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Recently, microaneurysm (MA) detection has attracted a lot of attention in the medical image processing community. Since MAs
can be seen as the earliest lesions in diabetic retinopathy, their detection plays a critical role in diabetic retinopathy diagnosis. In
this paper, we propose a novel MA detection approach named multifeature fusion dictionary learning (MFFDL). The proposed
method consists of four steps: preprocessing, candidate extraction, multifeature dictionary learning, and classification.The novelty
of our proposed approach lies in incorporating the semantic relationships among multifeatures and dictionary learning into a
unified framework for automatic detection of MAs. We evaluate the proposed algorithm by comparing it with the state-of-the-art
approaches and the experimental results validate the effectiveness of our algorithm.

1. Introduction

Diabetic retinopathy (DR) is the main cause of blindness
associated with diabetes [1]. The majority of people suffering
from diabetes mellitus will eventually develop DR. Early
diagnosis through regular screening has been shown to
prevent visual loss and blindness. Color fundus photography
is characterized with low-cost and patient friendliness which
are a prerequisite for large scale screening [2]. However,
a large number of diabetic patients need to be screened
annually, which poses a huge workload for ophthalmologists.
Therefore, developing an automatic DR screening system
is necessary, which can not only reduce the workloads of
ophthalmologists but also improve the accuracy of detection
[3].

Signs of DR contain red lesions such as microaneurysms
and hemorrhages, yellowish or bright spots such as hard
and soft exudates (see Figure 1). In this paper, we mainly
focus on the detection of microaneurysms, which present
at the earliest stage of DR and remain in the development
of the disease [4]. Therefore, microaneurysms detection is
necessary and vital in public DR screening programs.

Numerous approaches have been proposed for microa-
neurysm detection, which always involve three fundamental
processing phases: preprocessing with the normalization of
the images, candidate extractionwhich is to locate all possible
MA candidates, and MA classification based on features
computed on each candidate [5].

The earliest paper based on MA detection was pro-
posed by Baudoin et al. [6] using a mathematical morphol-
ogy approach to detect the microaneurysms in fluorescein
angiograms. After that, two variants of morphological top-
hat transformation methods for segmenting MAs within
fluorescein angiograms were developed by Spencer et al.
[7] and Frame et al. [8]. Although using the fluorescein
angiograms can improve the contrast between the fundus and
their background, the usage of intravenous contrast agents
is dangerous and even associated with mortality [9], which
cannot be widely used in public DR screening programs.
Besides, mathematical morphology approaches mainly rely
on the choosing of structuring elements, which may increase
false positives or decrease true positives when changing their
size and shape.
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Figure 1: Fundus image containing lesions.

Several approaches based onmachine learning have been
proposed to distinguish theMA from the non-MA.Niemeijer
et al. [10] presented a red lesion detection method based
on morphological top-hat transform and used the 𝑘-nearest
neighbor algorithm as pixel classification. In their method, a
series of features including the features provided by Spencer
et al. and Frame et al. [7, 8] and some new features were
used for characterizing object candidates. Sánchez et al. [11]
suggested a combination of Gaussian mixture model and a
logistic regression classification to classify MAs at pixel level.
Since pixel level classification methods are mainly based on
medical experts labeling at pixel level, they are unsuitable
for dealing with too many large size fundus images [9].
Akram et al. [12] extracted a set of features containing shape,
intensity, color, and statistical properties for each candidate,
and then a hybrid classifier was used to improve the accuracy
of classification. Besides, artificial neural network (ANN)
[13] and convolution neural network (CNN) [14] were also
applied to detect the lesions in fundus images. However,
these methods are not suitable for a large number of training
samples as the training time will be long.

Apart from the above-mentioned MA detection
approaches, some MA detection algorithms are based
on template matching using this fact that the intensity of MA
exhibits a Gaussian shape [15, 16]. Quellec et al. [15] proposed
a method by using wavelet image decomposition as template
for MA detection. The problem of illumination variations
or high-frequency noise can be avoided effectively in this
approach. Zhang et al. [16] employed Multiscale Gaussian
Correlation Coefficients (MSCF) to detect MA. In their
model, MA candidates can be detected by using a nonlinear
filter with five varying Gaussian kernels to the input image.
Generally, themain challenge of templatematching approach
is how to design an accurate template to match the MA.

