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Noise induced hearing loss (NIHL) remains as a severe health problem worldwide. Existing noise metrics and modeling for
evaluation of NIHL are limited on prediction of gradually developing NIHL (GDHL) caused by high-level occupational noise. In
this study, we proposed two auditory fatigue based models, including equal velocity level (EVL) and complex velocity level (CVL),
which combine the high-cycle fatigue theory with the mammalian auditory model, to predict GDHL. The mammalian auditory
model is introduced by combining the transfer function of the external-middle ear and the triple-path nonlinear (TRNL) filter to
obtain velocities of basilar membrane (BM) in cochlea.The high-cycle fatigue theory is based on the assumption that GDHL can be
considered as a process of long-cycle mechanical fatigue failure of organ of Corti. Furthermore, a series of chinchilla experimental
data are used to validate the effectiveness of the proposed fatigue models. The regression analysis results show that both proposed
fatigue models have high corrections with four hearing loss indices. It indicates that the proposed models can accurately predict
hearing loss in chinchilla. Results suggest that the CVL model is more accurate compared to the EVL model on prediction of the
auditory risk of exposure to hazardous occupational noise.

1. Introduction

Noise induced hearing loss (NIHL) is a serious problem
that affects many people worldwide. According to the World
Health Organization (WHO), exposure to excessive noise is
the major avoidable cause of permanent hearing loss [1]. It
is estimated that over 500 million individuals are at risk of
developing NIHL [2] globally. Hearing loss has been shown
to lower the quality of life, impair social interactions, cause
isolation, and even cause loss of cognitive function [3]. As
a common public health issue, NIHL has attracted great
endeavors devoted to its fundamental mechanism studies.
NIHL can be briefly categorized into two types: acoustic
trauma caused hearing loss and gradually developing hearing
loss (GDHL). Acoustic trauma occurs rapidly and results
in an immediate and permanent hearing loss. In acoustic
trauma, the inner ear tissue can be stretched beyond its elastic
limits by high-level noise in a short duration exposure. For

example, an impulse noise with sound pressure level (SPL)
above 120 dB could cause acoustic trauma. Unlike acoustic
trauma, GDHL is developed over time and can be caused by
occupational noise exposure (e.g., low exposures of at least
85 dBA over 8 hours [3]). This type of damage is relative to
the noise level and exposure time.

To estimateNIHL, various standards and regulations have
been developed over years, for example, ISO 1999:2013 [4],
ANSI-S3.44-1996 [5], NOISH98 [6], MIL STD-1474D [7],
and CHABA [8]. The noise metrics in these standards and
regulations were developed based on either waveform based
empirical strategies (e.g., peak acoustic pressure and pulse
duration) or auditory weighting based equal energy hypoth-
esis (EEH) (e.g., A-weighted equivalent sound pressure level,
𝐿Aeq) [9–11]. These noise metrics can either characterize the
noise exposure or evaluate the acoustic energy of the noise
very well, but they do not provide physical insight into the
processes of noise induced hearing damage.
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In recent years, the mammalian auditory model has been
utilized to develop more advanced models for assessment
and prediction of NIHL. Price [12] developed an auditory
hazard assessment algorithm for humans (AHAAH) model,
which was based on theoretical modeling of human auditory
transfer functions to investigate the mechanical damage in
human ear, caused by high-level impulse noise.The AHAAH
model achieved a considerable high accuracy on prediction
of impulse noise induced human hearing loss [13]. However,
the AHAAH model is only applicable to predict the acoustic
trauma induced by high-level impulsive noise (SPL≥ 140 dB).
It cannot estimate GDHL caused by occupational noise (e.g.,
a Gaussian continuous noise with SPL ≥ 85 dBA). In another
study [14], Song applied an analog auditory based model to
predict human NIHL. His model used the velocity of the
stapes in themiddle ear as the input loads but had no involve-
ment with the auditory fatigue theory in the process of hear-
ing damage. Their results showed that Song’s model demon-
strated a weak correlation with chinchilla NIHL data. In our
study, we propose two fatigue models, which combine the
mammalian auditory model and high-cycle auditory fatigue
theory, for prediction of GDHL caused by occupational
noise.

Numerous auditory models (AMs) have been developed
in the past decades [16–22]. These models can be categorized
into two different groups: functional models and analog
models. The functional models are developed based on the
observation of input-output behavior of the auditory system
with respect to physiological or psychological responses [19].
The functional models usually can achieve high accuracy
on prediction of the output of auditory system. The analog
models are derived from representing the peripheral ear.
Benefited fromnewadvances in auditory physiology, they can
explicitly simulate the precise internal physical mechanisms
and provide access to all internal physical variables of the
underlying analog network models [19].

For NIHL study, the key consideration for choosing an
AM is how to accurately quantify the flow of acoustic power
from the environment into the inner ear [15]. In addition,
the auditory fatigue is strongly correlated with vibration
of basilar membrane (BM) in cochlea [23]. It means that
an AM is required to provide an accurate estimation of
the BM response. Therefore, the functional models focusing
on input-output simulation would be more suitable for the
investigation of NIHL.

