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A time-delayedmathematical model for tumor growth with the effect of periodic therapy is studied.The establishment of themodel
is based on the reaction-diffusion dynamics and mass conservation law and is considered with a time delay in cell proliferation
process. Sufficient conditions for the global stability of tumor free equilibrium are given.We also prove that if external concentration
of nutrients is large the tumor will not disappear and the conditions under which there exist periodic solutions to the model are
also determined. Results are illustrated by computer simulations.

1. Introduction

The process of tumor growth is one of the most intensively
studied processes in recent years. There have appeared many
papers devoted to develop mathematical models to describe
the process (see, e.g., [1–8]). Most of those models are based
on the reaction-diffusion equations and mass conservation
law.The process of tumor growth has several different stages,
starting from the very early stage of solid tumor without
necrotic core inside (see, e.g., [2, 9–12]) to the process of
necrotic core formation (see, e.g., [3, 13–15]). Experiments
suggest that changes in the proliferation rate can trigger
changes in apoptotic cell loss and that these changes do not
occur instantaneously: they are mediated by growth factors
expressed by the tumor cells (see [13]). Following this idea,
the study of time-delayed mathematical model for tumor
growth has drawn attention of some other researchers (see,
e.g., [6, 11, 16–18] and references cited therein).

At the beginning, we formulate the model. In the model
we assume that the tumor is nonnecrotic and consider two
unknown functions:

(i) 𝜎(𝑟, 𝑡): the nutrient concentration at radius 𝑟 and time
𝑡,

(ii) 𝑅(𝑡): the outer tumor radius at time 𝑡.

It is assumed that the consumption rate of nutrient is pro-
portional to the local nutrient concentration. Denoting by Γ
the coefficient of proportionality, then the changes of 𝜎 are
described by the following reaction-diffusion equation:

1

𝑟
2

𝜕

𝜕𝑟

(𝑟
2 𝜕𝜎

𝜕𝑟

) = Γ𝜎, 0 < 𝑟 < 𝑅 (𝑡) , 𝑡 > 0. (1)

The changes of 𝑅 are governed by the mass conservation law,
that is,

𝑑

𝑑𝑡

(

4𝜋𝑅
3

3

) = 𝑆 − 𝑄 − 𝑃, (2)

where 𝑆,𝑄, and𝑃 denote the net rates of proliferation, natural
apoptosis, and apoptosis caused by therapy, respectively. It
is reasonable to assume that the proliferation rate is pro-
portional to the local nutrient concentration. Denoting the
coefficient of proportionality by 𝑠, we obtain

𝑆 = 4𝜋∫

𝑅(𝑡−𝜏)

0

𝑠𝜎 (𝑟, 𝑡 − 𝜏) 𝑟
2
𝑑𝑟, (3)

where we denote by 𝜏 the time delay in cell proliferation; that
is, 𝜏 is the length of the period that a tumor cell undergoes
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a full process of mitosis. It is assumed that the apoptotic cell
loss occurs with a constant rate 𝑠�̃�, that is,

𝑄 = 4𝜋∫

𝑅(𝑡)

0

𝑠�̃�𝑟
2
𝑑𝑟. (4)

It is assumed that the cell apoptosis caused by the periodic
therapy occurs with a periodic rate 𝑠𝜆(𝑡), that is,

𝑃 = 4𝜋∫

𝑅(𝑡)

0

𝑠𝜆 (𝑡) 𝑟
2
𝑑𝑟, (5)

where 𝜆(𝑡) is a positive periodic function with period 𝜔. The
boundary conditions are as follows:

𝜕𝜎

𝜕𝑟

(0, 𝑡) = 0,

𝜎 (𝑅 (𝑡) , 𝑡) = 𝜎
∞
,

0 < 𝑟 < 𝑅 (𝑡) , 𝑡 > 0,

(6)

where the constant 𝜎
∞
denotes the external concentration of

nutrients.
Wewill consider (1)-(2) together with the following initial

condition:

𝑅 (𝑡) = 𝜑 (𝑡) , − 𝜏 ≤ 𝑡 ≤ 0. (7)

The idea of considering the effect of periodic therapy is
motivated by [17]. In [17], through experiments, the authors
observed that after an initial exponential growth phase
leading to tumor expansion, growth saturation is observed
even in the presence of periodically external condition. In
this paper, wemainly discuss how the periodic therapy affects
the growth of the avascular tumor. The model studied in
this paper is similar to the first model studied in [11] and
the model discussed in [19], but with some modifications.
In [11, 19], the authors only consider the special cases of the
model. In [11], the authors consider the case where 𝜆(𝑡) ≡ 0
and in [19], the author considers the case where 𝜏 = 0. In this
paper, we will consider the general model in which 𝜏 > 0 and
𝜆(𝑡) is a periodic function. It should be pointed out that the
methods used in [11, 19] are no longer applicable. In this paper,
by the fixed point index theorem, the conditions under which
there exist periodic solutions to the model are determined.
Using the comparison principle, sufficient conditions for the
global stability of tumor free equilibrium are given. Results
are illustrated by computer simulations.