Nowadays, sparse representation-based classification
(SRC) has achieved promising outcomes in classification.
Inspired by SRC, Zhang et al. [17] proposed MA detection
method, which combined the dictionary learning (DL) with
SRC. Firstly, Multiscale Gaussian Correlation Coefficients
filtering was used to locate all the possible candidates, and
then these candidates were classified by SRC. After that,
Javidi et al. [18] combined discriminative dictionary learning
with sparse representation for MA detection. Firstly, Morlet

wavelet algorithmwas applied to detectMA candidates. Next,
two discriminative dictionaries containing MA and non-MA
dictionaries were learned with the aim of distinguishing the
MAs from non-MAs. Finally, MAs are classified by using the
two learned dictionaries.

However, the above-mentioned approaches [17, 18]
depended heavily on original grayscale feature dictionary
for MA detection, and since there is a large variability in
color, luminosity, and contrast both within and between
retinal images, using single grayscale feature will affect the
performance of MA detection. In this paper, MA detection
approach based on multifeature fusion dictionary learning
has been developed. The learned dictionary not only takes
the semantic relationships among the multifeature into con-
sideration but also adapts to the content of image. Hence, it
is estimated to outperform the dictionary constructed by a
single grayscale feature. In our proposed approach, first of all,
preprocessing is adopted to reduce uneven illumination, poor
contrast, and noise. Secondly, MSCF (Multiscale Correlation
Filter) is applied to identify all possible MA candidates from
the fundus images. Then, MA image patches and non-MA
image patches can be extracted from these candidates. Next, a
series of features are used to characterize these image patches
forming multifeature dictionary. Finally, with the learned
dictionary, the class label of every query candidate identified
in the previous step can be determined by computing the total
reconstruction error of multifeature for each class.

The remainder of this paper is organized as follows: a brief
review of the concept of sparse representation classification
and multifeature fusion dictionary learning is presented in
Section 2. A description of the way multifeature fusion dic-
tionary learning for MA detection is presented in Section 3.
Experimental results are presented in Section 4. Finally, the
conclusion is given in Section 5.

2. Preliminaries

In recent years, sparse representation (or sparse coding) and
dictionary learning have attracted wide attention and been
successfully used in signal and image and video processing
and biometric applications [19]. In this section, we firstly give
the essential concept of sparse representation classification.
Then, we give a brief introduction about the multifeature
fusion dictionary learning.

2.1. Sparse Representation Classification. Sparse Represen-
tation-based Classification (SRC) [20] has attracted a lot of
attention for its applications to various tasks, especially in face
recognition proposed by Wright et al. In SRC, it is assumed
that the query sample can be regarded as a linear combination
of all the training samples. Suppose that there are 𝐾 classes
of subjects, and let 𝐴 = [𝐴1, 𝐴2, . . . , 𝐴𝐾] ∈ 𝑅𝐷×𝑁 denote
the set of training samples. Here, we regard it as a dictionary,
where 𝐴 𝑖 = [𝑎𝑖1, 𝑎𝑖2, . . . , 𝑎𝑖𝑁𝑖] ∈ 𝑅𝐷×𝑁𝑖 is the subset of
training samples from class 𝑖, in which each column vector 𝑎𝑖𝑗
represents the 𝑗th sample of the 𝑖th class, 𝐷 is the dimension
of each training sample, and 𝑁𝑖 is the number of training
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samples of 𝑖th class (𝑁 = ∑𝐾𝑖=1𝑁𝑖). A query sample 𝑦 ∈
𝑅𝐷 can be represented by training samples of all classes as
follows:

𝑦 = 𝐴𝛼 + 𝑒, (1)

where 𝛼 is the representation coefficient vector of 𝑦 and 𝑒 is
the representation error.

There is a basic assumption that samples of a specific
subject lie in a linear subspace [20]. With this assumption,
a query image is expected to be well represented as a liner
combination of just those training samples from the same
class. The sparse linear representation model seeks to solve
the following optimal problem:

�̂� = argmin
𝛼

𝑦 − 𝐴𝛼
2

+ 𝜆 ‖𝛼‖0 , (2)

where ‖ ⋅ ‖0 denotes the 𝑙0-norm, simply counting the number
of nonzeros entries in 𝛼, and 𝜆 ≥ 0 is a tradeoff parameter
between the two terms. Since (2) is NP-hard problem [20],
most of spares representation researches [20–22] employ the
𝑙1-norm constraint to relax the 𝑙0-norm constraint.Therefore,
the original equation (2) can be denoted by the following 𝑙1-
norm minimization:

�̂� = argmin
𝛼

𝑦 − 𝐴𝛼2 + 𝜆 ‖𝛼‖1 . (3)

Here, there are two terms in (3), the first term is the
reconstruction error, and the second term is a sparsity
measurement. ‖ ⋅ ‖1 denotes the 𝑙1-norm that is simply the
sum of the absolute values of the columns.

