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A. Derivation of theoretical results for three indicators  
A1. A generic model in abstract phase space and some preliminaries 
Consider the following continuous-time dynamical system representing the dynamical evolution of a 
complex system: 

 ( )( ) ( ); ,dZ t f Z t P
dt

=  (S1) 

where ( )1 2( ) ( ), ( ), , ( ) T n
nZ t z t z t z t= ∈ is an n -dimensional state vector or variables at time instant t  

representing gene or protein expressions, and ( )1 2, , , T s
sP p p p= ∈ is an s -dimensional parameter 

vector or driving factors representing slowly changing factors. : n s nf × →  an n -dimensional 
nonlinear function vector.  
For the convenience for our derivations in next section, several theoretical conclusion should be listed 
here. 
Definition A1.1(Kuznetsov, 2013) A dynamical system { }, ,n tT ϕ is called topologically equivalent to a 

dynamical system { }, ,n tT ψ where tϕ or tψ is a flow for the corresponding continuous-time model if 

there is a homeomorphism : n nh → mapping orbits of the first system onto orbits of the second 
system, preserving the direction of time. 
 

As the parameters vary, the phase portrait also varies. There are two possibilities: either the system 
remains topologically equivalent to the original one, or its topology changes. 
 
Definition A1.2(Kuznetsov, 2013) The appearance of a topologically nonequivalent phase portrait under 
variation of parameters P is called a bifurcation. 
Thus, a bifurcation is a change of the topological type of the system as its parameters pass through a 
bifurcation value *P . 
 
Theorem A1.1(Kuznetsov, 2013) Suppose that 0Z  is an equilibrium of (S1), and denote by A the 
Jacobian matrix of ( )f x  evaluated at the equilibrium, i.e. ( )0ZA f Z= . Then 0Z is asymptotically stable 
if all eigenvalues 1 2, , , nλ λ λ of A satisfy Re 0λ < . 
 
Theorem A1.2(Kuehn, 2013)Suppose ( )* *,F Z P= is Lyapunov stable with respect to the fast subsystem 

 
( ),

,
0

dZ f Z P
dt
dP
dt

⎧ =⎪⎪
⎨
⎪ =
⎪⎩

 (S2) 

then there is no critical transition at F . 
 
    We can also view this theorem as the robustness for the asymptotically stable equilibrium *Z  with 
respect to the parameter *P (Hart, et al., 2012). 
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Obviously, our focus with respect to complex diseases is critical transitions. And it is also 
appropriate to use the saddle-node bifurcation, which is a kind of critical transition(Kuehn, 2011; Kuehn, 
2013), to depict the evolution from normal state to disease state, because the deterioration for complex 
diseases is just the situation that an asymptotically stable equilibrium "fall" into another asymptotically 
equilibrium abruptly. We can view the bifurcation point as transition point in this paper. According to 
Theorem A2.1 and A2.2, the bifurcation point considered here is not hyperbolic. That is, for the Jacobian 
matrix of the continuous-time dynamical system at the bifurcation point, the real part of one of the 
eigenvalues is zero. 
 

Based on this conclusion, assume that the following conditions hold for (S1), for which the 
bifurcation occurs at the bifurcation value *P . 
1 . *Z is an equilibrium of system (S1)such that ( )*; 0f Z P = . 

2 . For the bifurcation value *P , the real parts of one or a complex-conjugate pair of the eigenvalues  

for the Jacobian matrix 
( )

*

*;

Z Z

f Z P
Z

=

∂
∂

are equal to zero. 

3 .When *P P≠ , the real parts of all the eigenvalues for the Jacobian matrix are negative. 
 
Without loss of generality, let ( ) ( ) *X t Z t Z= − which implies that the equilibrium *Z corresponds to

* 0X = . Thus, in the vicinity of * 0X = , system (S1)is transformed into 

 ( ) ( )( )*; ,
dX t

f X t Z P
dt

= +  (S3) 

where ( ) ( ) ( ) ( )( )1 2, , ,
n n

nX t x t x t x t= ∈ . We can write 

 
( )

*

;

Z Z

f Z P
J

Z
=

∂
=

∂
 

as the Jacobian matrix of f , and ( )( );N X t P as the nonlinear part containing higher-order terms. Then, 

taking the Taylor expansion for f at the equilibrium * 0X ≡ gives 

 ( ) ( ) ( )( ); ,
dX t

JX t N X t P
dt

= +  (S4) 

where ( )J J P= is nonsingular. It is easy to see that, there exists a nonsingular matrix ( )S S P  

satisfying 1J S S −= Λ , where Λ is in a normalized form. If we make the transformation ( ) ( )1Y t S X t−=
and take the derivative with respect to the time t on both sides, a linearized equation of (S4) with the 
random perturbations can be formulated as(Mao, 2007) 

 ( ) ( ) ( ),
dY t dB t

Y t G
dt dt

= Λ +  (S5) 

or 
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( )
( )

( )

( )
( )

( )

( )
( )

( )

1 1 11 12 1 1

2 2 21 22 2 2

1 2

,

m

m

n n n n nm m

dy t y t g g g dB t
dy t y t g g g dB t

dy t y t g g g dB t

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟= Λ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (S6) 

where ( ) ( ) ( ) ( )( )1 2, , ,
T

nY t y t y t y t= , and ( )PΛ = Λ . ( ) ( ) ( )( )1 , ,
T

mB t B t B t= is an m -dimensional 
Brownian motion and 

 

11 12 1

21 22 2

1 2

.

m

m n m

n n nm

g g g
g g g

G

g g g

×

⎛ ⎞
⎜ ⎟
⎜ ⎟= ∈
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

In order to make the stochastic differential model (S6)meaningful, we can assume that 

 
1

0, , 1, 2, , .
m

il jl
l

g g i j n
=

≠ =∑  (S7) 

Notice that J and Λ have the same eigenvalues, and thus the conditions 2 and 3 hold for Λ . Therefore, it 
is reasonable for us to call the eigenvalue with the largest real part the dominant eigenvalue, the real part 
of which first reaches 0 when P reaches *P . 
 
Obviously, the normalized form Λ for the Jacobian matrix J is different for different nonlinear function f
in (S3). Before P reaches the bifurcation value *P , the eigenvalues for J or Λ can be real or complex. 
Therefore, we can consider the following three cases. 
 
Case1. If J have n real eigenvalues and n  eigenvectors, then there exists a singular matrix S satisfying

( )1
1 2, , , nS JS diag λ λ λ−Λ = = , where ( )0 1, 2, ,i i nλ < = . In this case, we can view 1λ as the dominant 

eigenvalue. 
 
Case 2 . If J have n real eigenvalues but does not have n linearly independent eigenvectors, there is a 
nonsingular matrix S making 

 

1

1

0 0
0

,
0

0 0 q

G

S JS

G

−

⎛ ⎞
⎜ ⎟
⎜ ⎟Λ = = ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 (S8) 

 
where 

 

1 0 0
0

0 ,
1

0 0

j

j

j

G

λ

λ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠
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with 0jλ < . We can move the block with the dominant eigenvalue to the first position of Jordan normal 
form Λ . 
 
Case3 . If J  has at least one pair of complex conjugate eigenvalues, then there is a nonsingular matrix 
S making 1S JS−Λ =  where the partitioned matrix Λ is of the form (S8), but 

 

0 0
0

1
0 , ,

1

0 0

j

j j
j j

j j

j

C I

a b
G C I

b a
I

C

⎛ ⎞
⎜ ⎟
⎜ ⎟ −⎛ ⎞ ⎛ ⎞⎜ ⎟= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
⎜ ⎟
⎜ ⎟
⎝ ⎠

， 

where 0,j ja b< ∈ before P reaches the bifurcation value *P . Also suppose that the dominant 
eigenvalues are in the first position of Λ . 
 
