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Pathological speech usually refers to speech distortion resulting from illness or other biological insults. The assessment of
pathological speech plays an important role in assisting the experts, while automatic evaluation of speech intelligibility is difficult
because it is usually nonstationary and mutational. In this paper, we carry out an independent innovation of feature extraction and
reduction, and we describe a multigranularity combined feature scheme which is optimized by the hierarchical visual method. A
novel method of generating feature set based on 𝑆-transform and chaotic analysis is proposed.There are BAFS (430, basic acoustics
feature), local spectral characteristics MSCC (84, Mel 𝑆-transform cepstrum coefficients), and chaotic features (12). Finally, radar
chart and 𝐹-score are proposed to optimize the features by the hierarchical visual fusion. The feature set could be optimized from
526 to 96 dimensions based on NKI-CCRT corpus and 104 dimensions based on SVD corpus.The experimental results denote that
new features by support vector machine (SVM) have the best performance, with a recognition rate of 84.4% on NKI-CCRT corpus
and 78.7% on SVD corpus. The proposed method is thus approved to be effective and reliable for pathological speech intelligibility
evaluation.

1. Introduction

Pathological speech usually refers to speech distortion result-
ing from illness or other physical biological insults to the
production system. It is difficult to evaluate pathological
speech intelligibility. Over the years, there has been consid-
erable interest in offering objective and automated schemes
to measure and classify pathological speech quality, hoping
that both improved accuracy and reliability in the processing
can be offered. Researchers have extensively studied the
different features of the pathological speech evaluation. Kim
et al. performed feature-level fusions and subsystem decision
fusions for the best classification performance (73.5% for
unweighted) on NKI-CCRT corpus [1]. Shama analyzed the
sustained vowels and extracted the HNR and the critical-
band energy spectrum to different pathological and healthy
voice [2]. Gelzinis et al. researched on diseases of the lar-
ynx and extracted the fundamental frequency, perturbation
coefficient, and linear prediction coefficient of pathological

speech features [3]. Zhou et al. extracted time-frequency
domain modulated characteristics to analyze pathological
voice; a recognition rate of 68.3% is achieved based on
NKI-CCRT corpus [4]. Arjmandi et al. extracted some
widely used long-time acoustic parameters, such as shim,
jitter, and HNR, to develop an automatic pathological voice
computerized system [5]. Previous studies indicate that the
voice change detection can be carried out by long-term
acoustic parameters; each individual voice utterance can be
quantified by a single vector. These long-time parameters are
generally calculated by averaging local time perturbations. In
our study, we describe an automatic intelligibility assessment
system which extracts information visualization features by
capturing the relation of feature of pathological speech. It
may require high-dimensional acoustic features in order
to capture the wide variability of sources and patterns in
pathological speech. Thus, the difference granularity level
pathological features are extracted; firstly, the common basic
acoustic features are extracted from vocal organ lesion; it
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is widely recognized that the acoustic signal itself contains
information about the vocal tract and the excitation wave-
form. Secondly, Mel frequency cepstral coefficients can be
estimated by using a nonparametric fast Fourier transform,
which are more dependent on high-pitched speech resulting
from loud or angry speaking styles [6]. Stock proposed 𝑆-
transform in 1996, which can be regarded as the combination
of wavelet transform and short time Fourier transform
[7]. Thus, we proposed MSCC (Mel 𝑆-transform cepstrum
coefficients) features to solve the problem of time-varying
dynamic pathological speech. However, pathologies speech
is a fairly complex task; some of these parameters are based
on an accurate estimation of the fundamental frequency.
More modern approaches have been devised; linear model
is not suitable to explain nonlinear characteristics. Thus,
thirdly, some of the authors have also proposed nonlinear
signal processing methods of the same task [8, 9]. Airflow
propagation through the human’s vocal tract is more likely
to follow the fluid dynamic rules which lead to nonlinear
models [10]; furthermore, chaos theory has been used as a
powerful tool to analyze nonlinear systems [11, 12].Therefore,
the three nonlinear chaotic features can be extracted, which
are the largest Lyapunov exponent, approximate entropy, and
Lempel-Ziv complexity [13]. Finally, we proposed a novel
hierarchical visual feature fusion method which is based on𝐹-score and radar chart to optimize features set and improve
system performance.

Section 2 describes a joint feature extraction process;
a novel MSCC feature is computed based on 𝑆-transform
and other common features are extracted. In Section 3, a
new optimization method of joint feature set is proposed
as a new method based on 𝐹-score and radar chart. In
Section 4, the lower-dimensional feature space will be even-
tually performed, and speech examples fromNKI-CCRT and
SVD corpus are considered [14]. MSCC is similar to MFCC.
We compare MSCC with MFCC, by means of 𝐹-score, to
distinguish the ability to reduce features between normal and
pathological voices in the experiments and compare the other
joint feature set. Finally, conclusions are drawn and future
directions are indicated in Section 5.