Since optimization problem (3) is convex, some well
implemented toolboxes such as NESTA [22] can be used to
solve it. Having obtained the optional solution �̂�, the class
label of 𝑦 can be acquired by the following criterion:

label (𝑦) = argmin
𝑖={1,...,𝐾}

𝑦 − 𝐴 𝑖�̂�𝑖2 , (4)

where �̂�𝑖 is the component of �̂� restricted on class 𝑖; that is to
say, the coefficients 𝛼 associated with class 𝑖 can be retained
and the others are 0.

Even though the sparse representation classification
model described in [20] achieved quite good performance,
moreover, two drawbacks are listed as below: on one hand,
since the raw training samples contain noise, directly using
them as the dictionary may reduce the effectiveness of
classification. On the other hand, SRC just uses raw image
pixel as intuitive feature, which is not robust subject to the
lighting conditions and other small changes [23].

2.2. Multifeature Fusion Dictionary Learning. In order to
overcome the above-mentioned drawbacks, sparse represen-
tation based on multifeature fusion (MFF) has been intro-
duced which combines the semantic relationships among
multifeatures and improves the classification performance.

Here, tensor algebra is adopted to achieve multifeature
fusion. The computation and notation used in this paper
mainly follow [24, 25]. Particularly, given a high-order tensor

𝜒 ∈ 𝑅𝐼1×𝐼2×⋅⋅⋅×𝐼𝐾 , 𝐾 is said to be its order number and
the dimension of the 𝑘th order is 𝐼𝑘. Suppose there are 𝑁
observations and each of them can be represented as a 𝐾
order tensor, that is, 𝜒𝑖 ∈ 𝑅𝐼1×𝐼2×⋅⋅⋅×𝐼𝐾 , 𝑖 = 1, 2, . . . , 𝑁. 𝜒×𝑘𝑈 ∈𝑅𝐼1×𝐼2×⋅⋅⋅×𝐼𝑘−1×𝐽×𝐼𝑘+1×⋅⋅⋅×𝐼𝐾 is the 𝑘-mode product of a 𝐾th order
tensor 𝜒 ∈ 𝑅𝐼1×𝐼2×⋅⋅⋅×𝐼𝑘−1×𝐼𝑘×𝐼𝑘+1×⋅⋅⋅×𝐼𝐾 by matrix 𝑈 ∈ 𝑅𝐽×𝐼𝑘 .

In MFF, suppose we have already learned 𝐾 feature
dictionaries arranging them to a tensorial representation𝐷 ∈
𝑅𝑝×𝑑×𝐾. The 𝑘th feature dictionary can be expressed as 𝐷𝑘 ∈𝑅𝑝×𝑑. Given a query image 𝑒 = [𝑒1, . . . , 𝑒𝑖, . . . , 𝑒𝐾] ∈ 𝑅𝑝×𝐾, in
which 𝑒𝑘 represents the 𝑘th feature, the multifeature fusion
object function is formulated as

{𝛽1, . . . , 𝛽𝐾} = argmin
𝛽1,...,𝛽𝐾

𝐾∑
𝑘=1

𝑒𝑘 − 𝐷𝑘𝛽𝑘
2

𝐹
+ 𝜆Φ (𝛽1, . . . , 𝛽𝐾) , (5)

where𝐷𝑘 is the 𝑘th slice of𝐷 along the thirdmode and 𝛽𝑘 are
the corresponding coefficients of 𝑒𝑘 over 𝐷𝑘. 𝜆 is the scalar
parameter and a more strict group-level sparsity constraint
Φ(⋅) [26] is imposed on the coefficients. For each class, just
the atoms from the same class can be used for representing
query sample.