In functional auditory models, three families of auditory
filters have been developed, including the rounded exponen-
tial (roex) family, the gammatone family (including gam-
machirp and all-pole and pole-zero variants), and the filter
cascades (both all-pole and pole-zero variants) [24]. The
roex family is useful mostly as a descriptive model, which
describes the shape of magnitude transfer function of an
auditory filter [25]. It has no-time domain equivalent and
no “runnable” implementation. Comparatively, filter-cascade
family minimizes the total computational complexity [26]
and demonstrates structural efficiency. As a cascade filter
model, triple-path nonlinear (TRNL) filter and its prototype
dual resonant nonlinear (DRNL) filter have been proved to
be extremely efficient in simulating mammalian auditory

system (e.g., human and chinchilla) [27, 28]. Hence, in our
study, TRNL filter will be introduced to simulate the transfer
function of mammalian inner ear and obtain the BM veloci-
ties in cochlea.

In material science, fatigue is a progressive and localized
structural damage of a material caused by repeatedly applied
loads. There are two kinds of material fatigues, low-cycle and
high-cycle fatigues [29]. For low-cycle fatigue, the applied
loading is high enough to produce functional material failure
in a single cycle or a few cycles. For high-cycle fatigue, the
magnitude of stress in each cycle is not sufficient to generate
functional material failure with a few cycles. Large numbers
of cycles are needed to generate material failure in high-cycle
fatigue model.

Assuming that the hearing loss intrinsically is a mechan-
ical failure of the auditory system (i.e., basilar membrane or
hair cells) [30–32], NIHL [33] can be regarded as the auditory
fatigue [23, 34]. Therefore, the fatigue model based on mat-
erial theory can be introduced to describe how the noise stim-
ulus causes damage in cochlea in NIHL study. In AHAAH
model, the authors used low-cycle fatigue to describe the ear
damage [35], in which high-level impulse noise causes the
detachment of the organ of Corti from the BM and produces
permanent damage in a few noise pulses. For GDHL, the
processes of damage in cochlea caused by occupational or
environmental noise with SPL from 85 dB to 120 dB [36] can
be considered as the high-cycle fatigue [23, 34]. In GDHL,
damage in inner ear is the result of repeated flexing of the
BM under noise exposure [37], where the outer hair cell
(OHC) and the inner hair cell (IHC) are squeezed or stretched
leading to hearing loss. Moreover, Moore [33] summarized
five major factors influencing the auditory fatigue: (1) the
intensity of the noise, (2) the duration of the noise, (3) the
frequency of the noise, (4) the recovery interval, and (5)
the auditory system’s own fatigue frequency (i.e., comparable
with material fatigue cycle). Among these factors, intensity,
duration, and frequency directly reflect the characteristics
of noise and can be applied to develop the auditory fatigue
model in our study.

In addition, instead of using the displacement of BM as
the loads in [35], the velocity of BM is used as the complex
loads on the organ of Corti in our proposed models [38].The
velocity of BM not only reflects the acoustic power flowing
into the inner ear, but also highly correlated with strain
and loads [37, 39]. Therefore, velocities can be fed into the
auditory fatigue model to predict NIHL [40].

In this study, two BM velocities based fatigue models,
equivalent velocity level (EVL) and complex velocity level
(CVL), are proposed to predict the GDHL caused by occu-
pational noise. The auditory model combining the external-
middle ear model and the TRNL filter is applied to obtain
the BM velocities at different partitions of cochlea (i.e.,
Equivalent Rectangular Band (ERB)). Based on the stress
against cycles to failure (𝑆-𝑁) curve and the Miner rule in
the high-cycle fatigue theory, the EVL and CVL fatigue based
models are developed, respectively. In addition, a series of
chinchilla noise exposure data are applied to validate the
effectiveness of our developedmodels for prediction of NIHL
in this paper.
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Figure 1: A schematic diagram of a model of auditory periphery,
consisting of external ear, middle ear, and inner ear sections [15].

2. Methods and Materials

2.1. Transfer Functions of Chinchilla Auditory System. As
shown in Figure 1, mammalian ear consists of three sections:
external ear, middle ear, and inner ear. The external ear
is made up of ear canal, concha, and pinna flange. The
middle ear contains tympanic membrane (TM), middle-ear
air spaces, eustachian tube, and ossicles.The fluid-filled inner
ear contains basilar membrane and organ of Corti [39, 41].
Because the animal noise exposure data used in this study is
collected using chinchilla, we developed the proposed fatigue
models based on the auditory transfer functions of chinchilla.
The ears of other mammals (e.g., human and cat) are highly
similar in structure.The sameprinciples used in themodeling
can be easily transferred with modest adaptations to fit their
anatomic details [39].

2.1.1. External Ear and Middle Ear. The primary function of
the external ear and middle ear is gathering sound energy
and conducting it into the inner ear. The middle ear acts as
an impedance-matching device that extracts acoustic power
from the stimulus and transmits it to cochlea [42–45].

