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The 𝑘-𝑡 principal component analysis (𝑘-𝑡 PCA) is an effective approach for high spatiotemporal resolution dynamic magnetic
resonance (MR) imaging. However, it suffers from larger residual aliasing artifacts and noise amplification when the reduction
factor goes higher. To further enhance the performance of this technique, we propose a new method called sparse 𝑘-𝑡 PCA that
combines the 𝑘-𝑡 PCA algorithmwith an artificial sparsity constraint. It is a self-calibrated procedure that is based on the traditional
𝑘-𝑡 PCA method by further eliminating the reconstruction error derived from complex subtraction of the sampled 𝑘-𝑡 space from
the original reconstructed 𝑘-𝑡 space. The proposed method is tested through both simulations and in vivo datasets with different
reduction factors. Compared to the standard 𝑘-𝑡 PCA algorithm, the sparse 𝑘-𝑡 PCA can improve the normalized root-mean-square
error performance and the accuracy of temporal resolution. It is thus useful for rapid dynamic MR imaging.

1. Introduction

High spatial and temporal resolutions are very important
in dynamic magnetic resonance imaging (dMRI) clinical
applications, such as functional MRI, cardiac cine imag-
ing, and perfusion imaging among others. To improve the
imaging speed of dMRI, a number of fast imaging tech-
niques have been developed taking advantage of relevant
correlations in both spatial 𝑘-space location and temporal
dimension [1, 2]. Examples of these approaches include
dynamic parallel imaging [3, 4] and several 𝑘-𝑡 methods
[5, 6]. Dynamic parallel imaging techniques such as temporal
sensitivity encoding (TSENSE) [3] and temporal generalized
autocalibrating partially parallel acquisitions (TGRAPPA)
[4] are based on time-interleaved sampling pattern and the
autocalibration of full 𝑘-space without extra reference lines.
These methods have been adopted for cardiac MR imaging
[7–9]. The 𝑘-𝑡 techniques, including 𝑘-𝑡 Broad-use Linear
Acquisition Speed-up Technique (BLAST)/SENSE [5] and
𝑘-𝑡 GRAPPA [6], can dramatically reduce the scan time

with either multichannel or single-channel data [10, 11]. 𝑘-𝑡
GRAPPA utilizes the spatiotemporal correlations to linearly
interpolate the missing data in 𝑘-𝑡 space. The 𝑘-𝑡 BLAST
unfolds the signal aliasing by an adaptive filter derived from
the estimated signal covariance of the low resolution data.
As an enhancement of 𝑘-𝑡 BLAST, 𝑘-𝑡 principal component
analysis (𝑘-𝑡 PCA) [12] further exploits the relevant signal
correlations as the temporal basis functions tailored to the
training data and makes the reconstruction problems inher-
ently overdetermined. The most fundamental assumption in
𝑘-𝑡 PCA is that the true 𝑥-𝑓 data can be represented by
the defined basis functions. Consequently, it has improved
temporal resolution andownsmore suitable applications than
𝑘-𝑡 BLAST [13–15].

All the above-mentioned techniques can only improve
the spatiotemporal resolution of MRI to certain extent; when
the reduction factor goes higher, these methods usually
encounter problems associated with noise amplification and
residual aliasing artifacts [16–18]. Thus, new methods are
called for development. For example, artificial sparsity has
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Figure 1: The flow chart of conventional 𝑘-𝑡 PCA reconstruction.

recently been used to improve the imaging performance
[18–24]. As shown in [18], a novel approach is presented
to decrease the 𝑔-factor in TGRAPPA, which separated the
localized dynamic regions from the composite image for
reconstruction only. This sparse approach is also performed
on TSENSE [19]. As it improved the solution of least square
function, sparse TSENSE approach could obtain robust
reconstruction at high frame rates. For 𝑘-𝑡 BLAST/SENSE
and 𝑘-𝑡GRAPPAwith the residual 𝑘-space method, in which
the temporal invariant terms were calculated separately and
subtracted from each frame before reconstruction, artificial
sparsity was also successfully developed for dMRI applica-
tions [5, 6]. In another artificial-sparsity-based work [20],
a high-pass filter was used to suppress the low frequency
parts while preserving the high frequency information for
GRAPPA reconstruction, which corresponded to the image
details and edge information. These approaches achieved a
good reconstruction quality forMR imagingwith high reduc-
tion factors. InMR angiography, both contrast-enhanced and
non-contrast-enhanced MR angiography [21, 22] techniques
were also beneficial from artificial sparsity. It was shown
that the noise amplification at high reduction factor was
reduced, since the difference data denoted sparse dataset.
As for high spatiotemporal resolution dynamic contrast-
enhanced reconstruction, 𝑘-𝑡 ARTS-GROWL scheme was
proposed to combine dynamic artificial sparsity with non-
Cartesian parallel imaging [23], which results in satisfactory
image quality with high computational efficiency.