 
A2. Stochastic analyses and statistical indicators 
In Case 1, since 

 

1

2
1, 0, 2,3, , ,j

n

j n

λ
λ

λ λ

λ

⎛ ⎞
⎜ ⎟
⎜ ⎟Λ = < < =
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

we have 

 0

0

( ) ( )
0

1
( ) ( ) ( ), 1, 2, , .i i

tm
t t t s

i i ik k
k t

y t e y t g e dB s i nλ λ− −

=

= + =∑ ∫  (S9) 

Then, 
 

 
02 ( )

2

1

1( ( )) .
2

i t tm

i ik
k i

eVar y t g
λ

λ

−

=

−⎛ ⎞= ⎜ ⎟ −⎝ ⎠
∑  (S10) 

 
In Case 2, based on the similarity of the methods, set 2j = as the order of the 1G block. Solving the 
stochastic differential equations 

 11 1 1

1 22 1 2

( ) 1 ( )
( )

( ) ( )

m
k

k
k k

gdy t y t
dt dB t

gdy t y t
λ

λ =

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞
= + ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
∑  (S11) 

yields 

 

1 0

1

0

1 0 1

0

( )
1 1 0 0 2 0

( )
1 2

1

( ) ( )
2 2 0 2

1

( ) [ ( ) ( ) ( )]

[ ( ) ] ( )
.

( ) ( ) ( )

t t

tm
t s

k k k
k t

tm
t t t s

k k
k t

y t e y t t t y t

e g t s g dB s

y t e y t g e dB s

λ

λ

λ λ

−

−

=

− −

=

⎧ = + −
⎪
⎪ + + −⎪
⎨
⎪
⎪ = +
⎪⎩

∑∫

∑∫

 (S12) 
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It is easy to see that 

 

1 0

1 0

1 0

2 ( )
2

1 1
1 1

2 ( )
1 0

1 2 2
1 1

2 ( )2 2
2 1 0 1 0

2 3
1 1

1( ( ))
2

[2 ( ) 1] 1 .
2

[2 ( ) 2 ( ) 1] 1
4

t tm

k
k

t tm

k k
k

t tm

k
k

eVar y t g

t t eg g

t t t t eg

λ

λ

λ

λ
λ

λ
λ λ

λ

−

=

−

=

−

=

−⎛ ⎞= ⎜ ⎟ −⎝ ⎠
− − +⎛ ⎞+ ⎜ ⎟

⎝ ⎠
− − − + −⎛ ⎞+ ⎜ ⎟

⎝ ⎠

∑

∑

∑

 (S13) 

and ( )( )2Var y t is the same as (S10). 
 
      In case 3, similar to Case 2, suppose 2j = is the order of the 1G block. Solving 

 11 1 1 1

1 22 1 1 2

( ) ( )
( )

( ) ( )

m
k

k
k k

gdy t a b y t
dt dB t

gdy t b a y t =

− ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞
= + ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
∑  (S14) 

yields 

 

1 0

1

0

1 0

1

( )
1 1 0 1 0 1 0 2 0

( )
1 1 1 2

1

( )
2 1 0 1 0 1 0 2 0

( )
1 1

( ) (cos( ( )) ( ) sin( ( )) ( ))

[cos( ( )) sin( ( )) ] ( )

( ) (sin( ( )) ( ) cos( ( )) ( ))

[sin( ( )) cos(

a t t

tm
a t s

k k k
k t

a t t

a t s
k

y t e b t t y t b t t y t

e b t s g b t s g dB s

y t e b t t y t b t t y t

e b t s g b

−

−

=

−

−

= − − −

+ − − −

= − + −

+ − +

∑∫

0

1 2
1

.

( )) ] ( )
tm

k k
k t

t s g dB s
=

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪ −
⎪⎩

∑∫

 (S15) 

Based on this, it is easy to verify that 

 

( )( )

( )

( )( )

( )

1 0

1 0

2 2
1 2

1 1
1 cos 1 2 sin

1

2 2
1 2

2 ( )1 1

1

2 2
2 1

1 1
2 cos 1 2 sin

1

2 2
1 2

2 ( )1 1

1

2

1
4

,

2

1
4

m m

k k m
k k

k k
k

m m

k k
a t tk k

m m

k k m
k k

k k
k

m m

k k
a t tk k

g g
Var y t I g g I

g g
e

a

g g
Var y t I g g I

g g
e

a

= =

=

−= =

= =

=

−= =

⎧ −⎪ ⎛ ⎞⎪ = − ⎜ ⎟
⎪ ⎝ ⎠
⎪
⎪ +
⎪ + −⎪ −⎪
⎨
⎪ −
⎪ ⎛ ⎞= +⎪ ⎜ ⎟

⎝ ⎠⎪
⎪

+⎪
⎪ + −
⎪ −⎩

∑ ∑
∑

∑ ∑

∑ ∑
∑

∑ ∑

 (S16) 

where 
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[ ] 1 0

1 0

2 ( )
1 1 0 1 1 0 1

sin 2 2
1 1

2 ( )
1 1 0 1 1 0 1

cos 2 2
1 1

sin(2 ( )) cos(2 ( ))
2( )

.
[ sin(2 ( )) cos(2 ( ))]

2( )

a t t

a t t

a b t t b b t t e b
I

a b

b b t t a b t t e aI
a b

−

−

⎧ − − − +
=⎪ +⎪

⎨
− + − −⎪ =⎪ +⎩

 

 
    In view of the above three cases, we can get 

 ( )( )
*

1
lim lim .

1it P P

i
Var y t

finite number i→+∞ →

+∞ =⎧
= ⎨ ≠⎩

 (S17) 

 
    We will investigate statistical characteristics for the original variables Z . Here we should first point 
out the fact that: from ( ) ( ) *X t Z t Z= − and ( ) ( )1Y t S X t−= , it follows that 

 *( ) ( ) ,Z t SY t Z= +  (S18) 
or, equivalently, 

 *

1

( ) ( ) , 1, 2, , ,
n

i ij j i
j

z t s y t z i n
=

= + =∑  (S19) 

where ( )ij n n
S s

×
. 

 
A2.1. Coefficient of Variation (CV) 

    According to the definition of coefficient of variation ( ) ( )
( )

Var X
CV X

E X
= , 

we can consider Case 1 for which Λ is diagonal and it is easy for us to calculate ( )Var X and ( )E X . 
 
Theorem 3.1.1 Suppose that Λ Eq. (3) in main text, i.e., Eq.(S5)in Supplementary information, is diagonal, 
then 

 ( )( )
*

1

1

0
lim lim .