The primary path for conducting environmental sound
into inner ear is through the coupled motion of TM, ossicles,
and stapes footplate. One can consider the “ossicular cou-
pling” of sound to inner ear as a cascade of interdependent
acoustical andmechanical processes, in which outputs of one
stage act as inputs to the next stage. First, the pressure 𝑃EX
and volume velocity 𝑈EX of noise travel through concha and
ear canal and then interact with the TM in the middle ear
to produce a pressure 𝑃TM and volume velocity 𝑈TM on the
TM. Correspondingly, the gain for the external ear can be
defined as 𝐺

𝑒
= 𝑃TM/𝑃EX, shown in Figure 2(a). Second,

the pressure and volume velocity of TM are converted into
the pressure 𝑃

𝑆
and volume velocity 𝑈

𝑆
acting on stapes in

the middle ear, which work against the acoustic impedance
of cochlea to produce sound pressure 𝑃

𝐶
within the cochlea

vestibule. In our study, transfer function of the middle ear
is characterized by stapes velocity transfer function (SVTF)
as shown in Figure 2(b). The SVTF is defined as the ratio
between linear velocity of stapes 𝑉

𝑆
and sound pressure near

theTM in the ear canal𝑃TM (SVTF = 𝑉
𝑆
/𝑃TM) [43], where the

linear velocity 𝑉
𝑆
can be obtained through dividing volume

velocity 𝑈
𝑆
by average area of the footplate (𝐴FP = 2mm2

[46]).

2.1.2. Inner Ear Model-TRNL Filter. One can assume that
cochlea is a two-chambered, fluid-filled box with rigid side
walls [35], and the partition between chambers is rigid,
except that BM is flexible with elastic deformation.When the
stapesmotion produces pressurewithin the cochlea vestibule,
sound stimulus can be transferred to OHC and IHC by
vibrations of BM [47]. At different sites of BM, which are
sensitive to different frequency ranges, the resulting velocities
are different. Several phenomenological models have been
introduced to simulate the experimental measurements over
different sites along BM [27, 48–50].

In this study, the TRNL filter introduced in [28] has
been utilized to obtain the complex features of BM responses
along the partitions of chinchilla’s cochlea. The TRNL filter
is an improved form of DRNL filter originally proposed in
[27]. It can accurately simulate the motion of mammalian
BM. As shown in Figure 3, the input for TRNL filter is the
linear velocity of stapes 𝑉

𝑆
and the output represents the BM

velocity of a particular location along the cochlea partition.
Each individual site is represented as a tuned system includ-
ing three parallel signal-processes paths: one linear (left),
one nonlinear (middle), and one low-gain linear (right). The
first linear path consists of a bandpass function, a low pass
function, and a gain/attenuation factor, 𝑔, in a cascade. The
nonlinear path is a cascade combination of a bandpass func-
tion, a compression function, a second bandpass function,
and a low pass function. The third linear path includes a
linear, low-gain, all-pass filter.The output of the system is the
sum of outputs of the three signal-processing paths.

Each individual bandpass function is a cascade of two
or more gammatone filters [51] with unit gain at center fre-
quency (CF). The low pass function consists of second-order
low pass filters. In the nonlinear path, the CFs and band-
widths (BW) of the two sets of gammatone filters are the
same. In addition, the shape of the compressive function in
the nonlinear path is chosen based on animal data and can be
defined as

𝑦 [𝑡] = SIGN (𝑥 [𝑡]) ×MIN (𝑎 |𝑥 [𝑡]| , 𝑏 |𝑥 [𝑡]|
𝑐

) , (1)

where 𝑥(𝑡) is the output of the first filter in the nonlinear path.
𝑎, 𝑏, and 𝑐 are parameters of the model. The values for these
parameters are summarized in Table 1.

2.2. Basilar Membrane Velocity Based Fatigue Models. In this
study, two fatigue models, the 𝑆-𝑁 curve based EVL model
and the Miner rule based CVL model, are proposed to
calculate noise induced cumulative hazard, denoted by the
number of fatigue cycles.

2.2.1. Equivalent Velocity Level Model. The EVL model is
proposed based on the 𝑆-𝑁 curve. In this model, the BM
velocities, which are regarded as stresses (“𝑆”), correspond
to the hearing damage, which can be quantitatively denoted
by numbers of cycles (“𝑁”) that cause the functional failure
of hair cells. Assuming that hearing loss level of a deaf ear



4 Computational and Mathematical Methods in Medicine

G
ai

n 
(d

B)

Frequency (Hz)

20

15

10

5

0
102 103 104

(a)

Frequency (Hz)

10−3

10−4

10−5

102 103 104

|S
V

TF
|

(m
/s

/P
a)

(b)

Figure 2: (a) The gain of the external ear and (b) the transfer function of the middle ear of chinchilla.

Table 1: Parameters of the TRNL algorithm used for the simulation of chinchilla’s inner ear [28].

800Hz 5500Hz 7250Hz 9750Hz 10000Hz 12000Hz 14000Hz
Linear

Gammatone cascade 5 5 5 5 5 5 5
Low pass cascade 7 7 7 7 7 7 7
CFlin 750 5000 7400 9000 9000 11000 13000
BWlin 450 3000 2500 3000 3500 5000 4000
LPlin 750 6000 7400 9000 8800 12000 13500
Gain, 𝑔 500 190 3000 300 500 500 350

Nonlinear
Gammatone cascade 3 3 3 3 3 3 3
Low pass cascade 4 4 4 4 4 4 4
CFlin 730 5850 7800 9800 10000 12000 15000
BWlin 350 1800 2275 1650 1800 2000 3200
LPnl 730 5850 7800 9800 10000 12000 15000
Gain, 𝑎 850 3000 15000 9000 15000 22500 3000
Gain, 𝑏 0.03 0.04 0.06 0.05 0.06 0.07 0.045
Exponent, 𝑐 0.25 0.25 0.25 0.25 0.25 0.25 0.25