2. Multigranularity Pathological Speech
Feature Extraction

2.1. Basis Acoustic Feature. We observed that vocal organ
lesion speakers oftenhave difficulty in pronouncing a few spe-
cific sounds, which result in abnormal prosodic and intona-
tional shape. In order to reflect different aspects of patho-
logical speech, we applied the following features to capture
the differences between normal and pathological speech as
shown in Table 1.

Voice quality features, such as fundamental frequency
perturbation, shimmer, and harmonic noise ratio, are pop-
ularly used in vocal disorder assessment. Moreover, the rele-
vant characteristics of the spectrum shape change channels
(vocal tract) and vocal movement (articulator movements)
can accurately reflect the substantial voice disorders changes,
such as various polyps, cancer, and other sound systems [15].
There are a large number of studies mainly focused on the

Table 1: BAFS Feature Set Construction.

Types Feature Dimension

Prosodic features fundamental
frequency 15

Sound quality features
Jitter 15

shimmer 15
HNR 15

Related features based
on spectral

Spectral Centroid 10
Spectral Entropy 10
Spectral Flux 10

Spectral Asymmetry 10
Spectral Slope 10

Spectral Kurtosis 10
Spectral Roll-off 40

accurate measurement of the fundamental parameters of the
previous researches, such as fundamental frequency, jitter,
shimmer, amplitude perturbation quotient, pitch pertur-
bation quotient, harmonics-to-noise ratio, and normalized
noise energy. In this article, the long-time and short-time
430-dimensional acoustic parameters (basic acoustics feature
set, BAFS) are extracted according to the previous studies in
Table 1 [5].

2.2. Local Spectrum Feature Based on 𝑆-Transform (MSCC).
Pathological speech signal is nonstationary and mutational
in time-frequency domain; in this paper, MSCC is proposed
based on 𝑆-transform.

Let 𝑥(𝑡) denote continuous speech signal, where 𝑡 = 𝑛ΔT,ΔT is the sampling interval, and 𝑥(𝑡) sample sequence 𝑥[𝑛]
can be expressed as 𝑥[𝑛] = 𝑥(𝑛ΔT), 𝑛 = 0, 1, 2, . . . , 𝑁−1. The𝑥[𝑛] 𝑆-transform can learn from discrete Fourier transform
calculation. The 𝑥[𝑛] Fourier transform is

𝑋[𝑘] = 1𝑁
𝑁−1∑
𝑘=0

𝑥 [𝑛] 𝑒−2𝜋𝑗𝑘𝑛/𝑁, (1)

where 𝑘 = 0, 1 . . . , 𝑁 − 1.
The discrete 𝑆-transform 𝑥[𝑛] is computed by FFT:

𝑆 [ℎ, 𝑘] = 𝑁−1∑
𝑚=0

𝑋 [𝑚 + 𝑘] 𝑒(ℎ(2𝜋𝑚𝑗/𝑁)−2𝜋2𝑚2/𝑛2), 𝑘 ̸= 0,
𝑆 [ℎ, 0] = 1𝑁

𝑁−1∑
𝑚=0

𝑋[𝑚] , 𝑘 = 0,
(2)

where ℎ,𝑚 = 0, 1, 2, . . . , 𝑁 − 1.
The sampling sequence 𝑥[𝑛] of continuous signal 𝑥(𝑡) is

converted into the𝑁∗𝑁 complex time-frequency matrix by𝑆-transform from (2), in which the row corresponds to time
and the column corresponds to frequency.

MSCC is proposed based on 𝑆-transform, shown in
Figure 1; the 𝑆-transformmethod reflects the human auditory
Mel spectrum characters.
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Figure 1: MSCC extraction based on 𝑆-transform.

MSCC extraction process is as follows; 𝑥[𝑛] is the input,
and the output is 𝐶1, 𝐶2, . . . , 𝐶𝐿; FrameLen represents the
length of the frame.

(1) Framing: framing 𝑥[𝑛] in FrameLen.
(2) 𝑆-Transform: transform matrix S is got by 𝑆-

transform (2).
(3) Energy spectrum: energy spectra are obtained based

on step (2).
(4) Bandpass filter: the 26 filter banks are constructed.

Log energy is calculated for each time in each filter
bank:

𝑥󸀠 (ℎ,𝑚) = ln(𝑁−1∑
𝑘=0

|𝑆 [ℎ, 𝑘]|2𝐻𝑚 (𝑘)) , 0 ≤ 𝑚 < 𝑀, (3)

where 𝑆[ℎ, 𝑘] is spectrum by 𝑆-transform in ℎΔT,𝑥󸀠(ℎ,𝑚) is the 𝑚 filter output in ℎΔT, and 𝐻𝑚(𝑘) is
the frequency response of triangle filters.