2. Analytical Results

By rescaling the space variable we may assume that Γ = 1.
Accordingly, the solution to (1), (6) is

𝜎 (𝑟, 𝑡) =

𝜎
∞
𝑅 (𝑡)

sinh𝑅 (𝑡)
sinh 𝑟
𝑟

. (8)

Substituting (8) to (2), one can get
1

𝑠

𝑑𝑅

𝑑𝑡

= 𝑅 (𝑡) [𝜎
∞
𝑝 (𝑅 (𝑡 − 𝜏)) (

𝑅 (𝑡 − 𝜏)

𝑅 (𝑡)

)

3

−

�̃�

3

−

𝜆 (𝑡)

3

] ,

(9)

where

𝑝 (𝑥) =

𝑥 coth𝑥 − 1
𝑥
2

. (10)

Denote 𝑥 = 𝑅3 and assume that 𝑠 = 1 (if not one can rescale
coefficients 𝜎

∞
, �̃�, and 𝜆(𝑡)). Then (9) takes the form

𝑑𝑥

𝑑𝑡

= 3𝜎
∞
𝑓 (𝑥 (𝑡 − 𝜏)) − 𝛾 (𝑡) 𝑥 (𝑡) , (11)

where𝑓(𝑥) = 𝑥𝑝( 3√𝑥), 𝛾(𝑡) = �̃�+𝜆(𝑡). Accordingly, the initial
condition takes the following form:

𝑥
0
(𝑡) = 𝜑

3
(𝑡) , − 𝜏 ≤ 𝑡 ≤ 0. (12)

By the method of steps it is clear that the initial value
problem (11), (12) has a unique solution 𝑥(𝑡) which exists for
all 𝑡 ≥ 0, because we may rewrite this problem in the fol-
lowing functional form:

𝑥 (𝑡) = 𝑥
0
(0) 𝑒
−∫
𝑡

0
𝛾(𝑠)𝑑𝑠

+ 3𝜎
∞
𝑒
−∫
𝑡

0
𝛾(𝑠)𝑑𝑠

∫

𝑡

0

𝑒
∫
𝜉

0
𝛾(𝑠)𝑑𝑠

𝑓 (𝑥 (𝜉 − 𝜏)) 𝑑𝜉.

(13)

Since 𝑓(𝑥) ≥ 0 for all 𝑥 ≥ 0, then, by Theorem 1.1 [20],
we have the solution of problem (11), (12) being nonnegative
on the interval on which it exists.

In order to prove our results, we should use the following
Lemma from [11].

Lemma 1 (see [11]). Consider the initial value problem of a
delay differential equation:

�̇� (𝑡) = 𝑔 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏)) 𝑓𝑜𝑟 𝑡 > 0

𝑥 (𝑡) = 𝑥
0
(𝑡) 𝑓𝑜𝑟 − 𝜏 ≤ 𝑡 ≤ 0.

(14)

Assume that the function 𝑔 is defined and continuously dif-
ferentiable in 𝑅

+
× 𝑅
+
and strictly monotone increasing in the

second variable; we have the following results:

(1) If 𝑥
𝑠
is a positive solution of equation 𝑔(𝑥, 𝑥) = 0

such that 𝑔(𝑥, 𝑥) > 0 for 𝑥 less than but near 𝑥
𝑠
, 𝑔(𝑥,

𝑥) < 0 for 𝑥 greater than but near 𝑥
𝑠
. Let (𝑐, 𝑑) be the

maximal interval containing only the root 𝑥
𝑠
of equa-

tion 𝑔(𝑥, 𝑥) = 0. If 𝑥(𝑡) is the solution of the problem of
(14) and𝑥

0
(𝑡) ∈ 𝐶[−𝜏, 0], 𝑐 < 𝑥0(𝑡) < 𝑑 for−𝜏 ≤ 𝑡 ≤ 0.

Then

lim
𝑡→∞

𝑥 (𝑡) = 𝑥
𝑠
. (15)

(2) Assume further that 𝑔(𝑥, 𝑥) is negative for small 𝑥 >
0, and let 𝑏 be the first positive root of the equation
𝑔(𝑥, 𝑥) = 0 (if 𝑔(𝑥, 𝑥) < 0 for all 𝑥 > 0, then we define
𝑏 = ∞). If 𝑥

0
(𝑡) ∈ (0, 𝑏) for all −𝜏 ≤ 𝑡 ≤ 0 and the

solution to (14) exists for all 𝑡 ≥ −𝜏, then

lim
𝑡→∞

𝑥 (𝑡) = 0. (16)
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Lemma 2. (1) 𝑝(𝑥) is monotone decreasing for all 𝑥 > 0 and

lim
𝑥→0+

𝑝 (𝑥) =

1

3

,

lim
𝑥→+∞

𝑝 (𝑥) = 0.

(17)

(2) 𝑥3𝑝(𝑥) is monotone increasing for all 𝑥 > 0.

Proof. For (1) please see [12] and for (2) see [11]. This com-
pletes the proof.