In this work, we propose an approach to combine 𝑘-𝑡
PCA with artificial sparsity, termed sparse 𝑘-𝑡 PCA, for
further improving the image reconstruction quality of dMRI.
This new method attempts to eliminate the reconstruction
error of the traditional 𝑘-𝑡 PCA algorithm in the form of
the difference data between the sampled 𝑘-𝑡 space and the
original reconstructed 𝑘-𝑡 space. The method is tested by
using both numerical simulations and in vivo dataset with
different reduction factors. Moreover, another artificial spar-
sity scheme named residual 𝑘-𝑡 PCA is also generated in this
work, which is following the scheme in [5, 6]. Comparison
between sparse 𝑘-𝑡 PCA, standard 𝑘-𝑡 PCA, and residual 𝑘-𝑡
PCA is presented.

2. Theory

2.1. A Brief Review of 𝑘-𝑡 PCA and Artificial Sparsity. Figure 1
shows the workflow of 𝑘-𝑡 PCA technique [12]. The 𝑘-
𝑡 PCA is a variation of 𝑘-𝑡 BLAST that further extracts
the spatiotemporal correlations in the low resolution data
utilizing principal component analysis (PCA) method. Based
on the partially separable theory [25], it efficiently decom-
poses the training and undersampled signals with the use of
spatial invariant basis functions and time-invariant weighting
coefficients in the 𝑥-pc domain (𝑥 = spatial position, pc =
principle components obtained by applying a PCA operator):

Ptrain =WtrainB, (1)
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where Ptrain is the training dataset corresponding to low
spatial resolution and full temporal resolution image. B
contains spatial invariant basis functions and the rows of B
contain the principal components (PCs). Wtrain contains the
weighting coefficients of the PCs for a specific spatial location
in the training dataset. It is assumed that the true 𝑥-𝑓 data
P can be decomposed by the defined basis functions B as
follows:

P =WB, (2)

where W is the 𝑥-pc representation of P and the rows of W
contain the spatial location 𝑥. The aliased signal intensity at
location (𝑥, 𝑓𝑚) is given by the sum of 𝑅 (acceleration factor)
pixels in true 𝑥-𝑓 voxels depending on the sampling point
spread function:

Palias (𝑥, 𝑓𝑚) = [1 1 ⋅ ⋅ ⋅ 1]
[[[[[[
[

𝑃 (𝑥1, 𝑓𝑚,1)
𝑃 (𝑥2, 𝑓𝑚,2)

...
𝑃 (𝑥𝑅, 𝑓𝑚,𝑅)

]]]]]]
]

, (3)

where [1 1 ⋅ ⋅ ⋅ 1] represents the unit row vector and the
length is𝑅. (𝑥𝑖, 𝑓𝑚,𝑖) indicates the position of 𝑖th aliasing pixel
in the true object.

In (2), the weighting coefficient matrix W is temporally
invariant, the aliased signal of all temporal frequencies at
location 𝑥 can be collected in a vector Palias,𝑥, and the
unknown spatial weighting at aliasing positions can be
collected in the vector W𝑥. Then an encoding matrix E
is introduced, which contains the spatially invariant basis
function B, as follows:

Palias,𝑥 = EW𝑥. (4)

Exploiting the Tikhonov regularized least-squares solu-
tion to the above Equation (4),W𝑥 is given as follows [12]:

W𝑥 = 𝑀2𝐸𝐻 (𝐸𝑀2𝐸𝐻 + 𝜆I)+ Palias,𝑥, (5)

where 𝑀2 = diag(𝑤train,𝑥𝑤𝐻train,𝑥) is the signal covariance
matrix.The superscript𝐻 is the conjugate transpose operator,
and superscript + represents the Moore-Penrose pseudoin-
verse. I denotes the identitymatrix, and𝜆 is the regularization
parameter to balance the fidelity of the solution andTikhonov
regularization. Larger values of 𝜆 will smooth the solution,
while small values bring high noise level.