A 0
i

it P P i

s
CV z t

finite number s→+∞ →

+∞ ≠⎧
= ⎨ =⎩

 (S20) 

Proof. If i j≠ ，then 

 0 0

0

( )( )

1 1

( )( )

1

( ( ), ( )) ( ) ( )

.
1

( )

ji

i j

t tm m
t st s

i j ik k jk k
k kt t

t tm

ik jk
k i j

Cov y t y t E e g dB s e g dB s

eg g

λλ

λ λ

λ λ

−−

= =

+ −

=

⎡ ⎤⎛ ⎞⎛ ⎞
⎢ ⎥= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

⎛ ⎞−⎛ ⎞= ⎜ ⎟⎜ ⎟⎜ ⎟− +⎝ ⎠⎝ ⎠

∑ ∑∫ ∫

∑
 

Thus, 

 ( ) ( )( ) ( )*

1lim lim , .

m

ik jk
k

i jt P P
i j

g g
Cov y t y t

λ λ
=

→+∞ →
=

− +

∑
 (S21) 

From (S19), we have 
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 *
1 1( ) ( ) ( )i i in n iz t s y t s y t z= + + +  

and 

 ( ) ( )( )2 2
1 1

2 1 1

( ( )) ( ( )) ( ( )) , .
n n n

i i il l ik im k m
l k m

m k

Var z t s Var y t s Var y t s s Cov y t y t
= = =

≠

= + +∑ ∑∑  

Then， 

 ( )( )
*

1

1

0
lim lim .

A 0
i

it P P i

s
Var z t

finite number s→+∞ →

+∞ ≠⎧
= ⎨ =⎩

 

Since 

 ( )( ) ( )
*

1 0 1
lim lim ,

0 1it P P

y t i
E y t

i→+∞ →

⎧ =
= ⎨ ≠⎩

 

we know that 

 ( )( ) ( )
*

*
1 1 0 1

*
1

0
lim lim .

0
i i i

it P P
i i

s y t z s
E z t

z s→+∞ →

⎧ + ≠
= ⎨ =⎩

 

According to ( ) ( )
( )

Var X
CV X

E X
= , it is easy to provethat 

 ( )( )
*

1

1

0
lim lim .

A 0
i

it P P i

s
CV z t

finite number s→+∞ →

+∞ ≠⎧
= ⎨ =⎩

 

This completes the proof.  
 

We recall that *
1 1( ) ( ) ( )i i in n iz t s y t s y t z= + + + . 

11 0is ≠ implies that 
1
( )iz t is related to the dominant 

eigenvalue.
11 0is ≠ and

21 0is =  mean that ( ) ( )
1 1 1

*

1

n

i i l l i
l

z t s y t z
=

= +∑  may lead to the critical transition and 

( ) ( )
2 2 2

*

2

n

i i l l i
l

z t s y t z
=

= +∑ may not lead to the critical transition. For the convenience to discuss in the 

following sections, we denote ( )
1i

z t and ( )
2i

z t  as a biomarker and a non-biomarker, respectively.  
From above discussion, we prove that three following descriptions are equivalent.  
(a) The dominant eigenvalue of dynamical system tends to 0 1 0λ →（ ） 
(b) The parameter P approaches to the bifurcation value *P *( )P P→  
(c) The system is close to the critical transition  

 
Then, we can prove the following corollary.  
Corollary 3.1.1As the parameter P approaches the bifurcation value *P , i.e, the system is close to the 
critical transition, 
(1) There are no drastic changes for the coefficient of variation CV of non-biomarkers. 
(2) The coefficient of variation CV for biomarkers is much larger than the coefficient of variation  
CV for non-biomarkers. 
(3) The coefficient of variation CV for biomarkers drastically increases,  
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Proof.(1)According to Theorem 3.1.1, we know that the limit for non-biomarker ( )( )* 2
lim lim it P P

CV z t
→+∞ →

 

is finite, which means that there are no drastic changes for the coefficient of variation of non-biomarkers. 
(2)   It is easy to see that 

 

( )( )
( )( )

1

*

2

lim lim .i

t P P
i

CV z t

CV z t→+∞ →
= +∞

 
Thus, for arbitrary 1 1G > , there exists 1 0T > such that when 1t T> , it follows that 

 
( )( )
( )( )

1

*

2

1lim .i

P P
i

CV z t
G

CV z t→
>  

Further, there exists ( )1 1 0tδ δ= > such that ( )* *
1,P P Pδ∈ − , it follows that 

 
( )( )
( )( )

1

2

1,
i

i

CV z t
G

CV z t
>  

which implies that the conclusion (2) is valid. 
(3) For sufficiently small *

1 0δ > and ( )* * *
0 1 ,P P Pδ∈ − , it is easy to see that ( )( )1 0lim ,it

CV z t P
→+∞

 

exists, and 

 
( )( )
( )( )

1

*

1 0

,
lim lim .

,
i

t P P
i

CV z t P

CV z t P→+∞ →
= +∞  

Then for arbitrary 2 1G > , there exists 2 0T > such that when 2t T> , it follows that 

 
( )( )
( )( )

1

*

1 0

,
lim .

,
i

P P
i

CV z t P
G

CV z t P→
>  

Thus, there exists ( )2 2 0tδ δ= > such that ( )* *
2 ,P P Pδ∈ − , it follows that 

 
( )( )
( )( )

1

1 0

,
,

,
i

i

CV z t P
G

CV z t P
>  

which implies that Corollary 3.1 (3) is valid.  
 
A2.2.Transformed Pearson's correlation coefficient (TPC) 
    As we know, ( )1 , 1PCC X Y− ≤ ≤ , where ( ),PCC X Y is Pearson's correlation coefficient between 
the random variables X andY . To make it more effective in practice, we can define an indicator with 
respect to Pearson's correlation coefficient as follows 
 ( ) ( )( ), ln 1 , .TPC X Y PCC X Y= − −  (S22) 

Theorem 3.1.2 Suppose that Λ in Eq.(S5) is diagonal, then 

 ( ) ( )( )*

1 1

1 1

1 1

0, 0
lim lim , 0 0, 0.

A 0, 0

i j

i j i jt P P

i j

s s
TPC z t z t s s

finite number s s
→+∞ →

⎧+∞ ≠ ≠
⎪= = ≠⎨
⎪ = =⎩

 (S23) 

Proof. We can easily obtain that 
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( ) ( )( )

1 1

1 1 1

1 1

( ( ), ( )) [( ( ( ) ( )))( ( ( ) ( )))]

( ( )) ( ( )) .
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k m

i j in jn n
n n

ik jm k m
k m

m k
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s s Var y t s s Var y t
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= =

= =
≠
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+

∑ ∑

∑∑

 

Specifically, it is easy to see that 

 

( ) ( ) ( )

( ) ( )( )

2 2
1 1

2

1 1

( ), ( ) ( ) ( )

.
,

n

i i i il n
l

n n

ik im k m
k m

m k

Var z t z t s Var y t s Var y t

s s Cov y t y t

=

= =
≠

= +

+

∑

∑∑
 

For the discussion for Pearson's correlation coefficient, we should suppose1 i j n≤ ≠ ≤ . From (S17),(S21) 
and the definition formula for Pearson's correlation coefficient, i.e., 

 ( ) ( )( ) ( ) ( )( )
( )( ) ( )( )

,
, ,i j

i j

i j

Cov z t z t
PCC z t z t

Var z t Var z t
=  

 
It follows that 

 ( ) ( )( )*

1 1

1 1

1 1

1 0, 0
lim lim , 0 0, 0,

0, 0

i j

i j i jt P P

i j

s s
PCC z t z t s s

s sα
→+∞ →

⎧ ≠ ≠
⎪= = ≠⎨
⎪ = =⎩

 

where ( )0,1α ∈ . Thus, (S23) is valid. 
    This completes the proof.  