In the following, we assume that 𝜆(𝑡) is a continuous
function on 𝑅. Denote

𝜆 =

1

𝜔

∫

𝜔

0

𝜆 (𝑡) 𝑑𝑡,

𝜆
∗
= max
0≤𝑡≤𝜔

𝜆 (𝑡) ,

𝜆
∗
= min
0≤𝑡≤𝜔

𝜆 (𝑡) > 0

(18)

and assume that 𝑠 = 1 (if not one can rescale coefficients 𝜎
∞
,

�̃�, and 𝜆(𝑡)).
By (11) and Lemma 2(1), we have

𝑑𝑥

𝑑𝑡

≤ [𝜎
∞
− 𝛾 (𝑡)] 𝑥 (𝑡) . (19)

It follows that when 𝜎
∞
< �̃�, cancer will be eliminated even

without therapy. This makes the analysis of the model with
therapy worthwhile only in the case where 𝜎

∞
> �̃�. Here and

hereafter, we assume that the condition 𝜎
∞
> �̃� holds.

Lemma 3. If 𝜆 ≡ 𝜆
0
, where 𝜆

0
is a positive constant, the

following assertions hold:

(1) If 𝜆
0
< 𝜎
∞
− �̃�, (11) has a unique positive stationary

point𝑥
𝑠
which is determined by𝑝( 3√𝑥) = (�̃�+𝜆

0
)/3𝜎
∞
.

If 𝜆
0
≥ 𝜎
∞
− �̃�, (11) has no positive stationary solution.

(2) If 𝜆
0
< 𝜎
∞
− �̃�, all solutions of (11) which are positive

in the initial interval [−𝜏, 0] exist for all 𝑡 ≥ −𝜏 and
converge to 𝑥

𝑠
as 𝑡 → ∞. If 𝜆

0
≥ 𝜎
∞
− �̃�, then all

solutions of (11) which are positive in [−𝜏, 0] also exist
for all 𝑡 ≥ −𝜏 and they converge to zero as 𝑡 → ∞.

Proof. (1) If 𝜆 ≡ 𝜆
0
, where 𝜆

0
is a positive constant, that is,

𝜆 = 𝜆
∗
= 𝜆
∗
= 𝜆
0
, then the stationary solutions of (11) satisfy

the following equation:

3𝜎
∞
𝑓 (𝑥) − [�̃� + 𝜆

0
] 𝑥 = 0; (20)

that is,

[3𝜎
∞
𝑝 (
3
√𝑥) − (�̃� + 𝜆

0
)] 𝑥 = 0. (21)

By Lemma 2(1), one can get the following assertions: if 𝜆
0
<

𝜎
∞
− �̃�, (11) has a unique positive stationary point 𝑥

𝑠
which

is determined by 𝑝( 3√𝑥) = (�̃� + 𝜆
0
)/3𝜎
∞
. If 𝜆
0
≥ 𝜎
∞
− �̃�, (11)

has no positive stationary solution.
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Figure 1: The diagram of 𝑥
𝑠
(𝜆
0
) = [𝑝

−1
((�̃� + 𝜆

0
)/3𝜎
∞
)]
3, where

𝜎
∞
= 5, and �̃� = 2.

(2) Set 𝑔(𝑥(𝑡), 𝑥(𝑡 − 𝜏)) = 3𝜎
∞
𝑓(𝑥(𝑡 − 𝜏)) − (�̃� + 𝜆

0
)𝑥(𝑡);

then 𝑔(𝑥, 𝑦) = 3𝜎
∞
𝑓(𝑦) − (�̃� + 𝜆

0
)𝑥. By simple computation

𝜕𝑔

𝜕𝑦

= 3𝜎
∞
𝑓

(𝑦) = 𝜎

∞
[3𝑝 (

3
√𝑦) +

3
√𝑦𝑝

(
3
√𝑦)] . (22)

From Lemma 2(2), we know

(𝑥
3
𝑝 (𝑥))



= 𝑥
2
[𝑝 (𝑥) + 𝑥𝑝


(𝑥)] > 0 (23)

for all 𝑥 > 0; it follows that 𝑝(𝑥) + 𝑥𝑝(𝑥) > 0 for all 𝑥 > 0.
Thus, 3𝑝( 3√𝑦) + 3√𝑦𝑝( 3√𝑦) > 0 for all 𝑦 > 0. Therefore, 𝑔 is
strictly monotone increasing in the second variable.

By monotonicity of the function 𝑝 and Lemma 3(1), we
can get the following: if 𝜆

0
< 𝜎
∞
− �̃�, then 𝑔(𝑥, 𝑥) > 0 for 𝑥 <

𝑥
𝑠
;𝑔(𝑥, 𝑥) < 0 for𝑥 > 𝑥

𝑠
. By Lemma 1(1), for any nonnegative

initial function 𝑥
0
(𝑡), the following holds:

lim
𝑡→∞

𝑥 (𝑡) = 𝑥
𝑠
. (24)

If 𝜆
0
≥ 𝜎
∞
−�̃�, we have 𝑔(𝑥, 𝑥) = 𝑥[3𝜎

∞
𝑝(
3
√𝑥)−(�̃�+𝜆

0
)] < 0

for all 𝑥 > 0.Then lim
𝑡→∞

𝑥(𝑡) = 0 follows from Lemma 1(2).
This completes the proof of Lemma 3.

In Figure 1, an example of the graph of 𝑥
𝑠
(𝜆
0
) is presented

which is covered by Lemma 3(1), where 𝜎
∞
= 5 and �̃� = 2.