Artificial sparsity is a useful concept to be used to improve
the performance of the parallel imaging or parallel imaging
like approaches [5, 6, 18–24]. For parallel imaging, better
reconstruction accuracy can be achieved when the image
content becomes artificially sparse, because there are fewer
pixels superimposed on each other. For 𝑘-𝑡 PCA, when the
acceleration factor goes higher, the condition of the encoding
matrix𝐸 is worse andmay suffer fromnoise amplification and
higher reconstruction error. The fundamental assumption
underlying sparse 𝑘-𝑡 PCA is that 𝑘-𝑡 PCA will have better
performance when the image support reduces and the sparse
data will improve the condition of the encoding matrix
inversion.

Because artificial sparsity and 𝑘-𝑡 PCAuse fundamentally
different acceleration methods, it is feasible to combine them
together for a better performance in this work.

3. Materials and Methods

3.1. Flowchart of Residual 𝑘-𝑡 PCA and Sparse 𝑘-𝑡 PCA.
Figure 2 shows the flow charts of standard 𝑘-𝑡 PCA and two
variants of 𝑘-𝑡 PCA reconstructions proposed in this work,
which is demonstrated using the cardiac perfusion phantom
data. Figure 2(b) shows 𝑘-𝑡 PCA combined with a sparse
processing, termed residual 𝑘-𝑡 PCA in this work. Its pro-
cedure is summarized as follows: (1) firstly, the inverse Fast
Fourier Transform (IFFT) is conducted on the time-averaged
𝑘-space to obtain the direct-current (DC) image; (2) this
time-averaged 𝑘-𝑡 space is then subtracted from each frame
of the sampled 𝑘-𝑡 data to get the residual 𝑘-𝑡 space; (3) after
the 𝑘-𝑡 PCA reconstruction, the final image is constructed by
adding the DC image and residual image together.

The procedure of the proposed method is summarized
in Figure 2(c): (1) apply traditional 𝑘-𝑡 PCA to obtain the
original image; (2) after Fast Fourier Transform (FFT), the
corresponding 𝑘-𝑡 space is gained according to an under-
sampling pattern; (3) by complex subtracting the sampled 𝑘-
𝑡 space from the corresponding 𝑘-𝑡 space, the sparse data is
artificially produced; (4) then, take 𝑘-𝑡 PCA reconstruction
to generate the sparse image; (5) finally, add the sparse image
into the original reconstructed result to obtain the final
image. In sparse 𝑘-𝑡 PCA method, the procedure of 𝑘-𝑡 PCA
introduces the reconstruction error inevitably. If this error
information is well restored, the final reconstruction will be
improved.

3.2. Numerical Simulations. To validate the presented 𝑘-𝑡
method against the reference, a fully sampled 2D image
was simulated using the MRXCAT first-pass myocardial
perfusion numerical phantom [26] with default settings
unless explicitly stated. The relevant imaging parameters of
the simulated perfusion dataset included pulse repetition
time (TR)/echo time (TE) = 2/1ms; flip angle (FA) = 15∘;
spatial resolution = 2 × 2 × 5mm3, matrix size = 224 ×
192. No respiratory motion was involved in the dataset. The
dose of contrast agent was 0.075mmol/kg. This phantom
dataset was made up of 32 time frames and collected by
four receiver coils. Normalized-distributed complex white
Gaussian noise was then added to the phantom data for
all the coils to yield a signal-to-noise ratio (SNR) of 20 dB.
The simulation data were undersampled and reconstructed
using standard, residual, and sparse 𝑘-𝑡 PCA. Specially, the
simulation data consisted of two separate parts: training data
and undersampled data.The training data were selected from
a center region of 𝑘-space in each time frame, despite not
being used in the final reconstruction. The undersampled
data were obtained using an interleaved sampling pattern
on the sheared-grid [12]. The reduction factor indicated
the degree of accelerated sampling in the undersampled 𝑘-𝑡
space. To compare the results from different reconstructions,
all the 𝑘-𝑡 PCA methods were performed using 11 training
profiles with the reduction factors from 4 to 8.
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Figure 2: Flow charts of standard 𝑘-𝑡 PCA (a), residual 𝑘-𝑡 PCA (b), and sparse 𝑘-𝑡 PCA (c). (The concept of “New 𝑘-𝑡 data” is the
undersampled 𝑘-space data corresponding to the raw 𝑘-space locations.)