In order to make full use of the relationships between
these dictionaries belonging to 𝐷 and lower the compu-
tational burden, the tensor representation dictionary 𝑄 ∈
𝑅𝑝×𝑑×𝑀 can be regarded as a core dictionary (𝑀 is the number
of fused dimensions, 𝐾 > 𝑀 or 𝐾 ≫ 𝑀) and linearly
transformed from 𝐷 in terms of a transform matrix 𝑊 ∈
𝑅𝐾×𝑀, such that 𝑄 = 𝐷×3𝑊𝑇. Besides, all the features of
each query are needed to be calculated by (5). However,
this process is time-consuming. In order to improve the
effectiveness of computation, we take an alternative solution
by employing the fusion matrix 𝑊 directly on query image
𝑒 by 𝑒 × 𝑊 and obtain a compact representation 𝑦 ∈ 𝑅𝑝×𝑀.
An alternative object function based on (5) can be rewritten
as below:

{𝛽1, . . . , 𝛽𝑀} = argmin
𝛽1 ,...,𝛽𝑀

𝑀∑
𝑡=1

𝑦𝑡 − 𝑄𝑡𝛽𝑡2𝐹 + 𝜆Φ (𝛽1, . . . , 𝛽𝑀) , (6)

where 𝑦𝑡 represents the 𝑡th feature of fused datum 𝑦 and 𝑄𝑡
is the 𝑡th subdictionary of core dictionary 𝑄.

Now, how to learn the fusion matrix𝑊 and how to learn
the core dictionary 𝑄 become critical problems for solving
coefficient matrix [𝛽1, . . . , 𝛽𝑀]. Here, a two-step manner can
be used to solve this problem, that is, learning fusion matrix
𝑊 firstly and then learning the core dictionary 𝑄.

Although multifeature extraction can bring much valu-
able information which improves the performance of classi-
fication, more features also bring some redundancy accord-
ingly. For keeping balance between them, multifeature fusion
can be regarded as a good manner to solve the above-
mentioned problem. Here, Fisher criterion [27] which max-
imizes the between-class scatter and minimizes the within-
class scatter simultaneously is used tomake the fused features
have more discrimination. Suppose there are 𝐶 classes train-
ing samples with 𝐾 features and each class has 𝑁𝑐 samples.
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Let 𝑋𝑖 ∈ 𝑅𝑝×𝐾 denote the 𝑖th sample for 𝑖 = 1, . . . , 𝑁. The
fusion matrix𝑊 can be derived as below:

𝑊 = argmax
𝑊

𝑆𝑏
𝑆𝑤 , (7)

where

𝑆𝑏 =
𝐶∑
𝑐=1

𝑁𝑐 (𝑋𝑐 − 𝑋)𝑇 (𝑋𝑐 − 𝑋) ,

𝑆𝑤 =
𝐶∑
𝑐=1

∑
𝑋𝑖∈𝑐

(𝑋𝑖 − 𝑋𝑐)𝑇 (𝑋𝑖 − 𝑋𝑐) ,
(8)

where𝑋𝑐 is themean vector of the 𝑐th class and𝑋 is themean
vector of the whole dataset.

The above optimization problem can be regarded as the
generalized eigenvalue problem below [27]:

𝑆𝑏𝜑 = 𝜆𝑆𝑤𝜑, (9)

where 𝜆 is the generalized eigenvalue and the vector 𝜑𝑚 is the
corresponding eigenvector which is one of the columns of the
Fisher transform matrix𝑊 = [𝜑1, . . . , 𝜑𝑚, . . . , 𝜑𝑀].

After obtaining the target fusion matrix 𝑊, 𝐾 features
can be fused into more compact and more discriminative𝑀
features and the fused training data 𝑦𝑖 = 𝑋𝑖 × 𝑊 ∈ 𝑅𝑝×𝑀
can be obtained accordingly (𝐾 > 𝑀 or 𝐾 ≫ 𝑀, 𝑖 =
1, . . . , 𝑁). With the fused training data 𝑦, the core dictionary
𝑄 ∈ 𝑅𝑑×𝑝×𝑀 can be divided into 𝑀 × 𝐶 subdictionaries,
where 𝐶 is the number of classes and 𝑄𝑐𝑚 denotes the 𝑐th
class individual and the 𝑚th feature. After that, 𝐾-SVD [28]
is applied to learn each subdictionary for each feature. It can
be seen as an iterative method that alternates between sparse
coding of the examples based on the current dictionary and a
process of updating the dictionary atoms to better fit the data.

In the test stage, given a query sample 𝑞 ∈ 𝑅𝑝×𝐾, apply
the fusion matrix 𝑊 to it and derive the fused result 𝑦 =
𝑞𝑊 ∈ 𝑅𝑝×𝑀. Here, local sparse coding based method [29]
is adopted for classification and the sparse representation
coefficient can be achieved by solving a least square problem.
After obtaining the sparse representation coefficient matrix
[𝛽1, . . . , 𝛽𝑀], the corresponding reconstruction error of each
feature subdictionary can be calculated as below:

error𝑚𝑐 = min
𝛽

𝑦𝑚 − 𝑄𝑐𝑚𝛽22 ,
𝑚 = 1, . . . ,𝑀, 𝑐 = 1, . . . , 𝐶.