(5) Discrete cosine transform (DCT): discrete time map-
ping cepstrum domain in the 𝐿MSCC coefficients is
got:

𝐶 (ℎ, 𝑛) = 𝑀∑
𝑚=1

𝑥󸀠 (ℎ,𝑚) cos(𝜋𝑛 (𝑚 − 0.5)𝑀 ) ,
1 ≤ 𝑛 ≤ 𝐿.

(4)

2.3. Chaotic Features (CF). The chaotic-based features are
presented in the previous sections, and anomalies in patho-
logical voices stem from malfunctions of some parts of the
voice production system. Speech signal has fractal charac-
teristics; chaotic phenomena can occur during speech pro-
duction when the vocal organ is within a lesion. Traditional
acoustic parameters are very effective to analyze cycle speech
signal, which have certain limitations on analyzing noncycle
and chaotic signals. Chaotic features provide useful infor-
mation on distinguishing normal and pathological voices.
Therefore, three nonlinear chaotic features (CF) can be
extracted, which are the largest Lyapunov exponent to mea-
sure the speech signal chaotic degree, approximate entropy
to measure speech signal complexity, and Lempel-Ziv com-
plexity which is another complexity index [16, 17], where
frame length is 50ms and frame shift is 30ms.

In this article, the largest Lyapunov exponent extraction
process as an example is introduced. In order to guarantee
the largest Lyapunov exponent reliability, the classic small
data set algorithm is used; we get 4 statistics (mean, variance,
skewness, and kurtosis), and the 526-dimensional feature set
was composed of 4 statistics and the other 522 features.

Pathological speech signal 𝑥(𝑡) = {𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝑁} is a
one-dimensional time series, where𝑁 is the total number of
time series; phase space is reconstructed as follows:

[[[[[[[

𝑋1𝑋2...𝑋𝑀

]]]]]]]
= [[[[[[[

𝑥1 𝑥1+𝜏 ⋅ ⋅ ⋅ 𝑥1+(𝑚−1)𝜏𝑥2 𝑥2+𝜏 ⋅ ⋅ ⋅ 𝑥2+(𝑚−1)𝜏... ... ... ...𝑥𝑀 𝑥𝑀+𝜏 ⋅ ⋅ ⋅ 𝑥𝑀+(𝑚−1)𝜏

]]]]]]]
, (5)

where 𝑚 is embedding dimension, 𝜏 is delay,𝑀 is the total
number of phase points, and𝑀 = 𝑁 − (𝑚 − 1) ∗ 𝜏.

The specific calculation steps of the small data set method
are as follows:

(1) Calculated time series averaging period 𝑝: the spec-
trum is obtained by the Fourier transform. The
corresponding frequency is got in the maximum
amplitude. This averaging period is the reciprocal of
the frequency.

(2) In the phase space 𝑋(𝑖), the nearest neighbor 𝑋(𝑗̂)
of 𝑋(𝑗) is found in the case of restrictions brief
separation:

𝑑𝑗 (0) = min
𝑗

󵄩󵄩󵄩󵄩󵄩𝑋 (𝑗) − 𝑋 (𝑗̂)󵄩󵄩󵄩󵄩󵄩 , 󵄨󵄨󵄨󵄨󵄨𝑗 − 𝑗̂󵄨󵄨󵄨󵄨󵄨 > 𝑝, (6)

where ‖ ⋅ ‖ represents two-norm value and 𝑝 is the
average period of time series.

(3) For each reference point, 𝑑𝑗(𝑖) is the distance between𝑋(𝑗) and𝑋(𝑗̂) in the 𝑖 discrete time:

𝑑𝑗 (𝑖) = 󵄩󵄩󵄩󵄩󵄩𝑋 (𝑗 + 𝑖) − 𝑋 (𝑗̂ + 𝑖)󵄩󵄩󵄩󵄩󵄩 ,
𝑖 = 1, 2, . . . ,min (𝑀 − 𝑗,𝑀 − 𝑗̂) . (7)

(4) The Lyapunov exponents represent the initial closed
orbit exponential divergence of phase space; it is
assumed that the exponential divergence 𝜆1 is got by
the reference point𝑋𝑗 and the nearest neighbor𝑋(𝑗̂);
then,

𝑑𝑗 (𝑖) = 𝑑𝑗 (0) 𝑒𝜆1(𝑖⋅Δ𝑡). (8)

Both sides of the equation were taken as the loga-
rithm:

ln 𝑑𝑗 (𝑖) = ln𝐶𝑗 + 𝜆1 (𝑖 ⋅ Δ𝑡) . (9)

As can be seen above, 𝑖 ∼ ln 𝑑𝑗(𝑖) meet the linear
relation of the slope 𝜆1Δ𝑡; thus,