Consider the following two equations:

𝑓
1
(𝑥) fl 3𝜎

∞
𝑓 (𝑥) − 𝛾

∗
𝑥 = [3𝜎

∞
𝑝 (
3
√𝑥) − 𝛾

∗
] 𝑥

= 0,

𝑓
2
(𝑥) fl 3𝜎

∞
𝑓 (𝑥) − 𝛾

∗
𝑥 = [3𝜎

∞
𝑝 (
3
√𝑥) − 𝛾

∗
] 𝑥

= 0,

(25)

where 𝛾∗ = �̃� + 𝜆∗, 𝛾
∗
= �̃� + 𝜆

∗
. If 𝜆∗ < 𝜎

∞
− �̃�, one can get

0 <

𝛾
∗

3𝜎
∞

≤

𝛾
∗

3𝜎
∞

<

1

3

. (26)
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By Lemma 1(1), we know that the function 𝑝 is monotone
decreasing and 0 < 𝑝(𝑦) < 1/3 for any 𝑦 > 0. Therefore,
the above two equations have a unique positive constant
solutions 𝑥

1
and 𝑥

2
, respectively; that is, there exists a unique

constant 𝑥
1
> 0 such that 𝑓

1
(𝑥
1
) = 0 and a unique constant

𝑥
2
> 0 such that𝑓

2
(𝑥
2
) = 0. By the fact that𝑝(𝑦) is monotone

decreasing for any 𝑦 > 0, we can get 𝑥
2
> 𝑥
1
> 0.

Theorem4. (i) If𝜆∗ < 𝜎
∞
−�̃�, then, for any nonnegative initial

function 𝑥(𝑡), there exists 𝑇 > 0 such that the unique solution
𝑥(𝑡) to (11), (12) satisfies 𝑥(𝑡) ∈ [𝑥

1
/2, 3𝑥

2
/2] for 𝑡 ≥ 𝑇.

(ii) If 𝜆
∗
≥ 𝜎
∞
− �̃�, then, for any nonnegative initial

function 𝑥(𝑡), the unique solution 𝑥(𝑡) to (11), (12) satisfies
lim
𝑡→∞

𝑥(𝑡) = 0.

Proof. (i) By (11), one can get

3𝜎
∞
𝑓 (𝑥 (𝑡 − 𝜏)) − (�̃� + 𝜆

∗
) 𝑥 (𝑡) ≤

𝑑𝑥

𝑑𝑡

≤ 3𝜎
∞
𝑓 (𝑥 (𝑡 − 𝜏)) − (�̃� + 𝜆

∗
) 𝑥 (𝑡) .

(27)

Consider the following initial value problem:

𝑑𝑥

𝑑𝑡

= 𝑔 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏)) ,

𝑥
0
(𝑡) = 𝜑

3
(𝑡) ,

− 𝜏 ≤ 𝑡 ≤ 0,

(28)

where𝑔(𝑥, 𝑦) = 3𝜎
∞
𝑓(𝑦)−(�̃�+𝜆

∗
)𝑥.With similar arguments

as that in Lemma 3(2), one can get 𝑔 strictly monotone
increasing in the second variable.

Since 𝑔(𝑥, 𝑥) = 𝑓
2
(𝑥) and

0 <

𝛾
∗

3𝜎
∞

≤

𝛾
∗

3𝜎
∞

<

1

3

, (29)

where𝑓
2
(𝑥) = 3𝜎

∞
𝑓(𝑥)−𝛾

∗
𝑥 = [3𝜎

∞
𝑝(
3
√𝑥)−𝛾

∗
]𝑥 as before,

𝛾
∗
= �̃� + 𝜆

∗, 𝛾
∗
= �̃� + 𝜆

∗
. By the fact that the function 𝑝(𝑥) is

monotone decreasing and 0 < 𝑝(𝑦) < 1/3 for any 𝑦 > 0, one
can get 𝑔(𝑥, 𝑥) = 𝑓

2
(𝑥) = 0 having a unique positive constant

solution 𝑥
𝑠
= 𝑥
2
, and 𝑔(𝑥, 𝑥) > 0 for 𝑥 < 𝑥

2
; 𝑔(𝑥, 𝑥) < 0

for 𝑥 > 𝑥
2
. By Lemma 1, we have, for any nonnegative initial

function 𝑥
0
(𝑡),

lim
𝑡→∞

𝑥 (𝑡) = 𝑥
2
. (30)

Similarly by considering the following initial value problem,

𝑑𝑥

𝑑𝑡

= 3𝜎
∞
𝑓 (𝑥 (𝑡 − 𝜏)) − (�̃� + 𝜆

∗
) 𝑥 (𝑡) ,

𝑥
0
(𝑡) = 𝜑

3
(𝑡) ,

− 𝜏 ≤ 𝑡 ≤ 0,

(31)

one can get, for any nonnegative initial function 𝑥
0
(𝑡),

lim
𝑡→∞

𝑥 (𝑡) = 𝑥
1
. (32)

By (30) and (32) and a comparison principle (cf. Lemma 3.1
in [11]), we can get that there exists𝑇 > 0 such that the unique
solution 𝑥(𝑡) to (11), (12) satisfies that 𝑥(𝑡) ∈ [𝑥

1
/2, 3𝑥

2
/2] for

𝑡 ≥ 𝑇.
(ii) The proof is similar to that of Lemma 3(2) by con-

sidering (28); we omit it here. This completes the proof of
Theorem 4.