3.3. In Vivo Experiments. One volunteer participated in the
study. The fully sampled in vivo experiment of 2D first-pass
cardiac perfusion MR imaging was performed on a 3.0 Tesla
MR system (Tim Trio; Siemens Healthcare, Erlangen, Ger-
many), with 12 channels of both body flexible coils and spine
coils. The dataset was acquired using ultrafast spoiled gradi-
ent echo sequence with the following parameters: TR/TE =
2.5/1.3ms; FA = 10∘; field of view = 320 × 320mm2; spatial
resolution = 1.67 × 1.67mm2; matrix size = 192 × 192 and the
time frames = 40. Data acquisition was initiated simultane-
ously with intravenous injection gadopentetate dimeglumine
(Magnevist, Bayer Healthcare, Leverkusen; 0.1mmol/kg at
6mL/s) followed by a 20mL saline flush, injected at a rate
of 2mL/s. The training data and undersampled data were
yielded as in the numerical simulations, and all the in vivo
experiments were also reconstructed empirically with 11
training profiles. All human studies were conducted under
Institutional Review Board approval. The participant signed
the Informed consent before the imaging experiments.

All the datasets were reconstructed offline in the MAT-
LAB commercial software (version: R2014a; the Mathworks
Inc., Natick, MA). During the processing of all the 𝑘-𝑡

PCA methods, the number of principal components was
investigated and chosen to optimize the normalized root-
mean-square error (NRMSE) in each case. In this work, the
number of principal components was empirically chosen to
be 6 in numerical simulation and 7 in in vivo experiments.
Furthermore, all the multichannel data was firstly recon-
structed channel by channel and then combined with the
sensitivity maps for the optimum SNR according to [12]

𝐼 =
𝑁
𝑐∑
𝑗=1

𝐼𝑗 ⋅ 𝑆∗𝑗 . (6)

Here 𝑆𝑗 is the coil sensitivity map corresponding to coil 𝑗 and
𝑁𝑐 is the total coil counts.
3.4. Image Analysis. Both the simulations and the in vivo
datasets use the absolute error maps to accurately visualize
the reconstruction, which are calculated by subtracting the
reconstruction images from the fully sampled image.

For quantitative evaluation, the reconstruction quality
of the numerical simulation is also evaluated by NRMSE
and mean-NRMSE (𝑚-NRMSE). The NRMSE reports the
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Figure 3: Results of numerical simulations with reduction factor of 4 using three different reconstructionmethods.The 9th frame in the time
sequence corresponds to Row 1, the 13th frame corresponds to Row 2 and the 25th frame corresponds to Row 3. The small figures in the left
bottom corner of each figure demonstrate the corresponding enlarged region defined by the white box. The reconstructed images are shown
in the same intensity scale. The reference images are reconstructed by directly applying FFT for fully sampled data.

reconstruction errors relative to the reference image for each
case by

NRMSE =
Iref (𝑟) − Irec (𝑟)𝐹Iref (𝑟)𝐹 , (7)

where Irec is the reconstructed image from undersampling
and Iref is the reference image corresponding to the full
sampled image. 𝐹 represents the Frobenius norm.
𝑚-NRMSE represents the averaged NRMSE across all

time frames that can be expressed as

𝑚-NRMSE = ∑
𝑁
𝑡=1NRMSE𝑡
𝑁 , (8)

where NRMSE𝑡 is the NRMSE corresponding to the recon-
structed image of frame 𝑡 and𝑁 is the total frame counts.

The 𝑔-factor and SNRmaps are calculated using a pseudo
multiple replica approach [27]. The number of replicas is set
to 200 in this work.

In temporal resolution evaluation, the signal-intensity
time courses of twomanually drawn regions of interest (ROI)
are plotted to assess the perfusion reconstruction results, that
is, the left and right ventricles.