𝑦 (𝑖) = 1𝑞Δ𝑡
𝑞∑
𝑗=1

ln 𝑑𝑗 (𝑖) , (10)

where 𝑞 is the number of nonzero 𝑑𝑗(𝑖) and Δ𝑡 is
sample sampling period.
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(5) Linear regression is done using the least square, and
the largest Lyapunov exponent 𝜆1 is the slope of this
line:

𝜆1 = ∑𝑖 𝑖 ⋅ 𝑦 (𝑖) − 𝑦∑𝑖 𝑖∑𝑖 𝑖2 − 𝑖∑𝑖 𝑖 . (11)

The 526-dimensional feature set is constructed by the
above three features’ extraction, which are BAFS (430),
MSCC (84), and CF (12).
3. Feature Optimization

A set of high-dimensional data is obtained after pathologi-
cal speech signal feature extraction. Visual techniques and
multi-information fusion idea are a high-dimensional data
reduction approach; at the same time, they depict the internal
structural relationship of features, which is beneficial to data
classification. Radar chart has good interaction, which is able
to reflect the trend of changes in a feature set and every
dimensional situation. In order to express the structural char-
acteristics among attributes, radar chart information visu-
alization graphical feature is extracted. According to radar
chart uniqueness theorem, radar chart must be unique if the
input feature is restricted to a specified alignment.Therefore,
the extraction of graph feature is closely related to the feature
order; we introduce 𝐹-score method to sort the features.

3.1. 𝐹-ScoreMeasure for Feature Sorting. 𝐹-score is a measure
to distinguish the two types of samples [16], given that the
training sample set 𝑥𝑘 ∈ 𝑅𝑚, 𝑘 = 1, 2, . . . , 𝑛, 𝑙 (𝑙 ≥ 2), is the
number of the sample category and 𝑛𝑗 is the sample number
in the 𝑗 class, 𝑗 = 1, 2, . . . , 𝑙. The 𝐹-score of 𝑖 is defined in the
training samples

𝐹𝑖 = ∑𝑙𝑗=1 (𝑥𝑗𝑖 − 𝑥𝑖)2∑𝑙𝑗=1 (1/ (𝑛𝑗 − 1))∑𝑛𝑗𝑘=1 (𝑥𝑗𝑘,𝑖 − 𝑥𝑗𝑖 )2 , (12)

where 𝑥𝑖 is the average of the first 𝑖 feature of the whole
training set, 𝑥𝑗𝑖 is the average of the first 𝑖 feature of the 𝑗 class,
and 𝑥𝑗

𝑘,𝑖
is the 𝑖 feature of the first 𝑘 sample data in 𝑗 class.

3.2. Radar Chart for Feature Fusion. Radar graphic informa-
tion is called graphical feature [17, 18]. Graphical features are
the radar map feature area, focus feature, adjacent amplitude
ratio, location characteristics, and zoning area ratio.The cen-
ter of radar is an important visual characteristic, which can
better respond to the internal relationship of each dimension
characteristic.

An𝑀-dimensional radar chart is constructed by sample
data 𝑟1, 𝑟2, . . . , 𝑟𝑖, . . . , 𝑟𝑀, 𝑀 polygon (𝑟𝑖, 𝑟𝑖+1, . . . , 𝑟𝑖+𝑚−1) is
composed of arbitrary continuous adjacent 𝑚-dimensional
variables, and the center of𝑀 polygon by geometric algebra is

abs𝑖𝑚 = √(∑𝑚𝑗=1 𝑟𝑖+𝑗−1 cos ((𝑗 − 1) ∗ 𝑤)3 )2 + (∑𝑚𝑗=2 𝑟𝑖+𝑗−1 sin ((𝑗 − 1) ∗ 𝑤)3 )2,
angle𝑖𝑚 = arctan((∑𝑚𝑗=2 𝑟𝑖+𝑗−1 sin ((𝑗 − 1) ∗ 𝑤) /3)2(∑𝑚𝑗=1 𝑟𝑖+𝑗−1 cos ((𝑗 − 1) ∗ 𝑤) /3)2) + 2𝜋 (𝑖 − 1)𝑀 ,

(13)

where 𝑤 = 2𝜋/𝑀 is the angle of the adjacent features,
abs𝑖𝑚 is the amplitude of 𝑀 polygonal center (𝑟𝑖, 𝑟𝑖+1, . . . ,𝑟𝑖+𝑚−1), and angle𝑖 is angle direction of 𝑀 polygonal center(𝑟𝑖, 𝑟𝑖+1, . . . , 𝑟𝑖+𝑚−1).
3.3. Schema and Algorithm for Feature Optimization. In
this work, we used the hierarchical visual technique for
feature optimization.There are two hierarchical fusions in the
process. In each level, firstly, the main aim is to sort the high-
dimensional features. Secondly, the effecting features are got,
which are grouped together as input to the next level, and the
process is repeated to get fusion feature. Process is shown in
Figure 2, where original features are (𝑥1, 𝑥2, . . . , 𝑥𝑖, . . . , 𝑥𝑛),𝑥𝑖 is the first 𝑖 feature, and 𝑛 is feature dimension; the
features fusion and reduction algorithm are as follows: input
is original feature (𝑥1, 𝑥2, . . . , 𝑥𝑖, . . . , 𝑥𝑛). Output is feature
Re fea after reduction.