Linear all-pass
Gain, 𝑘 10 0.4 20 1 2 20 20

is 1 and the hearing loss level of a normal ear is 0, we can
quantitatively describe the degree of hearing loss in Δ𝑡 as

𝐻
𝑉(𝑡),Δ𝑡

=

∫
Δ𝑡

𝑉 (𝑡) 𝑑𝑁 (𝑡)

𝐻
0

, (2)

where 𝑉(𝑡) and 𝑁(𝑡) are the velocity and corresponding
failure cycles at time 𝑡, respectively. Considering that it takes
long time to produce GDHL, the 𝑆-𝑁 curve used in this study
can be considered as a linear approximation. Accordingly,
𝐻
0

= 𝑉
0
𝑁
0
represents the total hearing loss and can be

normalized as 1. Furthermore, supposing that the hearing
damage is calculated in unit time period, which means that
𝑑𝑁(𝑡) = 1, and assuming that the negative velocity produces

the same level hazard as the positive velocity, 𝐻
𝑉(𝑡),Δ𝑡

in (2)
can be transformed as

𝐻
𝑉(𝑡),Δ𝑡

= ∑

Δ𝑡

𝑉
2

(𝑡) . (3)

Thus, the EVL model can be defined as

𝐿
𝑖,EVL = 10 ∗ log

10
(

∑
𝑗
𝑉 (𝑖, 𝑗)

2

𝑉
2

0

) ,

𝐿
𝐼,EVL = 10 ∗ log

10
(

∑
𝑖⊂𝐼

∑
𝑗
𝑉 (𝑖, 𝑗)

2

𝑉
2

0

) ,

(4)
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Figure 3: Schematic diagram of the TRNL filter, in which the
velocities of stapes in middle ear are passed through three parallel
branches to obtain the velocities of BM.

where𝑉(𝑖, 𝑗) refers to the velocity of the 𝑖th ERB band of BM
at time 𝑗. The constant 𝑉

0
is the BM velocity located at the

ERBwith 1 kHz center frequency. To characterize the auditory
system, ERB based frequency band physically corresponds
to the space ERB distance of BM [52]. 𝐿

𝑖,EVL reflects the
integration of hearing loss level at the 𝑖th ERB temporally.
Comparatively, 𝐿

𝐼,EVL is the hearing loss level in frequency
band 𝐼, in which several ERBs might be included. Based on
the EVL model, the concept described in (4) can be used to
assess the auditory risk of hazard caused by the vibration of
BM, which leads to hearing loss.

2.2.2. Complex Velocity Level Model. The CVL model is
designed based on theMiner rule, which has been commonly
used to predict high-cycle fatigue life. In the EVL model,
the transition of adjacent stimulus is not accounted for
because the loads in the 𝑆-𝑁 curve are generated as sinusoidal
functions with single frequency. In practice, occupational
noise should be considered as complex and often random
loads. Obviously, the transition between two adjacent loads
can cause more serious NIHL than two individual loads.
Therefore, both the amplitude and the transition of loads
could significantly affect the life cycle in a fatigue model.
The Miner rule includes 𝑆-𝑁 relation and also incorporates
a new parameter defined as the mean of adjacent loads. For
instance, supposing that two adjacent loads with V(𝑡) = 5

and V(𝑡 + 1) = −6, they will only be characterized according
to their amplitudes as 5 and 6 under the 𝑆-𝑁 circumstance.

In contrast, in the Miner rule, they can be characterized
according to both the amplitude and the mean value of the
two loads, regarded as |(V(𝑡) + V(𝑡 + 1))/2|, which will be
applied to assess the corresponding damage. In order to
obtain the amplitude and mean value distribution of the
input, rainflow counting algorithm is developed, which is
used to reduce a spectrumof varying stress into a set of simple
stress reversals [53]. The concept of the Miner rule based on
rainflow algorithm has been illustrated in Figure 4.

As shown in Figure 4, the histogram of loads with
different amplitudes andmean values are obtained at 𝑖th ERB
in certain time duration and can be described as

𝐵(
V
1

𝑉
1

+
V
2

𝑉
2

+ ⋅ ⋅ ⋅ +
V
𝑘

𝑉
𝑘

) = 1, (5)

where 𝐵 is a constant and can be treated as unit. V
𝑘
is the

number of cycles of load in 𝑘th category with a 𝑉
𝑘
failure

cycles.Thenumber of categories is defined as𝐾 = 𝑁Amplitude∗
𝑁Mean, where𝑁Amplitude and𝑁Mean are the length of the 𝑥-axis
and 𝑦-axis in Figure 4. Based on the histogram of complex
loads (i.e., velocities), with respect to both amplitudes and
mean values, the hearing loss 𝐻

𝑖,CVL is the integration of
different types of inputs along time axis as follows:

𝐻
𝑖,CVL = ∑

𝑗

⊂𝐾

𝑁
𝑗
 ∗ 𝐴 (𝑖, 𝑗



) ∗ 𝑀(𝑖, 𝑗


) , (6)

where 𝐴(𝑖, 𝑗


) is the amplitude of velocity and 𝑀(𝑖, 𝑗


) is the
mean value of the adjacent velocities. Based on the 𝑖th ERB
hearing loss𝐻

𝑖,CVL, CVL can be obtained:

𝐿
𝑖,CVL = 10 ∗ log

10
(
𝐻
2

𝑖,CVL

𝐻
2

0

) ,

𝐿
𝐼,𝐶𝑉𝐿

= 10 ∗ log
10

(
∑
𝑖⊂𝐼

𝐻
2

𝑖,CVL

𝐻
2

0

) ,

(7)

where𝐻
0
is the hearing loss at the ERBwith 1 kHz CF. Similar

to the EVL model, 𝐿
𝑖,CVL and 𝐿

𝐼,CVL are the log scale metrics
of hearing loss at 𝑖th ERB and 𝐼 frequency band.

2.3. Experimental Data. A series of the animal experimental
data were used for effectiveness validation of the proposed
fatigue models. The animal data were provided by the
research group at State University of New York at Plattsburgh
and were used in published animal noise exposure experi-
ments [54, 55]. 22 noise samples were designed, including 3
Gaussian continuous noises with 90, 95, and 100 dBA, res-
pectively, and 19 complex noises (one at 95 dBA, two at
90 dBA, and 16 at 100 dBA). The complex noises were gen-
erated by combining different forms of impulse noise with
a Gaussian continuous noise [54, 55]. The digitally recorded
noise samples (320 sec for each noise sample), which have
been applied in the animal exposure experiments [56], are
used for noise analysis in this study.

Detailed descriptions of the noise data and experimental
protocols of animal studies are available in various publica-
tions [54, 55]. In the animal noise exposure experiments, 273



6 Computational and Mathematical Methods in Medicine

N
um

be
r o

f c
yc

le
s

Mean
Amplitude

30

20

10

0

0

−10

−20

−30

−40

80
60

40

20

Figure 4: Rainflow matrix of BM velocities at the 𝑖th ERB in 1 second.

chinchillas in 22 groups were exposed to 22 different noises
in five consecutive days and 24 hours per day and then were
allowed to recover for 30 days. Auditory evoked potential
(AEP) before exposure (PRE), auditory evoked potential after
exposure (TS0), and auditory evoked potential after 30 days
after exposure (TS30) were measured at 0.5, 1, 2, 4, 8, and
16 kHz for each animal. Both permanent threshold shift (PTS)
and temporary threshold shift (TTS) were determined based
on the AEP data. From the perspective of physical damage,
percentage of outer hair cell loss (%OHC) and percentage of
inner hair cell loss (%IHC) were also obtained. In addition, to
assess the hearing loss in whole frequency band, the averaged
effective PTS has been proposed as PTS

1248
= (1/4)(PTS

1
+

PTS
2
+ PTS

4
+ PTS

8
), where PTS

1
, PTS
2
, PTS
4
, and PTS

8

are the PTS values measured at the one-octave band with
center frequencies 1, 2, 4, and 8 kHz, respectively. The same
rule is applied to TTS to obtain TTS

1248
. Table 2 summarized

the 𝐿Aeq of 22 different noise samples and OHC and IHC
(at six different one-octave bands) of animals in each group
corresponding to the noise sample.

3. Results and Discussions

3.1. BM Velocities Distribution in Chinchilla Cochlea

3.1.1. BM Velocities Distribution Obtained by the TRNL Filter.
The distribution of BM velocities is obtained by the TRNL
filter (as shown in Figure 3). In this section, two noise signals,
referred as impulse noise and sweeping chirp noise, were
simulated and fed into the TRNL filter to demonstrate the
response of BM in the cochlea [38]. Figure 5 shows the time-
frequency (𝑇-𝐹) distributions of the BM velocities in the
cochlea as the output of the TRNL filter, responding to the
simulated noises. The frequency axis labeled as the locations
along the BM, which refers to the partitions in the cochlea.
Each partition works as a bandpass filter, which can be
represented by the ERBs with different CFs. The highest CF
is at the base of the cochlea, and CFs decrease from the base
to the apex of the cochlea [17].

BM velocity responding to the simulated impulse noise
(the Dirac delta function) is shown in Figure 5(a). Along with
the BM, from base to apex of the cochlea (high frequency
ranges to low frequency ranges), the amplitudes of BM
velocities are decreasing and the pulse duration of the velocity
waveform becomes longer. The amplitudes of BM velocities
at different locations can reflect the gains of local filters in the
cochlea. Results indicate that the TRNL filter can accurately
simulate the motion of the BM in chinchilla’s cochlea.

Furthermore, two chirp noise signals in different fre-
quency bands were simulated and applied to the TRNL filter
to validate the BMmotion responding to different frequency
components. Figures 5(b) and 5(c) show the BM velocities
responding to sweep chirp signals at low (400–500Hz) and
high frequency bands (8000–12000Hz), respectively. It can
be found that the distribution of BMvelocities correlatedwith
the input signals very well. The BM velocities concentrate
at the low frequency range (400–500Hz) as response to the
low frequency signal in Figure 5(b). In contrast, the BM
velocities focus at high frequency range (8000–12000Hz) as
response to the high frequency signal in Figure 5(c). The
results demonstrate that the TRNL filter accurately catches
both time and frequency features of the simulated signals.