Remark 5. Note that 𝑥
1
and 𝑥

2
are decreasing function of 𝜆∗

and 𝜆
∗
, respectively; one can easily get that when 𝜆∗ − 𝜆

∗

decreases, 3𝑥
2
/2 − 𝑥

1
/2 will decrease; that is, the interval

[𝑥
1
/2, 3𝑥

2
/2] will be reduced.

In the following, we will give some results that (11) admits
an oscillatory solution whose period matches that of 𝜆(𝑡).

Let

𝑋 = {𝑥 : 𝑥 ∈ 𝐶 (𝑅, 𝑅) , 𝑥 (𝑡 + 𝜔) = 𝑥 (𝑡)} , (33)

with the usual linear structure as well as the norm

‖𝑥‖ = sup
𝑡∈[0,𝜔]

|𝑥 (𝑡)| . (34)

Then𝑋 is a Banach space. Define

𝐾 = {𝑥 ∈ 𝑋 : 𝑥 (𝑡) ≥ 𝜅 ‖𝑥‖ , 𝑡 ∈ [0, 𝜔]} , (35)

where 𝜅 = 𝑒−∫
𝜔

0
(�̃�+𝜆(𝑡))𝑑𝑡

= 𝑒
−𝜔(�̃�+𝜆). Then 𝐾 is a cone in𝑋. By

(11), we have

𝑥 (𝑡) = 3𝜎
∞
∫

𝑡+𝜔

𝑡

𝐺 (𝑡, 𝑠) 𝑓 (𝑥 (𝑠 − 𝜏)) 𝑑𝑠, (36)

where 𝐺(𝑡, 𝑠) = 𝑒∫
𝑠

𝑡
𝛾(𝑢)𝑑𝑢

/(𝑒
∫
𝜔

0
𝛾(𝑢)𝑑𝑢

− 1) = 𝑒
∫
𝑠

𝑡
𝛾(𝑢)𝑑𝑢

/(𝑒
(�̃�+𝜆)𝜔

−

1) = 𝑒
∫
𝑠

𝑡
𝛾(𝑢)𝑑𝑢

/(𝜅
−1
− 1), 𝑠 ∈ [𝑡, 𝑡 + 𝜔].

It is easy to see that (11) admits oscillatory solutionswhose
period matches that of 𝜆(𝑡) if and only if (36) has 𝜔-periodic
solutions. Further, one can get

1

𝜅
−1
− 1

≤ 𝐺 (𝑡, 𝑠) ≤

𝜅
−1

𝜅
−1
− 1

, 𝑠 ∈ [𝑡, 𝑡 + 𝜔] ; (37)

that is,

𝜅

1 − 𝜅

≤ 𝐺 (𝑡, 𝑠) ≤

1

1 − 𝜅

, 𝑠 ∈ [𝑡, 𝑡 + 𝜔] . (38)

Define an operator 𝐴 : 𝑋 → 𝑋 by

(𝐴𝑥) (𝑡) = 3𝜎
∞
∫

𝑡+𝜔

𝑡

𝐺 (𝑡, 𝑠) 𝑓 (𝑥 (𝑠 − 𝜏)) 𝑑𝑠. (39)

Then the following assertions hold.

Lemma 6. (1) 𝐴(𝐾) ⊂ 𝐾 and 𝐴 : 𝑋 → 𝑋 is a completely con-
tinuous operator.

(2) If there exists 𝜀 > 0 such that𝑓(𝑥(𝑡)) ≤ 𝜀𝑥(𝑡) for 𝑥 ∈ 𝐾,
𝑡 ∈ [0, 𝜔], then

‖𝐴𝑥‖ ≤

3𝜀𝜎
∞
𝜔

1 − 𝜅

‖𝑥‖ . (40)
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Proof. (1) By direct computation, for 𝑥 ∈ 𝐾 ⊂ 𝑋,

(𝐴𝑥) (𝑡 + 𝜔) = 3𝜎
∞
∫

𝑡+2𝜔

𝑡+𝜔

𝐺 (𝑡, 𝑠) 𝑓 (𝑥 (𝑠 − 𝜏)) 𝑑𝑠

= 3𝜎
∞
∫

𝑡+𝜔

𝑡

𝐺 (𝑡 + 𝜔, 𝑠 + 𝜔) 𝑓 (𝑥 (𝑠 + 𝜔 − 𝜏)) 𝑑𝑠

= 3𝜎
∞
∫

𝑡+𝜔

𝑡

𝐺 (𝑡, 𝑠) 𝑓 (𝑥 (𝑠 − 𝜏)) 𝑑𝑠 = (𝐴𝑥) (𝑡) .