(10)

Summarize the error of all𝑀 features of each class and
get the final class of the query sample 𝑞 as:

label (𝑞) = argmin
𝑐

𝑀∑
𝑚=1

error𝑚𝑐 . (11)

3. Proposed Method

In this section, we will introduce the proposed multifeature
discrimination dictionary learning for MA detection. It

consists of the following four steps: preprocessing, candi-
date extraction, multifeature dictionary construction, and
classification. In the first step, firstly, we extract a region
of interest in the retinal image with the aim of reducing
processing time. Also, the contrast and intensity between the
background and MAs are enhanced for making MA more
visible. In the second step, all the possible MA candidates are
extracted usingMultiscale Gaussian Correlation Filtering. At
the same time, someoperations are used to remove the FPs for
reducing the number of non-MA candidates. Next, extract a
series of image patches from the above obtained candidates
and then multiple features are used for characterizing these
image patches forming multifeature dictionaries. In the last
step, with the obtained multifeature dictionaries, true MAs
can be identified from the whole candidates. Each of these
steps will be discussed in detail in the following sections.
The workflow diagram of our proposed approach is shown
in Figure 2.

3.1. Image Preprocessing

3.1.1. Field of View (FOV). The field of view (FOV) can
be regarded as the circle region containing the eye fundus
information. And the pixels located just in FOV are useful
for our proposed MA detection approach. Therefore, it is
necessary to mask the pixels outside of the FOV and carry
out our proposed MA detection method on FOV image.
In this paper, we employ two-level hierarchical architecture
for FOV extraction. In the first level (coarse level), we use
Otsu threshold algorithm [30] to green channel of original
image (see Figure 3(b)) to obtain the coarse binary FOV
mask image (see Figure 3(c)). However, in coarse binary FOV
mask image, some pixels within red circles (see Figure 3(c))
are misclassified as FOV. In order to solve this issue, in the
second level, we adopt morphological opening and closing
operations with the disc-shaped structuring element of size
2 to remove them from the coarse binary FOV mask image.
Finally, the binary FOV mask image can be obtained (see
Figure 3(d)). With the obtained FOV mask image, the ROI
of retinal image can be acquired by cropping the image with
its mask.

3.1.2. Contrast Enhancement and Image Smoothing. The large
luminosity, poor contrast, and noise always occur in retinal
fundus images [10], which affect seriously the diagnostic
process of DR and the automatic lesions detection, especially
for MA. In order to address these problems and make a
suitable image for MA detection, first is extracting the green
channel of original image, in which the MAs have the higher
contrast with their background. After that, contrast limited
adaptive histogram equalization (CLAHE) [31] method is
applied to the green-channel image for making the hidden
features more visible. At the end, Gaussian smoothing filter
with a width of 5 and a standard deviation of 1 is also
incorporated to the above obtained enhanced image for
reducing the effect of noise further, and the preprocessing
result is shown in Figure 3(e).
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Green channel of retinal image 
(training/testing)

Step 1: image preprocessing
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Step 3: Dictionary learning

Learn multiple features 
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Step 2: candidate extraction
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with low coefficients

Remove candidates on 
blood vessels

Region growing

Step 4: Classification

Obtain sparse representation coefficients 
using learned dictionaries

Classify candidates using total 
reconstruction error

MA Non-MA

Figure 2: The block diagram of our proposed approach.

3.2. Candidate Extraction. A candidate extraction method
based on multiscale correlation filtering [16] proposed by
Zhang et al. is applied to extract all the possible MA
candidates. The details of this method are reviewed as below.

Firstly, a nonlinear filter with five different Gaussian
kernels ranging from 1.1 to 1.5 with an interval of 0.1 (see
Figure 4(a)) is used for calculating correlation coefficients of
each pixel. Here, we denote Gaussian function and the gray
distribution of MA by the variables of 𝑋 and 𝑌, respectively.
The correlation coefficient can be defined as follows:

𝑟𝑋𝑌 = ∑𝑚∑𝑛 (𝑋𝑚𝑛 − 𝑋) (𝑌𝑚𝑛 − 𝑌)
√(∑𝑚∑𝑛 (𝑋𝑚𝑛 − 𝑋)2) (∑𝑚∑𝑛 (𝑌𝑚𝑛 − 𝑌)2)

, (12)

where𝑋 and𝑌 are themean values of𝑋 and𝑌 and the values
of correlation coefficient range from 0 to 1.