 
Corollary 3.1.2As the parameter P approaches the bifurcation value *P , i.e, the system is close to the 
critical transition, 
(1)There are no drastic changes for the indicator TPC between non-biomarkers. 
(2)The indicator TPC between biomarkers is much larger than TPC between non-biomarkers. 
(3)The indicator TPC between a biomarker and a non-biomarker is much smaller than TPC between 
non-biomarkers. 
(4) The indicator TPC between biomarkers drastically increases. 
Proof. (1)According to Theorem 3.1.2, we know that the limit of the indicator TPC between 
non-biomarkers is non-zero and finite, which implies the following corollary validates. 
    For convenience of the following discussion, suppose that Λ in Eq.(S5) is diagonal, and 

1 2 3 41 1 1 10, 0, 0, 0i i i is s s s≠ ≠ = = , which means that ( ) ( )
1 2

,i iz t z t are biomarkers and ( ) ( )
3 4

,i iz t z t are 

non-biomarkers based on the definition ( ) ( ) *

1

n

i il l i
l

z t s y t z
=

= +∑ . 

(2) According to Theorem 3.1.2, we obtain 
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( ) ( )( )
( ) ( )( )

1 2

*

3 4

,
lim lim .

,
i i

t P P
i i

TPC z t z t

TPC z t z t→+∞ →
= +∞  

Then, for arbitrary 3 1G > , there exists 3 0T > such that when 3t T> , it follows that 

 
( ) ( )( )
( ) ( )( )

1 2

*

3 4

3

,
lim .

,
i i

P P
i i

TPC z t z t
G

TPC z t z t→
>  

Furthermore，there exists ( )3 3 0tδ δ= > such that when ( )* *
3 ,P P Pδ∈ − ,it follows that 

 
( ) ( )( )
( ) ( )( )

1 2

3 4

3

,
.

,
i i

i i

TPC z t z t
G

TPC z t z t
>  

(3)  Similarly, in view of the fact that 

 
( ) ( )( )
( ) ( )( )

3 4

*

1 3

,
lim lim ,

,
i i

t P P
i i

TPC z t z t

TPC z t z t→+∞ →
= +∞  

we easily see that the indicator ( ) ( )( )1 3
,i iTPC z t z t between a biomarker and a non-biomarker is much 

smaller than ( ) ( )( )3 4
,i iTPC z t z t between non-biomarkers. 

(4)  For sufficiently small *
2 0δ > and ( )* * *

0 2 ,P P Pδ∈ − , we can see that ( ) ( )( )1 20 0lim , , ,i it
TPC z t P z t P

→+∞
 

exists and thus there exists an upper bound 0β > for ( ) ( )( )1 20 0, , ,i iTPC z t P z t P . 

Since ( ) ( )( )* 1 2
lim lim ,i it P P

TPC z t z t
→+∞ →

= +∞ , then for arbitrary 4 0G > , there exists 4 0T > such that when 4t T> , 

it follows that  
 ( ) ( )( )* 1 2 4lim , .i i

P P
TPC z t z t G β

→
>  

Hence, there exists ( )4 4 0tδ δ= > such that ( )* *
4 ,P P Pδ∈ − , it follows that 

 ( ) ( )( ) ( ) ( )( )( )1 2 1 24 4 0 0, , , , , , .i i i iTPC z t P z t P G G TPC z t P z t Pβ> ≥  

 
 
A2.3.Transformed probability distribution (TPD) 
Obviously, 
 ( ) ( )( )2

( ) ~ ( , ), 1, 2, , ,i i iz t N t t i nμ σ =  
where 

 
( ) ( )( )
( ) ( )( )

.
i i

i i

t E z t

t Var z t

μ

σ

=

=
 

Thus, the probability density of the random variable ( )iz t is 

 ( )
( )2

221 .
2

i

i

x

i
i

p x e
μ

σ

πσ

−
−

=  (S24). 
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Define 

 ( ) ( )[ , ] ln ( ) .
b

i ia
TPD a b p s ds= − ∫  (S25) 

 
Theorem 3.1.3 Suppose that Λ in Eq.(S5) is diagonal, then 

 ( )
*

1

1

0
lim lim [ , ] ,

A 0
i

it P P i

s
TPD a b

finite number s→+∞ →

+∞ ≠⎧
= ⎨ =⎩

 (S26) 

where 0 a b< < . 
Proof. It is easy to obtain that 
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⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= −
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= − +
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∫

∫

∫

2*

*

lim lim
2

lim lim
2

1

1

.

1ln

0
A 0

i
t P P i

i
t P P i

b
u

a

i

i

e du

s
finite number s

μ
σ
μ
σπ

→+∞ →

→+∞ →

−
−

−−

⎥
⎥⎦

⎛ ⎞
⎜ ⎟−
⎜ ⎟
⎝ ⎠

+∞ ≠⎧
= ⎨ =⎩

∫

 

This completes the proof. 
 

 
Remark. Note that in practice, we often choose the minimum value for the data at the initial time as a  
and choose the maximum value for the data at the initial time as b . In this way, it is appropriate to use 
the indicator TPD to depict the change of the probability distribution as the parameter P approaches *P . 
 
Similarly, we can easily obtain the corresponding corollary. 
Corollary 3.1.3 As the parameter P approaches the bifurcation value *P , i.e, the system is close to the 
critical transition, 
(1) There are no drastic changes for the probability distribution of non-biomarkers. 
(2)The probability distribution for biomarkers is much larger than the probability distribution for  
non-biomarkers. 
(3)The probability distribution for biomarkers drastically increases.□ 
 
A2.4. Summary 
Based on the above analyses, we know that the statistical properties changes significantly for the variables

iz with 1 0is ≠ as the parameter P approaches the bifurcation value *P , and thus all these variables iz
with 1 0is ≠ form a group, called the dominant group, which will first "fall" into the disease state. It is 



S13 
 

easy to see that, the dominant group characterizes the dynamical features of the underlying system, and 
the variables in the group are strongly and dynamically correlated in the pre-disease state. We can find 
this by noticing that as the parameter P approaches the bifurcation value *P , the indicator TPC or 
Pearson's correlation coefficient PCC between any two members among the dominant group increases 
significantly, and the indicator TPC between each of the dominant group and other variables with 1 0is =
decreases significantly. Therefore, these variables in the dominant group form a subnetwork from a 
network viewpoint. Hence, we also defined it as a DNB.  
    As the parameter P approaches the bifurcation value *P , the indicator CV for biomarkers 
increases greatly, and much larger than that for non-biomarkers, which implies that during this process, 
the biomarkers fluctuates greatly(Scheffer, et al., 2009; Scheffer, et al., 2015).  
    Note that the autocorrelation and the probability distribution TPD for biomarkers display similar 
laws. The change of autocorrelation indicates that as the parameter P approaches the bifurcation value 

*P , the linear relationship between the behaviors of one biomarker at two distinct time instants 
strengthens greatly. And the change of the indicator TPD demonstrates that the probability distribution 
for biomarkers changes greatly, or the states for biomarkers deviate drastically from the original states as 
the critical transition occurs. 
Here we note that the conditions derived for the variables with 1 0is ≠ are in fact the generic properties of 
the DNB members in dynamics whenever the system approaches a critical tipping point. Such critical 
behavior is mainly due to the occurrence of the dominant eigenvalue with real part zero(Dai, et al., 2013; 
Lade and Gross, 2012; Van Nes and Scheffer, 2007; Veraart, et al., 2012), which is relevant to the 
so-called "critical slowing down" phenomenon (Chisholm and Filotas, 2009; Scheffer, et al., 2009). 
    In biological systems, the concentrations of molecules in the DNB tend to increasingly fluctuate 
when the system approaches the critical transition point, and change in a strongly collective manner, 
which is the key feature of a DNB. Hence, the existence of the DNB indicates that the system is in the 
pre-disease state. 
    System (S1) is used to describe the progression of a disease. As the parameter P approaches the 
critical value *P , which leads to Re( ) 0iλ → , the system reaches the pre-disease state. In order to 
investigate the stochastic behavior of the variables, we assume that the real perturbation can be described 
by the white Gaussian noises, and obtain the stochastic differential equations (S5). Using this stochastic 
model, we calculate the expressions for each variable. Then, the expression of each statistical indicator is 
calculated, and we analyze the change of them. To summarize the above analysis, we have several 
theorems listed previously. 