3.1.2. BM Velocities Distribution Obtained by the Chinchilla
Auditory Model. Two experimental noise samples (i.e., G63
and G61) were used as inputs to validate the developed chin-
chilla auditory model, including the consecutive external-
middle ear and the inner ear. Figure 6 shows theBMvelocities
distribution in the𝑇-𝐹 domain as the output of the developed
chinchilla auditory model. The noise sample G63, as shown
in the insert figure in Figure 6(a), simulates a local impulsive
noise, while the sample G61, as shown in the insert figure in
Figure 6(b), is a typical Gaussian continuous noise.

As shown in the front views in Figures 6(a) and 6(b),
the distributions of the BM velocities along the time axis
can accurately reflect the waveform of the original noise sig-
nals. It indicates that the developed chinchilla auditorymodel
works well on transferring the acoustic pressure to the
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Table 2: OHC and IHC loss at different center frequencies of one-octave bands for different noise exposures.

Samples 𝐿Aeq
OHC IHC

0.5 kHz 1 kHz 2 kHz 4 kHz 8 kHz 16 kHz 0.5 kHz 1 kHz 2 kHz 4 kHz 8 kHz 16 kHz
G44 100.6 20.8 38.1 67.9 67.5 62.7 42.7 1.6 5.6 22.8 21 22.7 6.9
G49 101 43.8 54.6 78.3 93.1 79.3 71.7 2.1 4.6 24.8 63.9 29.5 26.7
G50 100.5 11.8 21.7 15 12.7 28 25.6 0.7 2.6 2 4.7 12.3 10.7
G51 100.1 32.6 30.9 43.9 49.7 27 13.8 3.1 6.6 9.6 21.2 5 4
G52 101.7 39.1 40.8 64.7 66.3 41 20.5 3.4 6.8 18.8 35.6 7.6 6.9
G53 100.6 27.8 39.3 50.7 67.6 49.9 32.1 1 4 7.5 23.3 14.2 5
G54 100.6 21 23.7 60.4 69.9 35.1 17.8 1.1 1.8 22.1 22.7 11.9 9.4
G55 100.1 40.7 36.4 55.5 80.4 89.9 80.5 6.7 9.7 7.8 28.3 75.2 38.9
G60 100.2 35 34.2 54.1 72.4 47.5 29.5 2.1 2.4 22.6 32.1 11.3 12.3
G61 99.6 7.9 5.6 4.6 9.9 14.3 17.2 0.2 0.2 0.2 2.8 2.6 8.1
G63 99.6 35.6 50.1 65.8 75.6 42.3 36.1 5.1 17.3 26.2 26.2 10.2 11
G64 101.1 15.6 11.3 25.7 50.8 16 14.5 0.6 0.6 3.4 16.7 6.1 9.1
G65 99.7 24 16.7 25.1 71.3 90 46.7 1.5 1.8 1.4 15.4 61.6 22.9
G66 100.7 21.3 11.2 12.9 60.5 82.7 37.9 0.8 1 0.6 12.9 56.2 16.5
G68 99.7 22.8 22.4 30.5 70.4 89.9 58.9 1 1.6 7.7 23.8 52.3 15.9
G69 101 12.6 17.1 11.6 7.4 12.6 11.6 0.1 0.2 2.7 2.8 5.5 4.5
G70 100.7 23.4 19.9 52.2 89.6 46.1 38 0.7 0.9 8.8 50.7 18 16.4
G47 89.4 3.8 2.8 6.2 3.7 17 20.7 0.3 2.2 2.8 3.9 8.9 4
G48 91.7 5.9 4.6 2.5 5.8 9.7 15 0.4 0.4 1.5 2.7 4.6 9.5
G56 91.3 9 3.7 1.9 3.3 8.3 6.9 0.3 0.7 0.7 0.4 3.3 1.7
G57 94.2 28 24.2 15.7 10.2 13 16.7 0.4 0.6 2.5 3.2 5 11.6
G58 95.6 12.3 5.6 12.9 34.1 16.1 12.4 1 0.6 2.6 11 5.8 4.8
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Figure 5: Time-frequency presentations of BM velocities as the output of the TRNL filter, responding to (a) impulsive noise, (b) sweeping
chirp noise at low frequency (400–500Hz), and (c) sweeping chirp noise at high frequency (8000–12000Hz). The labels of frequency axis
indicate the different locations along BM, which refer to the partitions in cochlea.
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Figure 6: Time-frequency presentations of the BM velocities obtained by the developed chinchilla auditory model, responding to two
experimental noise samples: (a) G63 and (b) G61. The partial waveforms of G63 and G61 in 0.5 sec are shown in the top insert figures. The
front views of the distributions of the BM velocities are shown in the bottom insert figures.

BM velocities. In addition, along the frequency axis, the
distributions of the BM velocities are concentrated in the
high frequency bands.TheBMvelocities in the low frequency
bands are significantly reduced. This is caused by the gain of
transfer function of the external ear of chinchilla (as shown
in Figure 2(a)), which demonstrates a strong decayed gain at
low frequency range.