The maximum coefficient at each pixel location among
the five responses (Figure 4(b)) is selected to form the final
response (Figures 4(c) and 4(d)).

Secondly, in order to reduce the number of microa-
neurysm candidates in final response, a threshold which
ranges from 0.1 to 0.9 with an interval of 0.1 is applied to
eliminate the candidates with low coefficients. Since the MAs
do not appear on the vasculature, any candidates on the
vasculature need to be removed [32] (the vasculature map
is shown in Figure 5(c)). In addition, the size and shape of
MAs are not representing the true MAs during this process
and region growing [10] is used for determining their precise
sizes. In the region growing, green-channel image 𝐼green and
the background image 𝐼bg can be obtained by applying mean
filter to 𝐼green. An adaptive threshold 𝑡 based on the dynamics
is given by

𝑡 = 𝐼darkest − 𝛽 ⋅ (𝐼darkest − 𝑖bg) , (13)

where 𝐼darkest denotes the lowest intensity in 𝐼green and 𝛽 is a
constant value ranging from 0 to 1, which is set to 0.5 here.

Region growing starts from the point of 𝐼darkest in each
candidate region and continues until no more connected
pixels are higher than threshold. Considering the size of MA
is less than 120 pixels [16], if the area of a region is larger
than 120 pixels, it will be discarded. Finally, the remaining
candidates from region growing can be regarded as the final
MA candidate regions (Figure 5(d) shows overlaying region
growing maps on the original image). A systematic overview
of candidate extraction is shown in Figure 5.

3.3. MA Detection Using Multifeature Fusion Dictionary
Learning. In this section, we first extract eight types of fea-
tures for each candidate.Then,multifeature fusion dictionary
can be learned based on all the possible MA candidates
including MAs and non-MAs detected in the stage of can-
didate extraction. Finally, the true MAs can be classified by
the learned dictionary.

3.3.1. Extract MA and Non-MA Patches. Generally, there are
two categories inMA candidates includingMA and non-MA.
With these candidates, two classes of training samples can be
constructed. The detected candidates marked by experts (the
ground truth provided by ROC followed by clinicians) asMA
are used for forming MA training samples. At the same time,
we take the detected candidates not marked as MA as the
non-MA training samples. To do this, 11×11patch that covers
MA or a non-MA at its center is extracted, and then these
extracted patches are converted into unit column vectors
by 𝑙2-norm. Figures 6(a) and 6(b) depict some selected MA
training patches and non-MA training patches, respectively.

3.3.2. Features Extraction of Patches and Multifeature Fusion
Dictionary Learning. After obtaining the MA and non-MA
training patches, we extract eight features for each of them
including original grayscale image (coded as F1), the image
after histogram equalization (coded as F2), edge image of
original image by Canny operator (coded as F3), edge image
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(a) (b)

(c) (d)

(e)

Figure 3: Preprocessing. (a) Original retinal image; (b) green channel of (a); (c) coarse binary FOVmask image; (d) the final FOV image; (e)
result of preprocessing.
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Figure 4: Locating MA candidates using MSCF method.
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(a) (b)

(c) (d)

Figure 5: The process of candidate extraction; (a) the retinal image with annotated microaneurysms; (b) the final response of multiscale
correlation filtering; (c) the output of its blood vessel map; (d) presentation of MA candidates after region growing.

(a) (b)

Figure 6: MA and non-MA training patches. (a) MA training patches; (b) non-MA training patches.

of histogram equalized image by Canny operator [33] (coded
as F4), morphological close operator image of original image
(coded as F5),morphological open operator image of original
image (coded as F6), gradient image of original image (coded
as F7), and wavelet denoising image of original image (coded
as F8), as illustrated in Figure 7.

With the above obtained multifeature training samples
containing MA patches and non-MA patches, we can obtain
a tensorial representation dictionary 𝐷 ∈ 𝑅𝑝×𝑑×𝐾. Here, let
𝑝 = 121 denote the dimension of extracted image patches.
We take 𝐾 = 8 features in this paper. Based on these
extracted multifeature training samples, fusionmatrix𝑊 can

be learned by using (7), which is more discriminative for
better classification and more compact for efficient compu-
tation. After obtaining the fusion matrix𝑊, the multifeature
subdictionary 𝐵𝑐𝑚 can be acquired by 𝑄 = 𝐷×3𝑊𝑇 (𝑐
represents the class of sample and we set 𝑐 = 1 for MAs and
𝑐 = 2 for non-MAs, 𝑚 denotes the number of fused features.
Finally, K-SVD is used to iteratively update the multifeature
subdictionary and the corresponding sparses coding until (6)
converges.