(41)

Moreover, for 𝑥 ∈ 𝐾 ⊂ 𝑋 and 𝑡 ∈ [0, 𝜔], one can get

(𝐴𝑥) (𝑡) = 3𝜎
∞
∫

𝑡+𝜔

𝑡

𝐺 (𝑡, 𝑠) 𝑓 (𝑥 (𝑠 − 𝜏)) 𝑑𝑠

≥

3𝜅𝜎
∞

1 − 𝜅

∫

𝜔

0

𝑓 (𝑥 (𝑠 − 𝜏)) 𝑑𝑠,

(𝐴𝑥) (𝑡) = 3𝜎
∞
∫

𝑡+𝜔

𝑡

𝐺 (𝑡, 𝑠) 𝑓 (𝑥 (𝑠 − 𝜏)) 𝑑𝑠

≤

3𝜎
∞

1 − 𝜅

∫

𝑡+𝜔

𝑡

𝑓 (𝑥 (𝑠 − 𝜏)) 𝑑𝑠

=

3𝜎
∞

1 − 𝜅

∫

𝜔

0

𝑓 (𝑥 (𝑠 − 𝜏)) 𝑑𝑠.

(42)

Subsequently,

‖(𝐴𝑥) (𝑡)‖ ≤

3𝜎
∞

1 − 𝜅

∫

𝑡+𝜔

𝑡

𝑓 (𝑥 (𝑠 − 𝜏)) 𝑑𝑠

=

3𝜎
∞

1 − 𝜅

∫

𝜔

0

𝑓 (𝑥 (𝑠 − 𝜏)) 𝑑𝑠.

(43)

Therefore, we can get

(𝐴𝑥) (𝑡) ≥

𝜅

1 − 𝜅

(1 − 𝜅) ‖𝐴𝑥‖ = 𝜅 ‖𝐴𝑥‖ . (44)

Hence 𝐴(𝐾) ⊂ 𝐾.
Next, we prove that 𝐴 : 𝑋 → 𝑋 is a compact operator.

Since

(𝐴𝑥) (𝑡) = 3𝜎
∞
∫

𝑡+𝜔

𝑡

𝐺 (𝑡, 𝑠) 𝑓 (𝑥 (𝑠 − 𝜏)) 𝑑𝑠

≤

3𝜎
∞

1 − 𝜅

∫

𝑡+𝜔

𝑡

𝑓 (𝑥 (𝑠 − 𝜏)) 𝑑𝑠

=

3𝜎
∞

1 − 𝜅

∫

𝜔

0

𝑓 (𝑥 (𝑠 − 𝜏)) 𝑑𝑠

=

3𝜎
∞

1 − 𝜅

∫

𝜔

0

𝑥 (𝑠 − 𝜏) 𝑝 (
3
√𝑥 (𝑠 − 𝜏)) 𝑑𝑠

≤

𝜎
∞

1 − 𝜅

∫

𝜔

0

𝑥 (𝑠 − 𝜏) 𝑑𝑠 ≤

𝜔𝜎
∞

1 − 𝜅

‖𝑥‖ ,

(45)

where we have used the fact 0 < 𝑝(𝑦) < 1/3, 𝑦 > 0, then
we can get that 𝐴 is uniformly bounded. Let 𝐹(𝑡) = ∫𝑡+𝜔

𝑡
𝐺(𝑡,

𝑠)𝑓(𝑥(𝑠 − 𝜏)). One can show that




𝐴 (𝑥) (𝑡

1
) − 𝐴 (𝑥) (𝑡

2
)





= 3𝜎
∞











∫

𝑡1+𝜔

𝑡1

𝐺 (𝑡
1
, 𝑠) 𝑓 (𝑥 (𝑠 − 𝜏)) 𝑑𝑠

− 3𝜎
∞
∫

𝑡2+𝜔

𝑡2

𝐺 (𝑡
2
, 𝑠) 𝑓 (𝑥 (𝑠 − 𝜏)) 𝑑𝑠











= 3𝜔𝜎
∞





𝐹 (𝑡
1
) − 𝐹 (𝑡

2
)




= 3𝜔𝜎

∞






𝐹

(𝜉)






⋅




𝑡
1

− 𝑡
2





,

(46)

where the mean value theorem has been used and

0 ≤ 𝐹

(𝜉) = [𝐺 (𝑡, 𝑡 + 𝜔) 𝑓 (𝑥 (𝑡 + 𝜔 − 𝜏))

− 𝐺 (𝑡, 𝑡) 𝑓 (𝑥 (𝑡 − 𝜏))

+ ∫

𝑡+𝜔

𝑡

𝐺


𝑡
(𝑡, 𝑠) 𝑓 (𝑥 (𝑠 − 𝜏)) 𝑑𝑠]

𝑡=𝜉

≤ [𝐺 (𝑡, 𝑡 + 𝜔) 𝑓 (𝑥 (𝑡 + 𝜔 − 𝜏))

+ ∫

𝑡+𝜔

𝑡

𝐺


𝑡
(𝑡, 𝑠) 𝑓 (𝑥 (𝑠 − 𝜏)) 𝑑𝑠]

𝑡=𝜉

.

(47)

Then






𝐹

(𝜉)






≤

1

3 (1 − 𝜅)

‖𝑥‖ +

𝛾
∗
𝜔

3 (1 − 𝜅)

‖𝑥‖

=

1 + 𝛾
∗
𝜔

3 (1 − 𝜅)

‖𝑥‖ .

(48)

It follows that




𝐴 (𝑥) (𝑡

1
) − 𝐴 (𝑥) (𝑡

2
)





≤

(1 + 𝛾
∗
𝜔)𝜔𝜎

∞

(1 − 𝜅)

‖𝑥‖ ⋅




𝑡
1
− 𝑡
2





.