As shown in Figures 5 and 6, the BM velocities can
be both positive and negative, which reflect the direction
of movements of BM. When BM vibrates up and down,
its movements cause stretching and squeezing against hair
cells in cochlea, respectively. Both stretching and squeezing
motions could damage hair cells.

3.2. Validation of the Developed EVL and CVL Fatigue Models
Using Animal Data. Thecorrelations of the developed fatigue
metrics (i.e., 𝐿EVL and 𝐿CVL) andNIHL (hearing loss indices)
can be evaluated by applying the linear regression analysis as
described in [57]. A single-variable regression analysis form
is used as an for example,

PTSLoss = 𝑐
0
+ 𝑐
1
𝐿metric + 𝜖, (8)

where 𝜖 is the error to be minimized and 𝐿metric refers to
the proposed fatigue metrics. The expressions of other three
hearing loss indices are the same as PTSLoss in (8).

3.2.1. Linear Regression Analysis at Six One-Octave Bands.
The linear regression analysis of the two developed fatigue
metrics and four hearing loss indications (i.e., OHC loss, IHC
loss, PTS, and TTS) at six one-octave frequency bands has
been conducted using all 22 groups of experimental data.
Figure 7 shows the fitting lines and scattering plots of the
pairs of the metrics and the hearing loss indices. Both 𝐿EVL
and 𝐿CVL are calculated using a 40 sec time window. Each
symbol in Figure 7 refers to a pair of a fatigue metric and an
animal hearing loss index.The lines indicate the fitting results
of the distributions of symbols. Six one-octave frequency
bands centered at 0.5, 1, 2, 4, 8, and 16 kHz cover the whole
frequency range of the BM. It can be found in Figure 7 that the
magnitudes of bothmetrics and amplitudes of all four hearing

loss indices in the high frequency bands (2, 4, and 8 kHz) are
larger than the corresponding values in the low frequency
bands (0.5 and 1 kHz). In addition, as shown in Figure 6,
the amplitudes of BM velocities in the high frequency bands
are greater than that in the low frequency bands. The higher
BM velocity reflects stronger vibration of the BM, which
eventually lead to more hearing loss in the cochlea. The
results indicate that both EVL andCVLmodels can reflect the
BM motion stimulated by noise and accurately predict noise
induced hearing loss in chinchilla.

Moreover, the 𝑟
2 value is used to reveal the linear

correlation between two variables. 𝑟2 = 1 indicates a perfect
correlation and 𝑟

2

= 0 indicates no correlation between the
fatiguemodels andNIHL.The values of 𝑟2 are summarized in
Table 3. In Table 4, the 𝑟2 values at 2, 4, and 8 kHz are higher
than these values at 0.5 and 1 kHz. It means that both 𝐿EVL
and 𝐿CVL have strong correlations with hearing loss indices
at frequency bands centered at 2, 4, and 8 kHz. In contrast,
the metrics demonstrate weak correlations with hearing loss
indices at low frequency bands, for example, 0.5 and 1 kHz.
The results are consistant with Figure 7. In addition, both
𝐿EVL and 𝐿CVL show the highest correlations with TTS than
other three hearing loss indices (i.e., IHC loss, OHC loss, and
PTS) at all frequency bands. TTS refers to the instant hearing
loss immediately after a noise exposure, while the PTS is
the permanent hearing loss after noise exposure and certain
recovery time [33]. TTS directly reflects themechanical dam-
age caused by noise exposure. The developed fatigue models
are based on the BM velocity, which reflects the mechanical
vibration of BM in cochlea. Therefore, it is reasonable that
the proposed fatigue metrics have highest correlations with
TTS. One can also find that OHC loss has higher correlation
with fatigue metrics than IHC loss. It indicates that OHC loss
has more association with a mechanical fatigue phenomenon
than IHC loss. As shown in Table 3, most of 𝑝 values of
linear regressions are lower than 0.05.There are eight𝑝 values
higher than 0.05, including 𝐿EVL-OHC at 0.5 kHz, 𝐿EVL-IHC
at 0.5, 1, 8, and 16 kHz, 𝐿CVL-IHC at 0.5 and 1 kHz, and 𝐿EVL-
PTS at 0.5 kHz. The results indicate that most of the linear
regressions are statistically significant.
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Table 3: Regression analysis at six one-octave bands centered at 0.5, 1, 2, 4, 8, and 16 kHz.

𝑟
2/𝑝 0.5 kHz 1 kHz 2 kHz 4 kHz 8 kHz 16 kHz
𝐿EVL-OHC 0.22/0.08 0.18/0.04 0.48/<0.001 0.56/<0.001 0.28/0.01 0.18/0.05
𝐿CVL-OHC 0.26/0.01 0.26/0.01 0.69/<0.001 0.71/<0.001 0.48/<0.001 0.27/0.01
𝐿EVL-IHC 0.21/0.16 0.16/0.07 0.56/0.007 0.47/<0.001 0.14/0.08 0.24/0.12
𝐿CVL-IHC 0.25/0.06 0.20/0.06 0.54/0.01 0.56/<0.001 0.22/0.02 0.27/0.04
𝐿EVL-PTS 0.13/0.11 0.28/0.009 0.52/<0.001 0.58/<0.001 0.40/0.002 0.57/0.001
𝐿CVL-PTS 0.25/0.01 0.41/0.001 0.77/<0.001 0.71/<0.001 0.52/<0.001 0.65/0.001
𝐿EVL-TTS 0.39/0.003 0.53/<0.001 0.70/<0.001 0.71/<0.001 0.68/<0.001 0.58/<0.001
𝐿CVL-TTS 0.57/<0.001 0.65/<0.001 0.81/<0.001 0.76/<0.001 0.72/<0.001 0.79/<0.001
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Figure 7: Scattering plots and fitting lines of pairs of the developed fatiguemetrics, 𝐿EVL (black color) and 𝐿CVL (blue color), and four hearing
loss indications (i.e., OHC loss, IHC loss, TTS, and PTS) at six one-octave frequency bands, averaged by all 22 groups of animal experimental
data. The 𝑝 values have been summarized in Table 3.