In fact, at any instant of disease progression, the expression of each variable (the concentration of one 
observable) may stochastically change due to perturbations. Hence in most complex diseases, it is difficult 
to identify the early-warning signal by focusing on some variables and indicators statically. In our study, 
our detection of early-warning signals is based on a network of dynamically correlated observables. In 
view of the theoretical results, we can identify the dominant group or the DNB if the system approaches 
the pre-disease state. 

Mathematical models based on bifurcation theory and center manifold theory have successfully been 
applied to many fields for describing the catastrophic phenomena near the critical point(Dai, et al., 2015; 
Dakos, et al., 2010; Drake and Griffen, 2010; Puu, 2013; Scheffer, et al., 2009; Scheffer, et al., 2001). 
There is no exception for complex diseases (Eikenberry, et al., 2009; Hirata, et al., 2010; Huang, et al., 
2009;Tanaka, et al., 2008). Generally, the dynamics for the progression of complex diseases  are usually 
constructed in a high-dimensional space with a large number of variables and parameters. However, 
provided that the system driven by some (unknown) parameters approaches the critical point, theoretically, 
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the system can be expressed in a very simple form, i.e., generally it can be expressed by fewervariables in 
an abstract phase space around a codimension-one bifurcation point, due to the bifurcation theory and 
center manifold theory. Thus, in the pre-disease state, we can express the system in a simple form to 
detect the signal. However, unfortunately, they are generally unobservable because of the abstract phase 
space. In our previous work, we constructed the relationship of the observable subnetwork (DNB) in the 
original state space with the unobservable variables of the abstract phase space, and we derived the 
conditions to identify the signal by only observing the DNB in the pre-disease state. Generally, we cannot 
derive the same conclusions for the normal state or the disease state. In addition, next, we provide several 
examples to numerically identify the DNB data when the system reaches the critical state according to the 
conclusions obtained. 
 
B. Numerical simulations 
To validate the reasonability of the statistical indicators obtained for critical transitions and detect 
early-warning signals near a tipping point, we numerically simulate three groups of real data for the 
complex diseases, such as H3N2, H1N1 and Lung. 
   Note that by the theoretical analysis above, we obtained some useful conclusions for biomarkers and 
nonbiomarkers. These conclusions just provides the criteria for us to identify biomarkers in the real data. 
Our idea is that if the behaviors of the proteins in each real data satisfy the obtained criteria, then we can 
view this protein as just the biomarker which we want to obtain. 
 
Example 1. In this example, we take the real data for the complex disease H3N2. The simulation results 
for three indicators , ,CV TPC TPD are presented in FiguresS1-S6, respectively. 
     FigureS1 shows the change of the coefficient of variation CV  for 22 proteins: APOL6, CASP1, 
CNP, CXCL10,DHX58, DRAP1, DYNLT1, FAM46A, GEMIN4, GORASP1, IFITM1, IRF7, 
PLSCR1, RTP4, SAMD9, SAMHD1, SIGLEC1, TAF1C, TLR7, TNFAIP6,TREX1 and ZBP1. Figure S1 
indicates that as the critical transition occurs, i.e., the time t  evolves towards 45t h= (see the vertical 
black line), the coefficient of variation CV for 22 proteins above significantly increases. That is, the 
behaviors of these proteins satisfy the corresponding criteria. Therefore, these 22 proteins can be viewed 
as DNBs for early warning signals. 
     Figures S2-S5show the change of the indicator ( )log 1TPC PCC= − − for 79protein pairs: 
APOL6-CNP, APOL6-DRAP1, APOL6-DYNLT1, APOL6-GORASP1, APOL6-IFITM1, 
APOL6-PLSCR1, APOL6-SAMD9, APOL6-TNFAIP6, APOL6-TREX1, APOL6-ZBP1, 
CASP1-FAM46A, CASP1-GORASP1, CASP1-SAMHD1, CASP1-TLR7, CXCL10-DYNLT1, 
CXCL10-GORASP1, CXCL10-TNFAIP6, DHX58-GEMIN4, DHX58-GORASP1, DHX58-RTP4, 
DHX58-SAMD9, DHX58-SAMHD1, DHX58-SIGLEC1 
 
DHX58-TLR7, DHX58-TNFAIP6, DHX58-ZBP1, DRAP1-GORASP1, DRAP1-SAMHD1, 
DRAP1-TLR7, DRAP1-TNFAIP6, DRAP1-ZBP1, DYNLT1-FAM46A, DYNLT1-PLSCR1, 
DYNLT1-RTP4, DYNLT1-SAMD9, DYNLT1-SIGLEC1, DYNLT1-TLR7, FAM46A-IFITM1, 
FAM46A-RTP4, FAM46A-SAMD9, FAM46A-SAMHD1, FAM46A-TLR7, FAM46A-TNFAIP6, 
GEMIN4-IFITM1, GEMIN4-PLSCR1, GEMIN4-SAMD9 
 
GEMIN4-TNFAIP6, GORASP1-IRF7, GORASP1-PLSCR1, GORASP1-RTP4, GORASP1-ZBP1, 
IFITM1-PLSCR1, IFITM1-SAMD9, IFITM1-TLR7, IFITM1-TNFAIP6, IRF7-TLR7, 
IRF7-TNFAIP6, PLSCR1-RTP4, PLSCR1-TAF1C, PLSCR1-TLR7, PLSCR1-TNFAIP6, 
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PLSCR1-TREX1, PLSCR1-ZBP1, RTP4-SAMD9, RTP4-SAMHD1, RTP4-SIGLEC1, 
RTP4-TLR7, RTP4-ZBP1, SAMD9-SAMHD1 
 
SAMD9-TNFAIP6, SAMD9-ZBP1, SAMHD1-TREX1, SIGLEC1-TLR7, SIGLEC1-TNFAIP6, 
SIGLEC1-ZBP1, TAF1C-TNFAIP6, TLR7-ZBP1, TNFAIP6-TREX1, TNFAIP6-ZBP1 
 
These figures indicates that as the critical transition occurs, i.e., the time t evolves towards 45t h= (see 
the vertical black line), the indicator TPC for 79 protein pairs significantly increases. That is, the 
behaviors of these proteins satisfy the corresponding criteria. Therefore, these 79 protein pairs can be 
viewed as biomarker pairs for early warning signals. 
    Figure S6 shows the change of the indicator TPD  for 22 proteins: APOL6, CASP1, CNP, 
CXCL10,DHX58, DRAP1, DYNLT1, FAM46A, GEMIN4, GORASP1, IFITM1, IRF7,PLSCR1, RTP4, 
SAMD9, SAMHD1, SIGLEC1, TAF1C, TLR7, TNFAIP6,TREX1 and ZBP1. Figure S5 indicates that as 
the critical transition occurs, i.e., the time t  evolves towards 45t h= (see the vertical black line), the 
indicator TPD for 22 proteins above significantly increases. That is, the behaviors of these proteins 
satisfy the corresponding criteria. Therefore, these 22 proteins can be viewed as DNBs for early warning 
signals. 
 