4. Results

4.1. Numerical Simulations. Figures 3, 4, 5, and 6 show the
results of the cardiac perfusion phantom. Figure 3 shows
the results of three temporal frames with the reduction
factor of 4 from different 𝑘-𝑡 PCA methods. When looking
into the zoomed in figures, it can be seen that the images
reconstructed by sparse 𝑘-𝑡 PCA contain less noise than
the other 𝑘-𝑡 PCA reconstructions for all the displayed
frames. Figure 4 shows the absolute error maps of the three
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Figure 4: Absolute error maps between the reference images and the corresponding reconstructed images in Figure 3. The three columns
correspond to traditional, residual, and sparse 𝑘-𝑡 PCA from left to right, respectively. The ROI defined by the white box in each figure was
brightened 15 times for better visualization.

corresponding different 𝑘-𝑡PCA images in Figure 3. From the
brightened ROI of the error maps, we can see less observable
noise and reconstruction error generated from sparse 𝑘-𝑡
PCA compared to the results from traditional and residual
𝑘-𝑡 PCA approaches.

Figure 5 displays 𝑔-factor and SNR maps of all the tested
approaches in this work. From this figure, we can see lower

𝑔-factor and higher SNR benefit in sparse 𝑘-𝑡 PCA compared
to other approaches used in this article. Compared to the
standard 𝑘-𝑡 PCA, the 𝑔-factor and SNR improvements are
obvious.

Figure 6 summarizes the quantitative performance of the
numerical simulations. Figure 6(a) shows the image quality
related results (NRMSE) of 4-fold acceleration. The plots
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in Figure 6(a) highlight the improvement of NRMSE of
sparse 𝑘-𝑡 PCA at all the time frames. The mean-NRMSE
(𝑚-NRMSE) values of the traditional, residual, and sparse
𝑘-𝑡 PCA methods are 10.1%, 8.9%, and 7.9% individually.
Figure 6(b) displays the𝑚-NRMSE values of different reduc-
tion factors; sparse 𝑘-𝑡 PCA always shows better 𝑚-NRMSE
than other tested approaches. Figures 6(c) and 6(d) illustrate
the signal-intensity time courses derived from the ROI
placed in the right ventricle and left ventricle, respectively.
Compared to the reference signal-intensity time courses
(the solid lines in Figures 6(c) and 6(d)), all the 𝑘-𝑡 PCA
methods show good resemblance while the sparse 𝑘-𝑡 PCA
reconstruction is observed with better accuracy at the peak of
the curve. In conclusion, the sparse 𝑘-𝑡 PCA reconstruction
approach shows less prone to error and has higher NRMSE
than the traditional and residual 𝑘-𝑡 PCA at all the temporal
frames.

4.2. In Vivo Experiments. Figure 7 shows the 4-fold acceler-
ated in vivo reconstructions of the cardiac perfusion at three
time frames: 8th, 14th, and 22nd, respectively. The absolute
error maps are displayed together with the reconstructed

result, which prove lower reconstruction error in the sparse𝑘-
𝑡 PCA reconstructions compared to other tested approaches.

Figure 7 shows some reconstructed frames and the cor-
responding absolute error maps of the 4-fold accelerated in
vivo cardiac perfusion dataset. Compared with conventional
𝑘-𝑡 PCA, the absolute error maps of sparse 𝑘-𝑡 PCA show
fewer artifacts and visible errors around the heart region.
Compared to residual 𝑘-𝑡 PCA, the result of the sparse
reconstruction method also looks slightly better.

Figure 8 shows the NRMSE curves of all the temporal
frames and the signal-intensity time courses of two manually
selected ROIs. Figure 8(a) demonstrates that the NRMSE
criterion of sparse 𝑘-𝑡 PCA is the best among all the tested
algorithms. In this in vivo experiment, the𝑚-NRMSE values
are 6.5%, 5.1%, and 4.3% for the traditional, residual, and
sparse 𝑘-𝑡 PCA methods, respectively. Figures 8(b) and 8(c)
display the signal-intensity time courses of two manually
drawn ROIs (two ventricles). Sparse 𝑘-𝑡 PCA and residual
𝑘-𝑡 PCA yield better consistency with the reference than
traditional 𝑘-𝑡 PCA. Overall, it is demonstrated that the
sparse 𝑘-𝑡 PCA generates lower reconstruction errors than
other tested approaches in this work.
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Figure 6: Summary of the quantitative performance of three 𝑘-𝑡 PCA methods on numerical simulations. The plots show the NRMSE of
different time frames of 4-fold acceleration (a), 𝑚-NRMSE of different reduction factors (b), and the signal-intensity time courses of left
ventricle (d) and right ventricle (c) at the reduction factor of 4 with different time frames.