(1) 𝐹-score value: 𝐹𝑖 of 𝑥𝑖 𝐹-score according to formula
(12).

(2) Feature sort: sort all features (𝑥1, 𝑥2, . . . , 𝑥𝑖, . . . , 𝑥𝑛)
by the 𝐹-score value; then (𝑥󸀠1, 𝑥󸀠2, . . . , 𝑥󸀠𝑖 , . . . , 𝑥󸀠𝑛) is
got, and sort the 𝐹-score value (𝐹󸀠1, 𝐹󸀠2, . . . , 𝐹󸀠𝑖 , . . . , 𝐹󸀠𝑛),
where 𝐹󸀠1 ≥ 𝐹󸀠2 ≥ ⋅ ⋅ ⋅ ≥ 𝐹󸀠𝑖 ≥ ⋅ ⋅ ⋅ ≥ 𝐹󸀠𝑛.

(3) Slicing: 𝐹 Mean is 𝐹-score average; the first 𝐹 first
is less than 𝐹 Mean, so 𝐹󸀠1 ≥ 𝐹󸀠2 ≥ ⋅ ⋅ ⋅ ≥𝐹󸀠𝐹 first−1 ≥ 𝐹 Mean, 𝐹 Mean < 𝐹󸀠𝐹 first; the first
lay is (𝑥󸀠1, 𝑥󸀠2, . . . , 𝑥󸀠𝐹 first−1); compute 𝐹 Mean2 of the
average 𝐹-score from 𝐹 first to 𝑛; then 𝐹 second is
less than 𝐹 mean2; the second level is (𝑥󸀠𝐹 first, 𝑥󸀠2, . . . ,𝑥󸀠𝐹 second−1); the third level is (𝑥󸀠𝐹 second, 𝑥󸀠𝐹 second+1,. . . , 𝑥󸀠𝑛).

(4) Visual features fusion: specifically, in (13), if𝑚 = 2, to
obtain the center of gravity when 𝑚 = 2, 𝑚 = 3, and𝑚 = 4, original feature set 𝑆󸀠 is constructed by three
feature set fusions.

(5) 𝑆󸀠 is repeated to do steps (1), (2), and (3). Re fea is
got.
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4. Pathologic Speech Intelligibility Evaluation

In Figure 3, firstly, pathological speech features are extracted
from this system, including basic speech features, MSCC fea-
tures, and nonlinear characteristics. Secondly, feature optimi-
zation is finished bymeans of𝐹-score and radar chart. Finally,
the speech intelligibility is evaluated by SVM classifier.

In the classification problems, SVM follows a certain
procedure to find the separating hyperplane with the largest
margin of two classes. Radial basis function (RBF), a kernel,
is used in this article. The sensitivity, specificity, accuracy,
and UA are an index. As a classification tool to evaluate the
NKI-CCRT corpus by different feature sets, SVM algorithm
constructs a set of reference vectors in role of boundaries
that minimize the number of misclassifications. Therefore,
it represents a low-cost, accurate, and automatic tool for

Table 2: The NKI-CCRT corpus.

NCSC Training set Test set
I 384 341
NI 517 405

Table 3: The SVD corpus.

SVD Training set Test set
Healthy 434 198
Pathology 651 211

pathological voice classification in contrast with other tools,
such as Gaussian mixture model [19].

4.1. Corpus for Pathologic Speech Study

4.1.1. NKI-CCRT Corpus. The NKI-CCRT corpus [14] is
recorded by head and neck cancer surgery from the Nether-
lands Cancer Institute. 55 (10 males, 45 females) speakers
are head and neck cancer patients undergoing chemotherapy,
who are operated (CCRT) on in three stages (before treat-
ment, after 10 weeks, and after 12months). Recordingmode is
reading German neutral text. The 13 graduate or graduating
language pathologists (average 23.7 years old) evaluated the
intelligibility of their recordings. The evaluation index score
is from 1 to 7. We get 13 statistics of each speaker’s statement.
INTERSPEECH 2012 speaker trait pathology challenge is
divided into two categories according to statistics: I (intelli-
gible) and NI (nonintelligible), where corpus sampling rate
is 16 KHZ, quantified as 16 b. The corpus distribution is in
Table 2.