3.3.3. Classification. Once the multifeature discriminate sub-
dictionaries𝐵𝑐𝑚 and fusionmatrix𝑊 are obtained, the label of
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MA_ F4MA_ F3MA_ F2MA_ F1

MA_ F8MA_ F7MA_ F6MA_ F5

(a)
non-MA_ F1 non-MA_ F2 Non-MA_ F3 Non-MA_ F4

non-MA_ F5 non-MA_ F6 non-MA_ F7 non-MA_ F8

(b)

Figure 7: Eight features of MA and non-MA patches. (a) The features of MA patches; (b) the features of non-MA patches.

query sample 𝑋 ∈ 𝑅𝑝×𝐾 can be determined by the following
three steps: first of all, apply fusion matrix𝑊 to it and obtain
the fused datum 𝑌 = 𝑋𝑊 ∈ 𝑅𝑝×𝑀. Secondly, summarize the
reconstruction error of all𝑀 features of each class as given in
(10). Finally, the decision is ruled in favor of the class with the
lowest reconstruction error accumulated over all𝑀 features
as given in (11).

4. Experimental Results and Analysis

4.1. Dataset. Retinopathy Online Challenge (ROC) [34]
database includes 100 (50 train samples and 50 test samples)
digital color fundus photographs which were selected from
a large dataset (150,000 images) in a diabetic retinopathy
screening program. These photographs were obtained by
using different types of camera including TopconNW 100,
NW 200, or Canon CR5-45NM nonmydriatic cameras with
three different sizes of field of view (FOV), and the details are
listed in Table 1.

Table 1: The different types of images in the ROC training set.

Resolution Coverage of
the retina

Number in
training set

Type 1 768 × 576 45 22
Type 2 1058 × 1061 45 3
Type 3 1389 × 1383 45 25

In the past, the Retinopathy Online Challenge (ROC)
organization provided a way for researchers to evaluate their
methods on the test images, but now this competitionwebsite
is inactive [18]. It is impossible to evaluate our method on
the test images. So, in our model, we just employ 50 training
samples to train and verify the effectiveness of our proposed
method. In the training set, there are 37 digital color fundus
photographs including a total of 336 microaneurysms, and
correspondingly no microaneurysms are identified in the
remaining 13 images.



Computational and Mathematical Methods in Medicine 9

4.2. Evaluation Criteria. In our model, we choose Free-
response Receiver Operating Characteristic (FROC) curve
to verify the effectiveness of our proposed method. FROC
curve plots the sensitivity against the average number of false
positives per image (FPPI). Two evaluation mechanisms are
given by the formulas in

Sensitivity = True positive
True positive + False negative

,

FPPI = False positive
Total number of images

,
(14)

where True positive (TP) is the number of MAs that are
correctly identified; False negative (FN) is the number of
those incorrectly found as non-MAs; False positive (FP) is the
number of those incorrectly found as MAs.

Besides the above evaluations, we also employ precision
which is the percentage of detected pixels that are actually
MAs as another parameter to evaluate the effectiveness of
multifeature fusion. The precision can be calculated through

Precision = True positive
True positive + False positive

. (15)

Indeed MA and non-MA training samples are based on
the ophthalmologist’s marking, and some wrong markings
may exist in provided ground truth, which will reduce the
overall performance of the training and testing. In this
paper, the usage of ground truth provided by ROC follows
standard procedures (followed by clinicians) that ensure that
all are playing with the same cards. Our proposed algorithm
is being affected (the same as others) [16]. Furthermore,
dictionary learning method can be regarded as a good way
by automatically selecting some suitable dictionary atoms
for relieving this problem. Its research and the effectiveness
verification will be discussed in our future work.

4.3. MA Detection Results. In ROC training dataset, there
are 50 fundus images in total. We randomly select 30 color
fundus images for training the dictionaries and the remaining
are used for testing. This process is repeated 4 times and the
average result is regarded as our final result. In preprocessing
stage, after extracting FOV of fundus images and enhancing
contrast by using CLAEH method, all green-channel images
of original fundus images are resized to the resolution of
850 × 850 pixels by bicubic interpolation. Next, a nonlinear
filter with varying Gaussian kernels ranging from 1.1 to
1.5 is used for detecting all the possible MA candidates.
Then, MA and non-MA image patches can be extracted
based on these candidates. Also, eight types of features
are used for characterizing each image patch and multiple
features dictionaries can be learned accordingly. Finally, the
candidates identified in the above steps can be classified using
(6), (10), and (11).

