robustness evaluation.

Case SNR𝜔 [dB] SNR𝑥 [dB] SNR𝑚 [dB]
1 20 55 45
2 30 55 45
3 40 55 45
4 40 45 35
5 40 35 25
6 40 30 20

3.1.3. Independence to Initialization. The independence of the
initialization of𝐾𝑝𝑒 and𝐾𝑒𝑝 is quantified by both the QR and
theMSE for the pharmacokinetic contrast of 2, with the same
noise levels as in Case 3. The MSE measure is introduced to
assess the bias of the estimation and calculated in the whole
domain. The variance of the observation noise in the filters

is set to 𝑅 = 3 × 10
−4
𝐶(0) for all the cases. The initial

pharmacokinetic-rates,𝐾𝑝𝑒 and𝐾𝑒𝑝, are identically set for the
three filters, in proportion to the true background ones with a
varying factor from 0 to 2. The two measures are illustrated
in Figure 8, from which it is clear that the adaptive-EKF
achieves significantly larger QR and smaller MSE than the
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Table 3: Optical properties of organs in digital mouse.

Tissue 𝜇𝑎𝑥 [mm−1] 𝜇
󸀠

𝑠𝑥
[mm−1] 𝜇𝑎𝑚 [mm−1] 𝜇

󸀠

𝑠𝑚
[mm−1]

Muscle 0.0052 1.08 0.0068 1.03
Heart 0.0083 1.01 0.0104 0.99
Lungs 0.0133 1.97 0.0203 1.95
Liver 0.0329 0.70 0.0176 0.65
Kidneys 0.0660 2.25 0.0380 2.02
Stomach 0.0114 1.74 0.0070 1.36

others regardless of the deviations of the initial 𝐾𝑝𝑒 and 𝐾𝑒𝑝

from their true backgrounds.

3.2. 3D Digital Mouse Model. To evaluate the performance of
the proposed adaptive-EKF in small animal scenarios, sim-
ulated data is generated using the two-compartment model,
on a 3D digital mouse atlas (Digimouse) [29]. To facilitate
the forward calculation, the mouse model is assumed to be
embedded into a cylindrical chamber of 15mm radius and
a 35mm height filled with the matching fluid, as shown in
Figure 9. The cylindrical domain is discretized into 25956
nodes and 47250 elements (prisms) for use with the finite
element method. A cylindrical tumor target of 2.5mm radius
and of 6mm length is placed in the liver with its center at 𝑥 =

−4mm, 𝑦 = 0mm, and 𝑧 = 0mm, as shown in Figure 9(b).
Five imaging planes along the height (𝑧-axis) at 𝑧 = −8mm,
−4mm, 0mm, 4mm, and 8mm are arranged for data
acquisition, with each installing 32 coaxial source-detector
optodes around the phantom at equal spacing. The optical
parameters of the organs in the digital mouse are listed in
Table 3, including the absorption and the reduced scattering
coefficients, 𝜇𝑎𝜐 and 𝜇

󸀠

𝑠𝜐
, at both the excitation (𝜐 = 𝑥) and

emission (𝜐 = 𝑚) wavelengths [30]. The background and
target pharmacokinetic-rates are set to those for the case of
contrast = 2 in Table 1. The levels of the various noises are set
according to SNR𝜔 = 30 dB, SNR𝜍 = 60 dB, SNR𝑥 = 45 dB,
and SNR𝑚 = 35 dB. In the filtering process, the variance of the
observationnoise is chosen as𝑅 = 8×10

−4
𝐶(0), and the initial
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Figure 5: The estimated average time-course of the compartmental concentration and their MSEs in the target and background areas: (a)
contrast = 3, (b) contrast = 2, and (c) contrast = 1.
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plane.

pharmacokinetic-rates are identically set for the three filters,
that is, 𝐾𝑝𝑒 = 0.003 s−1 and 𝐾𝑒𝑝 = 0.001 s−1. The top- and
side-view images of the estimated pharmacokinetic-rates are
shown at 𝑧 = 0mm and 𝑦 = 0mm in Figure 10, respectively.
Analogous to the 2D scenarios, the proposed adaptive-EKF
greatly improves the quantitativeness of the pharmacokinetic
estimations as compared to the conventional- and enhanced-
EKF, in terms of the X-profiles (𝑧 = 0mm and 𝑦 = 0mm).
The results indicate the prospects of the proposed method in
ICG kinetics study of diseased mouse models in vivo.

4. Discussions and Conclusions

It is clearly seen from the estimated pharmacokinetic-rate
images that the target sizes are slightly overestimated and
biased, even with the adaptive-EKF. These two defects and
also the quantitativeness remain to be further improved. In
practice, a successful imaging of the pharmacokinetic-rates
by the explicit methods, such as the EKFs described here, is
dependent on two crucial factors: one is the fidelity of the
DFT reconstruction, that is, how to reconstruct the ICG
concentration 𝐶

󸀠
(𝑘) that approaches the realistic one 𝐶(𝑘)

and another is the effectiveness of the EKF process, that is,
how to accurately extract the pharmacokinetic parameters,
𝐾𝑝𝑒 and𝐾𝑒𝑝, from the DFT-reconstructed concentration 𝐶

󸀠.
The former is restrained by the severe ill-posedness of

the DFT inversion, normally resulting in a decreasing quanti-
tativeness with the increasing contrast [25–27].The distorted
time-course of ICG concentration 𝐶

󸀠 inevitably leads to a
deviation in the estimation of the pharmacokinetic-rates. To
demonstrate the first effect, Figure 11 compares the esti-
mated images and X-profiles of the pharmacokinetic-rates by
the adaptive-EKF from the model-simulated and DFT-
reconstructed ICG concentrations, that is, 𝐶 and 𝐶

󸀠, respec-
tively, for the case of contrast = 2 in Table 1 with a SNR setting

of SNR𝜔 = 40 dB, SNR𝜍 = 60 dB, SNR𝑥 = 55 dB, and SNR𝑚 =

45 dB. It is obvious that the accuracy of the estimation is
significantly improved with the model-simulated concentra-
tion 𝐶 by bypassing the DFT process. Nevertheless, the DFT
process is indispensable due to the inaccessibility of the ICG
concentration in tissue. Therefore, the introduction of more
advanced DFT reconstruction methodologies, for example, a
prior knowledge guided scheme or an efficient explicit imple-
mentation, is necessarily requested for enhancement.

The latter significantly depends on the selection of the
noise covariances, that is,Q, Z, and 𝑅, in the EKF process. In
practice, these noise covariances vary and are unavail-
able during the measurement period and are suboptimally
assumed to be constant in this work. Although the adaptive-
EKF can compensate this inaccurate assumption, the prior
knowledge or an adaptive updating of the noise covariance
may further improve the performance of the estimation.

In conclusion, an adaptive-EKF is developed based on the
two-compartment model, for the enhanced estimation of the
pharmacokinetic-rates from the dynamic DFT reconstruc-
tion. With introduction of a variable forgetting-factor, the
propose scheme can effectively compensate the uncertainties
of the initial states and the noise covariances. The simulation
results suggest that the adaptive-EKF can obtain preferable
pharmacokinetic-rate images than the conventional-EKF
and the enhanced-EKF with an improved quantitiveness,
noise robustness, and initialization independence.Themouse
experiments in vivo are necessary to study the real pharma-
cokinetic process in our future work.
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