4.1.2. SVD Corpus. SVD [20] is the free pathological cor-
pus in the Saarland University computation linguistics and
phonetics laboratory. It is a collection of voice recordings
frommore than 2000 persons, where a session is defined as a
collection of

(1) recordings of vowels /a/, /i/, and /u/ produced at
normal, high, low, and low-high-low pitch;

(2) recordings of sentence “Guten Morgen, wie geht es
Ihnen?” (“Good morning, how are you?”).

That makes a total of 13 files per session. In addition, the
electroglottogram (EGG) signal is also stored for each case in
a separate file. The length of the files with sustained vowels is
between 1 and 3 seconds. All recordings are sampled at 50 kHz
and their resolution is 16 bits. 71 different pathologies are
contained, including both functional and organic.The corpus
distribution is in Table 3.

4.2. Experimental Results. Further analysis is required to
study the effect of various features of each subsystem.

4.2.1. MSCC versus MFCC. 𝑆-transform is a time-frequency
analysismethod by StockWell which combines the advantage
of wavelet transform with short time Fourier transform [7],
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Table 4: MSCC and MFCC are compared based on NKI-CCRT
corpus.

Feature Sensitivity Specificity UA Accuracy
MSCC 67.15% 62.36% 64.76% 63.67%
MFCC 56.25% 46.90% 51.58% 50.54%
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Figure 4: 𝐹-score of MSCC and MFCC.

Table 5: MSCC and MFCC are compared based on SVD corpus.

Feature Sensitivity Specificity UA Accuracy
MSCC 70.62% 69.20% 69.91% 68.95%
MFCC 61.61% 56.56% 59.09% 59.17%

which shows better antinoise, time resolution, and time-
frequency localization [21].Therefore, in this paper, MSCC is
proposed based on 𝑆-transform. MSCC is compared with the
traditionalMFCC in theNKI-CCRTand SVDcorpus. Recog-
nition results are shown in Tables 4 and 5. MSCC parameters
improved significantly in the classification rate.

For example, in NKI-CCRT corpus, each value index is
improved, where UA is increased from 51.58% to 64.76%
and accuracy is increased from 50.54% to 63.67%. Thus,
MSCC contains more pathological information than MFCC.
Meanwhile, in order to show the contrast thatMSCC contains
more information than MFCC directly, we use 𝐹-score
values to evaluate MSCC and MFCC; MSCC shows better
performance by 𝐹-score in Figure 4. The 𝑥-axis represents
feature dimension.𝑦-axis represents𝐹-score values.MFCC is
generally less than 0.2; the average is at 0.09.Themaximum𝐹-
score ofMSCC is nearly 0.8, and the average is about 0.39.The
results of 𝐹-score indicate that the MSCC feature is stronger
in the pathology classification.

4.2.2. MSCC: Basis Acoustic Feature (BAFS) versus Chaotic
Features (CF). Firstly, MSCC is compared with basis acoustic
features (430) by support vector machine (SVM). As it can
be seen in Tables 6 and 7, the MSCC is better than BAFS
in pathological speech intelligibility evaluation. Furthermore,
it explains the effectiveness of the MSCC and BAFS feature
set. Thirdly, the nonlinear characteristics of the pathological
voice are considered as the supplement to pathological voice
features. Chaotic features also have played a certain role and

Table 6: Basis acoustic feature and Chaotic features results based on
NKI-CCRT corpus.

Feature Sensitivity Specificity UA Accuracy
BAFS (430) 63.70% 57.77% 60.74% 60.99%
CF (12) 55.31% 61.00% 58.16% 57.91%
MSCC + BAFS (514) 82.72% 65.10% 73.91% 74.66%
CF + MSCC +
BAFS (526) 82.96% 65.68% 74.10% 75.07%

Table 7: Basis acoustic feature and Chaotic features results based on
SVD corpus.

Feature Sensitivity Specificity UA Accuracy
BAFS (430) 73.93% 69.70% 69.91% 68.95%
CF (12) 62.56% 57.58% 60.07% 60.15%
MSCC + BAFS (514) 80.09% 71.21% 75.65% 75.79%
CF + MSCC +
BAFS (526) 79.15% 73.23% 76.19% 76.28%

Table 8: Features optimization results.

Feature Sensitivity Specificity UA Accuracy
Re fea (96- NKI-CCRT) 84.44% 65.69% 75.07% 75.87%
Re fea (104- SVD) 78.67% 79.30% 78.99% 78.97%
Baseline (NKI-CCRT) — — 61.40% —

achieved a 58.16% recognition rate. But because the feature
dimension is too small, the effect is not particularly obvious.
The joint feature set (526) has the best performance.