The candidate extraction threshold 𝑟𝑋𝑌 is an important
parameter in MSCF, which affects the performance of algo-
rithm. In this paper, different thresholds are employed to
create the FROC curve. After an analysis of the FROC curve,
the optimal value of this parameter is equivalent to 0.6. Using
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Figure 8: The average precision rates (%) under varying fused
dimension𝑀.

this parameter value, the candidate detection method can
achieve a sensitivity of 47.71% with a FPPI of 44.13.

In order to validate the effectiveness of multifeature
fusion, in our first experiment, we extract𝐾 features ranging
from 1 to 8 based on training set and testing set. The
performance is evaluated by using mean precision with
standard deviation. The experimental results are plotted in
Figure 8.

As shown by the results, we can see that when 𝑀 is
small, the precision is relatively low because the intrinsic
relationship of different features is not fully exploited. With
the increasing of 𝑀, more information is incorporated to
dictionary learning for achieving good performance, which
makes the precision keep growing and gradually become
stable. According to Figure 8, we can see that that the best
performance of the proposed model can be obtained with
parameter 𝑀 as three. Specifically, we set 𝑀 = 3 to our
second experiment.

In our second experiment, we will verify the effectiveness
of the proposed method by comparing it with other state-
of-the-art methods [10, 17, 18] on the ROC training dataset
shown in Figure 9.

As can be seen, the proposed method outperforms other
methods at the same FPPI and yields a higher sensitivity.
Table 2 depicts the sensitivity at seven fixed FPPI (1, 2, 4, 8, 12,
16, and 20) and the average sensitivity of all methods derived
from FROC curves in Figure 9.

According to Table 2, the proposed method shows better
performance and detects more MAs at the same FPPI points.
Besides, the average sensitivity of our proposed method
is 0.285, which is better than other methods. The good
performance is due to the following two points: on one
hand, image contrast enhancement andMSCF are adopted to
detect all the possible MA candidates. Since more candidates
also bring in more burdens for classification, on the other
hand, multifeature fusion dictionary learning is combined
to our model for relaxing this burden and improving the
performance of MA classification. Besides, from Table 2, we
also can see that the average scores of all algorithms are
relatively low. This may happen because of the quality of the
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Table 2: Sensitivities of different methods at various false positive points for 30 training images.

1 2 4 8 12 16 20 Avg
Niemeijer et al. [10] 0.072 0.087 0.101 0.121 0.130 0.185 0.210 0.130
Zhang et al. [17] 0.127 0.150 0.197 0.289 0.310 0.316 0.330 0.255
Javidi et al. [18] 0.130 0.147 0.209 0.287 0.319 0.353 0.383 0.261
Proposed method 0.128 0.151 0.250 0.300 0.356 0.381 0.432 0.285
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Figure 9:The FROC curves of the proposedmethod comparedwith
the state-of-the-art methods using 30 ROC training images.

images which are JPEG compressed causing some MAs to be
too small or too blurred to be seen with the naked eye [16].
Even so, our algorithm is still significantly superior to the
other algorithms.

5. Conclusion and Future Work

In this paper, we present a novel algorithm, namely, automatic
microaneurysm detection based on multifeature fusion dic-
tionary learning in diabetic retinopathy, which explicitly inte-
grates multiple features and dictionary learning into a unified
framework. Our proposed method consists of the following
four steps. The first step is related to preprocessing. Next,
all the possible MA candidates can be detected using MSCF.
Then, extractMA and non-MA image patches. Also, multiple
features are used for characterizing these image patches
forming multifeature dictionary. The last step involves the
true MAs classification using multifeature fusion dictionary
learning method. The experiments are carried out on the
standard and public available Retinopathy Online Challenge
(ROC) training datasets. The experimental results indicate
that our proposed method in MA detection has the better
average sensitivity compared to the state-of-the-art methods.

The future work includes the following issues: firstly, our
proposed model does not take the evaluating severity DR
into consideration, a possible future work lies in defining the
degree of DR severity. Besides, applying our proposed frame-
work to other lesions’ detection is also another interesting
topic for future study.
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