(49)

Thus 𝐴 is equicontinuous. By Arzela-Ascoli theorem, it fol-
lows that 𝐴 : 𝑋 → 𝑋 is a compact operator. Therefore, it is a
completely continuous operator.

(2) If there exists 𝜀 > 0 such that 𝑓(𝑥(𝑡)) ≤ 𝜀𝑥(𝑡) for 𝑥 ∈
𝐾, 𝑡 ∈ [0, 𝜔], by definition of (𝐴𝑥)(𝑡), one can get

‖(𝐴𝑥) (𝑡)‖ =










3𝜎
∞
∫

𝑡+𝜔

𝑡

𝐺 (𝑡, 𝑠) 𝑓 (𝑥 (𝑠 − 𝜏)) 𝑑𝑠










≤










3𝜎
∞

1 − 𝜅

∫

𝜔

0

𝑓 (𝑥 (𝑠 − 𝜏)) 𝑑𝑠










≤










3𝜀𝜎
∞

1 − 𝜅

∫

𝜔

0

𝑥 (𝑠 − 𝜏) 𝑑𝑠










≤

3𝜀𝜎
∞
𝜔

1 − 𝜅

‖𝑥‖ .

(50)

This completes the proof.
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Lemma 7 (see [21–23]). Let 𝐸 be a Banach space and 𝐾 is a
cone in 𝐸. For 𝑟 > 0, Ω

𝑟
= {𝑥 ∈ 𝐾 : ‖𝑥‖ < 𝑟}. Assume that

𝐴 : Ω
𝑟
→ 𝐾 is completely continuous operator such that 𝐴𝑢 ̸=

𝑢 for 𝑢 ∈ 𝜕Ω
𝑟
= {𝑥 ∈ 𝐾 : ‖𝑥‖ = 𝑟}.Thenwe have the following:

(I) If ‖𝐴𝑢‖ ≥ 𝑢 for 𝑢 ∈ 𝜕Ω
𝑟
, then 𝑖(𝐴,Ω

𝑟
, 𝐾) = 0.

(II) If ‖𝐴𝑢‖ ≤ 𝑢 for 𝑢 ∈ 𝜕Ω
𝑟
, then 𝑖(𝐴,Ω

𝑟
, 𝐾) = 1.

𝑖(𝐴,Ω
𝑟
, 𝐾) is the fixed point index of 𝐴 on Ω

𝑟
with respect to

𝐾.

Theorem 8. Equation (11) has at least one positive 𝜔-periodic
solution for 𝜆∗ < 𝜎

∞
− �̃�.

Proof. From definition of operator 𝐴, we can see that (11)
admits oscillatory solutions whose period matches that of
𝜆(𝑡) (i.e., whose period is 𝜔) if and only if 𝐴 has fixed points.

For 𝑟 > 0, define Ω
𝑟
= {𝑥 ∈ 𝐾 : ‖𝑥‖ < 𝑟} and 𝜕Ω

𝑟
= {𝑥 ∈

𝐾 : ‖𝑥‖ = 𝑟}. If 𝑥 ∈ 𝜕Ω
𝑟
, let

𝛼 = 𝜎
∞

min
𝑡∈[0,𝜔]

∫

𝑡+𝜔

𝑡

𝐺 (𝑡, 𝑠) 𝑑𝑠. (51)

Since 𝜆∗ < 𝜎
∞
− �̃�, it follows that

𝛼 > min
𝑡∈[0,𝜔]

∫

𝑡+𝜔

𝑡

𝐺 (𝑡, 𝑠) 𝛾 (𝑠) 𝑑𝑠 = 1. (52)

By the fact lim
𝑢→0+

(𝑓(𝑢)/𝑢) = lim
𝑢→0+

𝑝(
3
√𝑢) = 1/3, we have

that there exists a positive constant 𝑟
1
such that

3𝑓 (𝑢) ≥

𝑢

𝛼

(53)

when 0 < 𝑢 ≤ 𝑟
1
. For 𝑥 ∈ 𝐾 with ‖𝑥‖ = 𝑟

1
, by definition of

operator 𝐴, we have

(𝐴𝑥) (𝑡) = 3𝜎
∞
∫

𝑡+𝜔

𝑡

𝐺 (𝑡, 𝑠) 𝑓 (𝑥 (𝑠 − 𝜏)) 𝑑𝑠

≥

𝑟𝜎
∞

𝛼

∫

𝑡+𝜔

𝑡

𝐺 (𝑡, 𝑠) 𝑑𝑠 =

𝑟𝜎
∞

𝛼

∫

𝜔

0

𝐺 (𝑡, 𝑠) 𝑑𝑠

≥ 𝑟
1
= ‖𝑥‖ .

(54)

Since

lim
𝑢→+∞

𝑓 (𝑢)

𝑢

= lim
𝑢→+∞

𝑝 (
3
√𝑢) = 0,

lim
𝑢→0+

𝑓 (𝑢)

𝑢

= lim
𝑢→0+

𝑝 (
3
√𝑢) =

1

3

,

(55)

there exists 0 < 𝑟
1
< 𝑟
2
such that 𝑓(𝑢) ≤ 𝜀𝑢 for 0 < 𝑢 ≤ 𝑟

2
.