 
Example 2. In this example, we take the data for the complex disease H1N1. The simulation results for 
three indicators , ,CV TPC TPD are presented in Figure.S7-S9, respectively. 
     Figure S7 shows the change of the coefficient of variation CV for 20 proteins:ACP6, BTG1, 
CCNA1, DDX18, DKC1, H2AFV, HMGN1, IRF7, ITK, LAX1, NPAT, NR2C1, PFN2, POLR1C, 
RBM4B, RPS2, SLBP, SP110, STMN1 and VPRBP. Figure S7 indicates that as the critical transition 
occurs, i.e., the time t  evolves towards 53t h= (see the vertical black line), the coefficient of variation 
CV and the indicator TPD for 20 proteins above significantly increases. That is, the behaviors of these 
proteins satisfy the corresponding criteria. Therefore, these 20 proteins can be viewed as DNBs for early 
warning signals. 
    Figure S8 also shows the change of the indicator ( )log 1TPC PCC= − − for 16 protein 
pairs:ACP6-DKC1, ACP6-ITK, ACP6-NPAT, ACP6-STMN1, BTG1-CCNA1, DDX18-NUCB1, 
DKC1-NR2C1, H2AFV-SLBP, HMGN1-ITK, HMGN1-PFN2, HMGN1-SEPT4, IRF7-SP110, 
LAX1-VPRBP, POLR1C-STMN1, RBM4B-RPS2, and SEPT4-STMN1.Figure S8 indicates that as the 
critical transition occurs, i.e., the time t evolves towards 53t h= (see the vertical black line), the 
indicator TPC for 16 protein pairs significantly increases. That is, the behaviors of these proteins satisfy 
the corresponding criteria. Therefore, these 16 protein pairs can be viewed as biomarker pairs for early 
warning signals. 

Figure S9 shows the change of the indicator TPD for 3 proteins: CCNA1, NUCB1 and SEPT4. 
Figure S9 indicates that as the critical transition occurs, i.e., the time t  evolves towards 53t h= (see the 
vertical black line), the indicator TPD for 3 proteins above significantly increases. That is, the behaviors 
of these proteins satisfy the corresponding criteria. Therefore, these 3 proteins can be viewed as DNBs for 
early warning signals. 
 
Example 3. In this example, we take the real data for the complex disease Lung. The simulation results 
for three indicators , ,CV TPC TPD are presented in Figures.S10-S17, respectively. 
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     Figure S10 shows the change of the coefficient of variation CV  for 18 proteins: Actn1, Adcy8,    
Atp6v1d, Capn1, Clstn1, Dapk1, Fzd2, Gnb1, H1f0, Hhip, Hprt1, Htra1, Kcnq1, Nagk, Rad17, Rad23b, 
Tjp2 and Wbp1. Figure S10 indicates that as the critical transition occurs, i.e., the time t  evolves 
towards 8t h= (see the vertical black line), the coefficient of variation CV for 18 proteins above 
significantly increases. That is, the behaviors of these proteins satisfy the corresponding criteria. 
Therefore, these 18 proteins can be viewed as DNBs for early warning signals. 
     Figures S11-S15show the change of the indicator ( )log 1TPC PCC= − − for 112 protein pairs: 
Abcd3-Mcee, Actn1-Ereg, Actn1-Nr2f6, Actn1-Psmd4, Adcy8-Adss, 
Adss-Adcy8, Adss-Ensmusg00000050347, Adss-Gp49a, Anxa1-Ddx39, Anxa1-Fzd2, 
Aplp2-Aqp1, Aplp2-Fzd2, Aplp2-Kcnq1, Aqp1-Aplp2, Aqp1-Nagk, 
Aqp1-Psmd4, Atp6v1d-Prpf40a, Capn1-Clstn1, Capn1-Glrx, Clstn1-Capn1, 
Clstn1-Psma7, Csf1r-Htra1, Csf1r-Psmc3 
 
Dapk1-Gp49a, Dapk1-Klhl13, Ddx39-Anxa1, Ddx39-Kcnq1, Ensmusg00000050347-Adss, 
Ereg-Actn1, Ereg-Hhip, Ereg-Mmp19, Ereg-Pla2g15, Ereg-Psme4, 
Faf1-Ulk2, Fzd2-Anxa1, Fzd2-Aplp2, Fzd2-Stxbp1, G6pd2-Nagk, 
Gimap4-Lox, Glrx-Capn1, Glrx-Sin3b, Gnb1-H1f0, Gnb1-Mmp19, 
Gp49a-Adss, Gp49a-Dapk1, Grem2-Psma1,  
 
Gtf2i-Hnrnpd, H1f0-Gnb1, H1f0-Hnrnpd, H1f0-Rad23b, Hhip-Ereg, 
Hist2h2bb-Psmd13, Hnrnpd-Gtf2i, Hnrnpd-H1f0, Hnrnpd-Klhl13, Hnrnpd-Rad23b, 
Hprt1-Ncl, Hprt1-Nr2f6, Htra1-Csf1r, Htra1-Prelp, Kcnq1-Aplp2, 
Kcnq1-Ddx39, Klhl13-Dapk1, Klhl13-Hnrnpd, Lox-Gimap4, Lrg1-Wbp1, 
Macf1-Nrp1, Macf1-Psmd4, Mcee-Abcd3 
 
Mmp19-Ereg, Mmp19-Gnb1, Mmp19-Rad23b, Mmp19-Thbs3, Nagk-Aqp1, 
Nagk-G6pd2, Ncl-Hprt1, Nr2f6-Actn1, Nr2f6-Hprt1, Nr2f6-Psma7, 
Nrp1-Macf1, Phlpp-Psma1, Pla2g15-Ereg, Prelp-Htra1, Prpf40a-Atp6v1d, 
Psma1-Grem2, Psma1-Phlpp, Psma7-Clstn1, Psma7-Nr2f6, Psmb5-Psmd4, 
Psmc3-Csf1r, Psmd13-Hist2h2bb, Psmd4-Actn1 
 
Psmd4-Aqp1, Psmd4-Macf1, Psmd4-Psmb5, Psmd4-Rad17, Psmd4-Rad23b, 
Psmd4-Tjp2, Psme4-Ereg, Rad17-Psmd4, Rad23b-H1f0, Rad23b-Hnrnpd, 
Rad23b-Mmp19, Rad23b-Psmd4, Sin3b-Glrx, Stxbp1-Fzd2, Stxbp1-Wbp1, 
Thbs3-Mmp19, Tjp2-Psmd4, Ulk2-Faf1, Wbp1-Lrg1, Wbp1-Stxbp1 
 
Figures S11-S15 indicate that as the critical transition occurs, i.e., the time t evolves towards 8t h= (see 
the vertical black line), the indicator TPC for 112 protein pairs significantly increases. That is, the 
behaviors of these proteins satisfy the corresponding criteria. Therefore, these 112 protein pairs can be 
viewed as biomarker pairs for early warning signals. 