4.2.3. Feature Optimization. In our continued investigation,
we design an automatic pathological speech intelligibility
evaluation system by information visualization optimization
method. Furthermore, this hierarchical method is experi-
mented with in NKI-CCRT corpus. The classification accu-
racy of 84.44% can be achieved. Recognition results are
shown in Table 8.

In our study, Table 8 shows that the fusion feature set
Re fea is more probable. It is obvious that Re fea has sen-
sitivity of 84.44% and 78.67%, which is higher than any other
sensitivity. The result indicates that the Re fea significantly
improves voice disorder classification rate in comparison
with other feature sets.Therefore, the hierarchical visual opti-
mization method is effective and achieved better recognition
rate than the baseline of INTERSPEECH 2012 challenge.
The results from this experiment demonstrated that feature
extraction method can be considered as a proper feature
select strategy to increase identification accuracy of impaired
voices.

5. Conclusion

The signal characteristics of pathological speech have been
studied widely in the literature. A previous study showed
that changes from articulatory manner are associated with
pathological speech, while variability in articulatory place
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occurs to both normal and pathological speech. Therefore,
the results of this research show that MSCC acoustic features
fed to other pathology common features can be used together
with invasive methods as complementary tools for patho-
logical speech intelligibility evaluation. Furthermore, results
of classification demonstrated that optimized feature set
has great capability for classification of pathological voices
to normal ones compared with the other feature that is
examined in this research. Therefore, efficient combination
of this work is composed of acoustic long-time features,
MSCC, chaotic features, and SVM, which yield sensitivity
of 84.4%. This structure significantly improves the results
of pathological speech recognition in comparison with the
proposed algorithm found in the references [22].

Feature extraction and pattern classification are a key of
pathological speech recognition. This study proposes a new
feature set and feature fusion method. The basis acoustic
feature, precise time-frequency feature, and chaotic feature
showed discriminating power for binary classification based
fusion method (84.4% higher than the 79.9% of Kim et al. on
the NKI-CCRT corpus [23]). Features fusion method shows
significant improvement in classification accuracy from its
original features set used. It shows that the pathological
speech feature extraction and optimization were able to
improve the performance of classification based on radar
chart and 𝐹-score. Further analysis is required to study the
effect of fusion difference classifiers. In addition, we would
also like to study the effectiveness of other features and reduc-
tion methods like particle swarm optimization. In a word,
the proposed method has greatly improved the pathological
speech intelligibility evaluation performance and can provide
important theoretical bases of the clinical application of
speech pathology, which can be applied to other areas.

Disclosure

Mancai Zhang is on leave from the School of Computer
Science and Technology, Harbin Institute of Technology,
Harbin, China.

Competing Interests

The authors declare that there are no competing interests
regarding the publication of this paper.

Acknowledgments

Thanks are due to supports from theNational Natural Science
Foundation of China (61171186, 61271345, and 61671187),
Key Laboratory Opening Funding of MOE-Microsoft Key
Laboratory of Natural Language Processing and Speech
(HIT.KLOF.20150xx, HIT.KLOF.20160xx), Shenzhen Science
and Technology Project (JCYJ20150929143955341), the Fun-
damental Research Funds for the Central Universities
(HIT.NSRIF.2012047), Heilongjiang Provincial Department
of Education Science and Technology Research Project
(12533051), and the Project of Young Talents of Heilongjiang
Institute of Science and Technology of China in 2013 (no.
Q20130106).

References

[1] J. Kim, N. Kumar, A. Tsiartas, M. Li, and S. S. Narayanan, “Auto-
matic intelligibility classification of sentence-level pathological
speech,” Computer Speech and Language, vol. 29, no. 1, pp. 132–
144, 2015.

[2] K. Shama, “Study of harmonics-to-noise ratio and critical-band
energy spectrum of speech as acoustic indicators of laryngeal
and voice pathology,” Journal on Applied Signal Processing, vol.
4, pp. 1–10, 2007.

[3] A.Gelzinis, A.Verikas, andM. Bacauskiene, “Automated speech
analysis applied to laryngeal disease categorization,” Computer
Methods and Programs in Biomedicine, vol. 91, no. 1, pp. 36–47,
2008.

[4] X. Zhou, D. Garcia-Romero, N. Mesgarani, M. Stone, C. Espy-
Wilson, and S. Shamma, “Automatic intelligibility assessment of
pathologic speech in head and neck cancer based on auditory-
inspired spectro-temporal modulations,” in Proceedings of the
13th Annual Conference of the International Speech Communica-
tion Association (INTERSPEECH ’12), pp. 542–545, September
2012.

[5] M. K. Arjmandi, M. Pooyan, M. Mikaili, M. Vali, and A.
Moqarehzadeh, “Identification of voice disorders using long-
time features and support vector machine with different feature
reduction methods,” Journal of Voice, vol. 25, no. 6, pp. e275–
e289, 2011.