3.2.2. Linear RegressionAnalysis at Averaged Frequency Bands.
To further evaluate the effectiveness of the proposed fatigue
metrics onNIHL prediction, hearing loss indices averaged by
the one-octave bands centered at 1, 2, 4, and 8 kHz, including
IHC
1248

loss, OHC
1248

loss, TTS
1248

, and PTS
1248

, were used
for the regression analysis. Figure 8 shows the scattering plots
and the fitting lines of the pairs of the developed fatigue
metrics and IHC

1248
loss and OHC

1248
loss. It can be found

that OHC
1248

loss is larger than IHC
1248

loss, and both 𝐿EVL
and 𝐿CVL have stronger correlations with OHC

1248
loss than

with IHC
1248

loss. The scattering plots and the fitting lines
of the pairs of the developed fatigue metrics and TTS

1248

and PTS
1248

are shown in Figure 9. It can be found that both
metrics demonstrated stronger correlation with TTS

1248
than

with PTS
1248

.
The regression analysis results of the fatigue models and

four effective hearing loss indices are summarized in Table 4.
It confirms the observations in Figures 8 and 9. Overall,
both EVL and CVL models achieved high 𝑟

2 values with all
four effective hearing loss indices. This indicates that both
developed fatigue models have high correlations with the
chinchilla experimental hearing loss data. Specifically, the 𝑟

2

values between the fatiguemetrics and twomajor hearing loss
indices (TTS

1248
and PTS

1248
) are higher than 0.65, which is
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considerable high value in the regression analysis. Further,
all the 𝑝 values are lower than 0.001; consequentially the
linear regressions are statistically significant. It means that
the developed fatigue models can accurately predict NIHL in
chinchilla.

Moreover, one can also see that, in both Tables 3 and 4,
the CVL model has higher correlation with all four hearing
loss indices than the EVL model. One of the potential
explanations may be that most of the experimental noise
samples used in this study are complex noise with intense
transitions.The EVLmodel treats such kind of complex loads

as the summation of independent sinusoid loads (i.e., pure
tone) in frequency domain and neglects the strong transitions
of adjacent stimulus in the time domain. It may underes-
timate the hearing loss caused by the complex noise with
high kurtosis value. In contrast, the CVL model is designed
based on Miner’s rule, and it incorporates calculations on
the hearing loss caused by transitions of the complex loads.
Therefore, the analysis results demonstrate that the CVL
model canmore accurately predict the hearing loss caused by
highly transited complex noise than the EVL model. For low
kurtosis noise, or steady-state noise, transitions of adjacent
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Table 4: Regression analysis at spectrum [1 kHz–8 kHz].

Pair 𝑟
2

𝑝

𝐿EVL-OHC1248 0.59 3.4 × 10−5

𝐿CVL-OHC1248 0.66 4.7 × 10−6

𝐿EVL-IHC1248 0.43 9.5 × 10−4

𝐿CVL-IHC1248 0.51 2.0 × 10−4

𝐿EVL-PTS1248 0.63 1.0 × 10−5

𝐿CVL-PTS1248 0.69 1.6 × 10−6

𝐿EVL-TTS1248 0.82 5.8 × 10−9

𝐿CVL-TTS1248 0.82 7.4 × 10−9

loads are comparable with pure tone. Accordingly, both EVL
and CVL models can be applied to predict GDHL.

4. Conclusion

In this study, we developed two fatigue models (i.e., the EVL
and CVL models), which combined the high-cycle fatigue
model with the mammalian auditory model, to predict
GDHL. The high-cycle fatigue theory was used because
GDHL caused by occupational noise can be considered as
a long-time process of physical compression and stretching
of organ of Corti. The mammalian auditory model was
introduced by combining the TRNL filter with the transfer
function of the external-middle ear to accurately characterize
the vibration of BM. A series of animal noise exposure
data were used to validate the effectiveness of the developed
fatigue models. The regression analysis of fatigue models and
four hearing loss indices was conducted. Results showed that
both fatigue models have high correlations with animal hear-
ing loss data. It indicates that the developedmodels can accu-
rately predict the NIHL in chinchilla. In addition, the CVL
model demonstrated higher correlations with four hearing
loss indices than the EVL model. The CVL model would be
more accurate on the evaluation of the auditory risk of expo-
sure to hazardous occupational noise. In our future work, we
will develop fatigue based models for prediction of auditory
risk on human exposed to high-level occupational noise.
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