5. Discussion

Based on the numerical simulations and in vivo data, the
sparse 𝑘-𝑡 PCA reconstruction scheme is proposed to com-
pare with traditional 𝑘-𝑡 PCA and residual 𝑘-𝑡 PCA in this
paper.This is accomplished by correspondingly complex sub-
tracting the sampled 𝑘-𝑡 space from the once reconstructed
𝑘-𝑡 space, and then add the processed difference images back
into the original results. Both the simulation and in vivo
experiments have shown the improved image quality and
reduced NRMSE values in this work.

It has been shown that some methods, such as parallel
imaging, could be expected to achieve better reconstruction
quality when the image support becomes smaller, because
they inherently incorporate the sparse image content via the
coil sensitivity profile. In the proposed method, the sparsity
of the difference data can also be exploited to improve the 𝑘-
𝑡 PCA reconstructions from the weighting calculation. The
reconstruction of original 𝑘-𝑡 PCA is supposed to improve,
as the error information can be accurately reproduced and
removed through the artificial sparse reconstruction.
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Figure 7: The 4-fold accelerated in vivo results at the selected frames and the corresponding absolute error maps are shown in the following
rows, reconstructed by traditional, residual, and sparse 𝑘-𝑡 PCA approaches. The reconstructed images are shown in the same intensity scale,
and the error maps are scaled twofold for better visualization.The reference images are reconstructed by applying FFT for fully sampled data.

The observations made from the numerical simulations
are also verified in the in vivo experiments. When the
acceleration factor is 4, compared to traditional 𝑘-𝑡 PCA, the
𝑚-NRMSE of the presented sparse 𝑘-𝑡 PCA has reduced by
22% for numerical data and 34% for in vivo data, respectively.
From the comparisons in Figures 3, 4, 6, and 7, we are able to
see lower artifacts and noise level in the sparse reconstruction
images than standard 𝑘-𝑡 PCA. It means that sparse 𝑘-𝑡

PCA can enable a self-calibration effect on traditional 𝑘-𝑡
PCA. When the reduction factor becomes higher, the 𝑚-
NRMSE of sparse 𝑘-𝑡 PCA is still better than the other two
𝑘-𝑡PCA approaches (Figure 6(b)), and the improvement over
the traditional 𝑘-𝑡 PCA is obvious. For temporal resolution,
the signal-intensity time courses (Figures 6(c), 6(d), 8(b), and
8(c)) also prove the superior performance of the sparse 𝑘-𝑡
PCA.
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Figure 8: Summary of the quantitative performance of three 𝑘-𝑡 PCA methods on 4-fold accelerated in vivo dataset. The plots show the
NRMSE (a) and the signal-intensity time courses of two manually drawn ROIs (b, c) at the reduction factor of 4 with different time frames.

Although reconstructions from our undersampled data
demonstrate the feasibility of the presented framework, it still
needs some investigations in practical experiments. When
the reduction factor goes higher, the reproduction of error
information should be investigated in sparse 𝑘-𝑡 PCA for
better reconstruction of dynamic signal. In addition, this kind
of scheme is performed on 2D dynamic imaging using 𝑘-𝑡
PCA; it can also be extended to other 𝑘-𝑡 parallel imaging

type approaches (e.g., 𝑘-𝑡 BLAST/SENSE [5], 𝑘-𝑡 GRAPPA
[6], and 𝑘-𝑡 SPIRiT [28]) for further study.

6. Conclusions

The improved 𝑘-𝑡PCAmethod obtains higher reconstruction
quality compared with traditional one for the tested imaging
cases. Compared to the residual 𝑘-space method, sparse 𝑘-𝑡
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PCA always achieves better performance. The experimental
results suggest that sparse 𝑘-𝑡 PCA can improve the clinical
applicability of dynamic MRI.
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