Figures S16 and S17 show the change of the indicator TPD  for 42 proteins: Abcd3, Adss, Anxa1, 
Aplp2, Aqp1, Csf1r, Ddx39, Ensmusg00000050347, Ereg, Faf1, G6pd2, Gimap4, Glrx, Gp49a, Grem2, 
Gtf2i, Hist2h2bb, Hnrnpd, Klhl13, Lox, Lrg1, Macf1, Mcee, Mmp19, Ncl, Nr2f6, Nrp1, Phlpp, Pla2g15, 
Prelp, Prpf40a, Psma1, Psma7, Psmb5, Psmc3, Psmd13, Psmd4, Psme4, Sin3b, Stxbp1, Thbs3 andUlk2. 
Figures S16 and S17 indicate that as the critical transition occurs, i.e., the time t  evolves towards 8t h=
(see the vertical black line), the indicator TPD for 42 proteins above significantly increases. That is, the 
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behaviors of these proteins satisfy the corresponding criteria. Therefore, these 42 proteins can be viewed 
as DNBs for early warning signals. 
 

In summary, it is worthy pointing out something about choosing biomarkers in algorithms. For 
H3N2, only for the indicators CV or TPD , we can choose 264 proteins and 116 proteins, respectively; 
then taking the intersection of both of them, we continue to choose 22 proteins from the obtained 
intersection proteins, for each of which there exists another one from these 22 proteins such that the 
indicator TPC increases significantly as the time t evolves towards 45t h= (see the vertical black line). 
In this way, we obtain the DNBs.  
     However, for the complex disease H1N1 and Lung, we choose DNBs in another way. Here, we take 
H1N1 as an example. Firstly, only for the indicators CV or TPD , we can choose 32 proteins and 6 
proteins, respectively; but the intersection of them is few(maybe the result is empty set). Then, the 
numerical simulation for the indicator TPC cannot be done. Due to this reason, we take the union of the 
chosen proteins for CV  and proteins for TPD . From the union proteins, we continue to choose sevaral 
protein pairs, for which the indicator TPC increases significantly as the time evolves towards 8t h= (see 
the vertical black line). From these chosen protein pairs, we obtain the DNBs.  
     In our opinion, provided that one of the indicators CV and TPD changes significantly, we can 
think the corresponding protein is a biomarker candidate, because the increasing tendency of CV means 
that the concentration of the protein fluctuates more strongly, and the increasing tendency of TPD means 
that the probability distribution of the concentration of the protein changes significantly. Intuitively, it is 
easy to understand that the critical transition will occur. Therefore, the numerical method for the complex 
disease H1N1 is proper. Since our purpose of doing numerical simulations is just to verify the validity of 
the conclusions obtained, we can know that the numerical methods mentioned above make sense. 
 
C.Supplementary Figures 
 
C1. The dataset for H3N2. 
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Figure.S1:  The change of the coefficient of variation CV  for 22 proteins for H3N2: APOL6, CASP1, 
CNP, CXCL10, DHX58, DRAP1, DYNLT1, FAM46A, GEMIN4, GORASP1, IFITM1,IRF7, PLSCR1, RTP4, SAMD9, 
SAMHD1, SIGLEC1, TAF1C, TLR7, TNFAIP6, TREX1 and ZBP1. It indicates that as the critical transition 
occurs, i.e., the time evolves towards t  45h= (see the vertical black line), the coefficient of variation 
CV for 22 proteins above significantly increases in the symptomatic group and has no obvious change in 
the asymptomatic group. That is, the behaviors of these proteins satisfy the corresponding criteria. 
Therefore, these 22 proteins can be viewed as DNBs for early warning signals. 
 

 
Figure.S2: The change of the indicator TPC for 23 protein pairs: APOL6-CNP, APOL6-DRAP1, 
APOL6-DYNLT1, APOL6-GORASP1, APOL6-IFITM1, APOL6-PLSCR1,APOL6-SAMD9, APOL6-TNFAIP6, 
APOL6-TREX1, APOL6-ZBP1, CASP1-FAM46A, CASP1-GORASP1, CASP1-SAMHD1, CASP1-TLR7, 
CXCL10-DYNLT1, CXCL10-GORASP1, CXCL10-TNFAIP6, DHX58-GEMIN4, DHX58-GORASP1, DHX58-RTP4, 
DHX58-SAMD9, DHX58-SAMHD1, and DHX58-SIGLEC1.  
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Figure.S3: The change of the indicator TPC  for 23 protein pairs: DHX58-TLR7,   DHX58-TNFAIP6, 
DHX58-ZBP1, DRAP1-GORASP1, DRAP1-SAMHD1, DRAP1-TLR7,   DRAP1-TNFAIP6, DRAP1-ZBP1, 
DYNLT1-FAM46A, DYNLT1-PLSCR1, DYNLT1-RTP4,  DYNLT1-SAMD9, DYNLT1-SIGLEC1, DYNLT1-TLR7, 
FAM46A-IFITM1, FAM46A-RTP4,    FAM46A-SAMD9, FAM46A-SAMHD1, FAM46A-TLR7, 
FAM46A-TNFAIP6, GEMIN4-IFITM1,    GEMIN4-PLSCR1, and GEMIN4-SAMD9.  
 

 
 
Figure.S4: The change of the indicator TPC  for 23 protein pairs: GEMIN4-TNFAIP6,    GORASP1-IRF7, 
GORASP1-PLSCR1, GORASP1-RTP4, GORASP1-ZBP1, IFITM1-PLSCR1,    IFITM1-SAMD9, IFITM1-TLR7, 
IFITM1-TNFAIP6, IRF7-TLR7, IRF7-TNFAIP6, PLSCR1-RTP4,    PLSCR1-TAF1C, PLSCR1-TLR7, 
PLSCR1-TNFAIP6, PLSCR1-TREX1, PLSCR1-ZBP1, RTP4-SAMD9, RTP4-SAMHD1, RTP4-SIGLEC1, RTP4-TLR7, 
RTP4-ZBP1, and SAMD9-SAMHD1. 
 

 
 
Figure.S5: The change of the indicator TPC for 10 protein pairs: SAMD9-TNFAIP6,    SAMD9-ZBP1, 
SAMHD1-TREX1, SIGLEC1-TLR7, SIGLEC1-TNFAIP6, SIGLEC1-ZBP1,    TAF1C-TNFAIP6, TLR7-ZBP1, 
TNFAIP6-TREX1, and TNFAIP6-ZBP1. 
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Figure.S6: The change of the indicator TPD  for 22 proteins: APOL6, CASP1, CNP, CXCL10, DHX58, 
DRAP1, DYNLT1, FAM46A, GEMIN4, GORASP1, IFITM1, IRF7,PLSCR1, RTP4, SAMD9, SAMHD1, SIGLEC1, 
TAF1C, TLR7, TNFAIP6, TREX1 and ZBP1. The x -axis denotes the time(unit: h). It indicates that as the 
critical transition occurs,i.e., the time evolves towards t  45h= (see the vertical black line), the indicator 
TPD for 22 proteins above significantly increases. That is, the behaviors of these proteins satisfy the 
corresponding criteria. Therefore, these 22 proteins can be viewed as DNBs for early warning signals. 
 
 
 
C2 The dataset for H1N1. 

 
Figure.S7.The change of the coefficient of variation CV  for 20 proteins: ACP6, BTG1,    CCNA1, 
DDX18, DKC1, H2AFV, HMGN1, IRF7, ITK, LAX1, NPAT, NR2C1, PFN2, POLR1C, RBM4B, RPS2, SLBP, SP110, 
STMN1 and VPRBP. The x -axis denotes the time(unit: h). It indicates that as the critical transition 
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occurs, i.e., the time evolves towards t  53h=  (see the vertical black line), the coefficient of variation 
CV  for 20 proteins above significantly increases in the symptomatic group and has no obvious change 
in the asymptomatic group. That is, the behaviors of these proteins satisfy the corresponding criteria. 
Therefore, these 20 proteins can be viewed as DNBs for early warning signals. 
 