Thus 𝑓(𝑥) ≤ 𝜀𝑥 for 𝑥 ∈ 𝜕Ω
𝑟2
and 𝑡 ∈ [0, 𝜔]. By Lemma 6(2),

we have

‖𝐴𝑥‖ ≤

3𝜀𝜎
∞
𝜔

1 − 𝜅

‖𝑥‖ < ‖𝑥‖ . (56)

It follows from Lemma 7 that

𝑖 (𝐴,Ω
𝑟1
, 𝐾) = 0,

𝑖 (𝐴,Ω
𝑟2
, 𝐾) = 1.

(57)
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Figure 2: An example of solution to (11) for 𝜎
∞
= 5, 𝛾(𝑡) = 4, 𝜏 = 1,

and 𝑥
0
= 2.

Thus it follows from additivity of the fixed point index that

𝑖 (𝐴,Ω
𝑟2
\ Ω
𝑟1
, 𝐾) = 1. (58)

Therefore, 𝐴 has at least one fixed point inΩ
𝑟2
\ Ω
𝑟1
which is

a positive 𝜔-periodic solution to (11) for 𝜆∗ < 𝜎
∞
− �̃�. This

completes the proof.

3. Computer Simulations and Conclusions

In this paper a mathematical model for a solid avascular
tumor growth under the effect periodic therapy with time
delays in proliferation is studied. The periodic therapy can
be interpreted as a treatment and 𝜆(𝑡) describes the rate of
cell apoptosis caused by the periodic therapy. We mainly
study how the periodic therapy influences the growth of
tumors. We have derived a sufficient condition for the global
stability of tumor free equilibrium and proved the existence
of a periodic solution under some conditions. We also prove
that if external concentration of nutrients is large the tumor
will not disappear and the condition under which there exist
periodic solutions to the model is determined. Hence, in
biology sense, the results have practical significance in terms
of determining the amount of drug required to eliminate the
tumor and tell us that the tumor may grow in a periodic way
under some conditions.

In [11, 19], the authors have studied the special cases of the
model. In [11], the authors consider the case when 𝜆(𝑡) ≡ 0,
and the results show that the tumor radius will tend to zero
or tend to a stationary version. In [19], the author considers
the case when 𝜏 = 0 and the result shows that the tumor
radius will tend to zero or tend to a periodic version. From
the analysis, we can see that the periodic therapy makes the
tumor growth more complicated.

By using Matlab 7.1, we present some examples of solu-
tions of (11) for different parameter values (see Figures 2–8).
For all simulations, the values used in simulations are given
with the figures’ captions.
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Figure 3: An example of solution to (11) for 𝜎
∞
= 5, 𝛾(𝑡) = 5.5,

𝜏 = 1, and 𝑥
0
= 2.
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Figure 4: An example of solution to (11) for 𝜎
∞
= 5, �̃� = 1, 𝛾(𝑡) =

2 + cos(𝑡), 𝜏 = 1, and 𝑥
0
= 2.
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Figure 5: An example of solution to (11) for 𝜎
∞
= 5, �̃� = 1, 𝛾(𝑡) =

6 + cos(𝑡), 𝜏 = 1, and 𝑥
0
= 2.
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Figure 6: An example of solution to (11) for 𝜎
∞
= 5, �̃� = 3, 𝜆(𝑡) =

1.5 + cos(𝑡), 𝜏 = 1, and 𝑥
0
= 2.6.
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Figure 7: An example of solution to (11) for 𝜎
∞
= 5, �̃� = 1.5, 𝜆(𝑡) =

1.5 + cos(𝑡), 𝜏 = 1, and 𝑥
0
= 2, 20, 50, respectively.
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Figure 8: An example of solution to (11) for 𝜎
∞
= 5, �̃� = 3, 𝜆(𝑡) =

1.5 + cos(𝑡), 𝜏 = 1, and 𝑥
0
= 2, 3, 5, respectively.
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In Figure 2, an example of the behaviour of solutions in
the case which is covered by Lemma 3(2) is presented. In
Figures 3 and 5, it occurs that, for various values of parame-
ters, the tumor will disappear. First (see Figure 3), an example
of the behaviour of solutions in the case which is covered by
Lemma 3(1) is presented. And then (see Figure 5), an example
of the behaviour of solutions in the case which is covered
by Theorem 4(ii) is presented. In Figure 4, an example of
the behaviour of solutions in the case which is covered by
Theorem 4(i) andTheorem 8 is given.

From Figure 6, we see that when 0.5 = 𝜆
∗
< 𝜎
∞
− �̃� =

2 < 𝜆
∗
= 2.5, there exists a periodic solution. We conjecture

that if 𝜆 < 𝜎
∞
− �̃�, there exists at least one periodic solution

to (11).
By Figures 7 and 8, we conjecture that the periodic

solution is unique (if it exists) since, under different initial
values, the solutions to (11) all tend to the periodic solution.

As being pointed out by a referee and we fully agree,
the numerical simulations have limitations. Since we have no
clinical data to compare with our results, the weaknesses of
the numerical simulations are that we cannot use realistic
parameter values to check whether the conditions for the
existence of periodic solutions are biologically feasible and
investigate (numerically) their amplitude. Further study on
questions pointed out above and how we interpret them is
needed.
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