[6] K. U. Rani, “GMM classifier for identification of neurological
disordered voices using MFCC features,” IOSR Journal of VLSI
and Signal Processing, vol. 4, pp. 44–51, 2015.

[7] R. G. Stockwell, L. Mansinha, and R. P. Lowe, “Localization of
the complex spectrum: the S transform,” IEEE Transactions on
Signal Processing, vol. 44, no. 4, pp. 998–1001, 1996.

[8] H.M.Teager, “Aphenomenologicalmodel for vowel production
in the vocal tract,” in Speech Science: Recent Advances, pp. 73–
109, 1983.

[9] H. Teager, “Evidence for nonlinear sound production mech-
anisms in the vocal tract,” in Speech Production and Speech
Modelling, vol. 55 of NATO ASI Series, pp. 241–261, Springer,
Berlin, Germany, 1990.

[10] T. Thomas, “A finite element model of fluid flow in the vocal
tract,” Computer Speech & Language, vol. 1, no. 2, pp. 131–151,
1986.

[11] J.-P. Eckmann and D. Ruelle, “Ergodic theory of chaos and
strange attractors,” Reviews of Modern Physics, vol. 57, no. 3, pp.
617–656, 1985.

[12] E. Ott, Chaos in Dynamical Systems, Cambridge University
Press, Cambridge, UK, 2nd edition, 2002.

[13] D. Abásolo, S. Simons, R.Morgado da Silva, G. Tononi, andV. V.
Vyazovskiy, “Lempel-Ziv complexity of cortical activity during
sleep and waking in rats,” Journal of Neurophysiology, vol. 113,
no. 7, pp. 2742–2752, 2015.

[14] R. Clapham P, “NKI-CCRT corpus: speech intelligibility before
and after advanced head and neck cancer treated with concomi-
tant chemoradiotherapy,” LREC, vol. 4, pp. 3350–3355, 2012.

[15] Y. Zhang and J. J. Jiang, “Acoustic analyses of sustained and run-
ning voices from patients with laryngeal pathologies,” Journal of
Voice, vol. 22, no. 1, pp. 1–9, 2008.

[16] Y. Xu, “Improving an SVM-based liver segmentation strategy
by the F-score feature selection method,” World Congress on
Medical Physics and Biomedical Engineering, vol. 7, pp. 13–16,
2010.



8 Computational and Mathematical Methods in Medicine

[17] W.-Y. Liu, B.-W. Wang, J.-X. Yu, F. Li, S.-X. Wang, and W.-
X. Hong, “Visualization classification method of multi-dimen-
sional data based on radar chart mapping,” in Proceedings of the
7th International Conference on Machine Learning and Cyber-
netics (ICMLC ’08), pp. 857–862, Kunming, China, July 2008.

[18] H. Wenxue, “A novel pattern recognition method based on the
geometry features of multivariate graph,” Yanshan University
Jounal, vol. 5, pp. 377–381, 2008.

[19] F. Chunying, “Nonlinear dynamic analysis of pathological
voices,” in Intelligent Computing Theories and Technology, pp.
401–409, Springer, Berlin, Germany, 2013.

[20] D. Mart́ınez, E. Lleida, A. Ortega et al., “Voice pathology detec-
tion on the Saarbrücken voice database with calibration and
fusion of scores using multifocal toolkit,” in Advances in Speech
and Language Technologies for Iberian Languages, pp. 99–109,
Springer, Berlin, Germany, 2012.

[21] K. Kazemi, M. Amirian, and M. J. Dehghani, “The S-transform
using a new window to improve frequency and time resolu-
tions,” Signal, Image and Video Processing, vol. 8, no. 3, pp. 533–
541, 2014.

[22] B. Schuller, “The Interspeech 2012 speaker trait challenge,” in
Proceedings of the Interspeech, pp. 254–257, Portland, Ore, USA,
September 2012.

[23] J. Kim, N. Kumar, A. Tsiartas, M. Li, and S. S. Narayanan, “Intel-
ligibility classification of pathological speech using fusion of
multiple subsystems,” in Proceedings of the 13th Annual Con-
ference of the International Speech Communication Association
(INTERSPEECH ’12), pp. 534–537, September 2012.



Submit your manuscripts at
https://www.hindawi.com

Stem Cells
International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

MEDIATORS
INFLAMMATION

of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Behavioural 
Neurology

Endocrinology
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Disease Markers

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

BioMed 
Research International

Oncology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Oxidative Medicine and 
Cellular Longevity

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

PPAR Research

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Immunology Research
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Obesity
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Computational and  
Mathematical Methods 
in Medicine

Ophthalmology
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Diabetes Research
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Research and Treatment
AIDS

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Gastroenterology 
Research and Practice

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Parkinson’s 
Disease

Evidence-Based 
Complementary and 
Alternative Medicine

Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com