 
Figure.S8: The change of the indicator TPC for 16 protein pairs: ACP6-DKC1, ACP6-ITK, ACP6-NPAT, 
ACP6-STMN1, BTG1-CCNA1, DDX18-NUCB1, DKC1-NR2C1, H2AFV-SLBP, HMGN1-ITK, HMGN1-PFN2, 
HMGN1-SEPT4, IRF7-SP110, LAX1-VPRBP, POLR1C-STMN1, RBM4B-RPS2, and SEPT4-STMN1. The x -axis 
denotes the time(unit: h). 
 

 
Figure.S9.The change of the indicator TPD  for 3 proteins: CCNA1, NUCB1 and SEPT4. The x -axis 
denotes the time(unit: h). It indicates that as the critical transition occurs, i.e., the time evolves towards 
t  53h= (see the vertical black line), the indicator TPD  for 3 proteins above significantly increases. 
That is, the behaviors of these proteins satisfy the corresponding criteria. Therefore, these 3 proteins 
can be viewed as DNBs for early warning signals. 
 
C3 The data for acute lung injury 
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Figure.S10:  The change of the coefficient of variation CV  for 18 proteins: Actn1, Adcy8,   Atp6v1d, 
Capn1, Clstn1, Dapk1, Fzd2, Gnb1, H1f0, Hhip, Hprt1, Htra1, Kcnq1, Nagk, Rad17, Rad23b, Tjp2 and 
Wbp1. It indicates that as the critical transition occurs, i.e., the time evolves towards t  8h=  (see the 
vertical black line), the coefficient of variation CV  for 18 proteins above significantly increases in the 
symptomatic group and has no obvious change in the asymptomatic group. That is, the behaviors of 
these proteins satisfy the corresponding criteria. Therefore, these 18 proteins can be viewed as DNBs for 
early warning signals. 
 

 
Figure.S11: The change of the indicator TPC  for 23 protein pairs: Abcd3-Mcee,   Actn1-Ereg, 
Actn1-Nr2f6, Actn1-Psmd4, Adcy8-Adss, Adss-Adcy8, Adss-Ensmusg00000050347, Adss-Gp49a, 
Anxa1-Ddx39, Anxa1-Fzd2, Aplp2-Aqp1, Aplp2-Fzd2, Aplp2-Kcnq1, Aqp1-Aplp2, Aqp1-Nagk, Aqp1-Psmd4, 
Atp6v1d-Prpf40a, Capn1-Clstn1, Capn1-Glrx, Clstn1-Capn1, Clstn1-Psma7, Csf1r-Htra1, and Csf1r-Psmc3. 
The x -axis denotes the time(unit: h). 
 

 



S23 
 

Figure.S12: The change of the indicator TPC  for 23 protein pairs: Dapk1-Gp49a,  Dapk1-Klhl13, 
Ddx39-Anxa1, Ddx39-Kcnq1, Ensmusg00000050347-Adss, Ereg-Actn1, Ereg-Hhip, Ereg-Mmp19, 
Ereg-Pla2g15, Ereg-Psme4, Faf1-Ulk2, Fzd2-Anxa1, Fzd2-Aplp2, 
Fzd2-Stxbp1, G6pd2-Nagk, Gimap4-Lox, Glrx-Capn1, Glrx-Sin3b, Gnb1-H1f0, Gnb1-Mmp19, Gp49a-Adss, 
Gp49a-Dapk1, and Grem2-Psma1. The x -axis denotes the time(unit: h). 
 

 
Figure.S13: The change of the indicator TPC TPC for 23 protein pairs: Gtf2i-Hnrnpd,   H1f0-Gnb1, 
H1f0-Hnrnpd, H1f0-Rad23b, Hhip-Ereg, Hist2h2bb-Psmd13, Hnrnpd-Gtf2i,     Hnrnpd-H1f0, 
Hnrnpd-Klhl13, Hnrnpd-Rad23b, Hprt1-Ncl, Hprt1-Nr2f6, Htra1-Csf1r,   Htra1-Prelp, Kcnq1-Aplp2, 
Kcnq1-Ddx39, Klhl13-Dapk1, Klhl13-Hnrnpd, Lox-Gimap4,   Lrg1-Wbp1, Macf1-Nrp1, Macf1-Psmd4, 
and Mcee-Abcd3. The x -axis denotes the time(unit: h). 
 

 
Figure.S14: The change of the indicator TPC TPC for 23 protein pairs: Mmp19-Ereg,   Mmp19-Gnb1, 
Mmp19-Rad23b, Mmp19-Thbs3, Nagk-Aqp1, Nagk-G6pd2, Ncl-Hprt1, Nr2f6-Actn1, Nr2f6-Hprt1, 
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Nr2f6-Psma7, Nrp1-Macf1, Phlpp-Psma1, Pla2g15-Ereg, Prelp-Htra1, Prpf40a-Atp6v1d, Psma1-Grem2, 
Psma1-Phlpp, Psma7-Clstn1, Psma7-Nr2f6, Psmb5-Psmd4, Psmc3-Csf1r, Psmd13-Hist2h2bb, and 
Psmd4-Actn1. 
 

 
Figure.S15: The change of the indicator TPC TPC for 20 protein pairs: Psmd4-Aqp1, Psmd4-Macf1, 
Psmd4-Psmb5, Psmd4-Rad17, Psmd4-Rad23b, Psmd4-Tjp2, Psme4-Ereg,    Rad17-Psmd4, 
Rad23b-H1f0, Rad23b-Hnrnpd, Rad23b-Mmp19, Rad23b-Psmd4, Sin3b-Glrx, Stxbp1-Fzd2, Stxbp1-Wbp1, 
Thbs3-Mmp19, Tjp2-Psmd4, Ulk2-Faf1, Wbp1-Lrg1, and Wbp1-Stxbp1. The x -axis denotes the 
time(unit: h). 
 

 
Figure.S16: The change of the indicator TPD  for 23 proteins: Abcd3, Adss, Anxa1, Aplp2,    Aqp1, 
Csf1r, Ddx39, Ensmusg00000050347, Ereg, Faf1, G6pd2, Gimap4, Glrx, Gp49a, Grem2, Gtf2i, Hist2h2bb, 
Hnrnpd, Klhl13, Lox, Lrg1, Macf1 and Mcee. It indicates that as the critical transition occurs, i.e., the time 
evolves towards t  8h=  (see the vertical black line), the indicator TPD  for 23 proteins above 
significantly increases. That is, the behaviors of these proteins satisfy the corresponding criteria.  
Therefore, these 23 proteins can be viewed as DNBs for early warning signals. 
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Figure.S17: The change of the indicator TPD  for 19 proteins: Mmp19, Ncl, Nr2f6, Nrp1, Phlpp, Pla2g15, 
Prelp, Prpf40a, Psma1, Psma7, Psmb5, Psmc3, Psmd13, Psmd4, Psme4, Sin3b, Stxbp1, Thbs3 and Ulk2. 
The x -axis denotes the time(unit: h). It indicates that as the critical transition occurs, i.e., the time 
evolves towards t  8h= (see the vertical black line), the indicator TPD  for 19 proteins above 
significantly increases. That is, the behaviors of these proteins satisfy the corresponding criteria. 
Therefore, these 19 proteins can be viewed as DNBs for early warning signals. 
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