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Research of healthy exercise has garnered a keen research for the past few years. It is known that participation in a regular exercise
program can help improve various aspects of cardiovascular function and reduce the risk of suffering from illness. But some
exercise accidents like dehydration, exertional heatstroke, and even sudden death need to be brought to attention. If these exercise
accidents can be analyzed and predicted before they happened, it will be beneficial to alleviate or avoid disease or mortality. To
achieve this objective, an exercise health simulation approach is proposed, in which an integrated human thermophysiological
model consisting of human thermal regulation model and a nonlinear heart rate regulation model is reported. The human
thermoregulatory mechanism as well as the heart rate response mechanism during exercise can be simulated. On the basis of
the simulated physiological indicators, a fuzzy finite state machine is constructed to obtain the possible health transition sequence
and predict the exercise health status. The experiment results show that our integrated exercise thermophysiological model can
numerically simulate the thermal and physiological processes of the human body during exercise and the predicted exercise health

transition sequence from finite state machine can be used in healthcare.

1. Introduction

There is evidence that healthy exercise can minimize the
physiological effects of an otherwise sedentary lifestyle and
increase active life expectancy by limiting the development
and progression of chronic disease and disabling conditions
[1]. Research on healthy exercise is important and has been
focused on for the past few years.

During exercise, the human body exchanges energy
with the clothing systems and environmental conditions in
different forms of heat transfer; a coupled system about
thermoregulatory mechanism is determined based on the
Human-Clothing-Environment (HCE) [2, 3]. Particularly,
the thermoregulatory responses of the body and the sen-
sory responses of skin nerve endings follow the laws of
physiology [4]. The human active tissues produce additional
metabolic heat, which must be intricately offset by heat loss
to the environment [2, 4]. The core temperature increases
and several physiological reactions in internal temperature
regulating system are automatically activated to accelerate

body heat dissipation including sweating by stimulating the
sweat gland and automatically adjusting the cardiovascular
system [5]. During cardiovascular adjustment, the blood is
redistributed from the core organs to the skin to facilitate
heat dissipation, and the active muscles require blood supply
to deliver oxygen for maintenance of activities. The heart
rate increases correspondingly to sustain cardiac output and
blood supply to the working muscles and the skin [6].

With the dynamic changes of physiological indicators
during exercise, many health phenomena such as thirst,
breathing disorders, and dizziness can appear. Without
adopting effective preventive measures in time, health acci-
dents (dehydration, exertional heatstroke, syncope, and even
sudden death) may happen [4]. At the Standard Chartered
Hong Kong Marathon 2013, 55 runners were reported to have
fallen unconscious, been rendered comatose, and suffered
from collapse because of heatstroke; more than 100 athletes
have died from excessive heat stress because of exertional heat
stroke during competitions in the recent 20 years [6]. If these
health accidents can be analyzed or predicted before they
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happened, it will be beneficial to alleviate or avoid disease and
mortality [7]. Hence, the research of exercise physiological
performance is significant for the health monitoring, analysis,
and accident precaution.

Some technologies have been used to obtain the body
physiological performances and predict the health states.
The wearable health monitoring system (WHMS) usually
takes the advanced sensory technology to get the immediate
physiological values and then deal with these values for
real-time health judgment and risk prediction [8, 9]. For
example, a large variety of laboratory prototypes, test beds,
and industrial products of WHMS [10, 11] have already
been produced. The Nike+ Fuel Band is an activity tracker
worn on the wrist to track wearers’ physical activity, heart
rate, and amount of energy burned [12]. The My Heart
project [13] and the SmartVest project [11] are smart clothes,
where the sensing modules are either garment-integrated
or simply embedded on the piece of clothing. All of them
need participants to put on various wearable products at
any moment to collect continuous physiological data. They
are costly and inconvenient for daily exercise sometimes.
Data mining (DM) method takes advantage of the historical
exercise data and personal health data to assess or predict
the health status [14]. Various data mining methods have
been adopted to deal with physiological information and
predict the human health status. Li and Clifford applied a
multilayer perceptron neural network to estimate the quality
of the pulses in PPG [15]. Pantelopoulos and Bourbakis
presented a health prognosis methodology based on fuzzy
regular language [16]. Calderon and de Brito introduced data
mining models such as decision tree, k-nearest neighbors
(kNN), and support vector machine (SVM), for analyzing
electrocardiograms (ECG) in order to identify heart attack
and the probability of incidence [17]. But, if there is no enough
historical physiological data for a participant to analyze, the
accuracy of prediction may be a big problem.

Computer simulation modeling in exercise healthcare is
an attractive proposition. Obtaining the mathematical model
that describes the human physiological regulation mecha-
nisms can improve our understanding of exercise physiology
and is helpful for the prediction of health accidents during
exercise. Some significant research results can be developed
around human thermal behavior simulation as well as the
human heart rate response simulation. Reviewed by Cheng
et al. [18, 19], all the models for human body can be
characterized in terms of their viewpoints of development.
They are (1) one-node model [20], (2) two-node model
[21], (3) multinode model [22-24], and (4) multielement
model [25, 26]. All these models can simulate the thermal
performance of human body, while their mechanisms such
as heat conduction, sweating, vasoconstriction, and vasodi-
latation can be implemented from simple to complex. In
the one-node model, human body is regarded as a single
node, and it is only applicable to thermal environment. In
the two-node model, human body is divided into core and
skin; the basic thermoregulation mechanisms such as heat
conduction, sweating, vasoconstriction, and vasodilatation
can be simulated. This model is easy to be understood and
implemented. In the multinode and multielement models, the
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division of the human body is customized to the requirement
of researchers. In these two models, a series of complex
mathematical equations is used to describe the more physio-
logical mechanisms (e.g., the blood perfusion phenomenon,
the negative feedback control process). These two models
require complex simulation settings and higher computation
abilities, and they can obtain local physiological performance.
Physiological models about cardiovascular system in human
body increasingly receive attention in recent years. Cheng
et al. proposed a series of nonlinear heart rate models to
simulate the heart rate regulation process during exercise
[27,28]. Ataee et al. developed a low-order lumped parameter
model to describe the autonomic-cardiac regulation behav-
iors [29]. Buller et al. presented a quadratic regression model
to implement heart rate regulation by controlling the human
core temperature [30, 31].

From the literature review performed above, we have
found that the fundamental knowledge of human ther-
moregulation mechanisms has been established. Several
physiological indexes can be numerically computed by the
mathematical model. However, the existing models focus
on different emphasis points; the thermal performances and
human physiological performances are simulated individu-
ally. The relationship between these performances has not
been established in the existing work. Besides, some problems
such as what method can be used to predict the exercise
healthy status and how to alleviate or avoid exercise accidents
before they happen are unresolved. Therefore, it is important
to develop a comprehensive simulation model integrating
various human regulation mechanisms to obtain human
thermal performance and physiological performance during
exercise. Further, based on these exercise simulation results,
some research on healthy exercise is conducted.

In this study, we propose an integrated human exercise
physiological model, in which a two-node human thermal
physiological model and a nonlinear heart rate response
model are coupled together to simulate the human phys-
iological regulatory mechanism; a series of thermal and
physiological performances can be computed according to
the numerical computation model. Both human thermal
sensation (temperature of skin, relative humidity of skin)
and physiological status (core temperature, sweat rate, skin
blood flow, and heart rate) are obtained. They are important
in understanding, analyzing, predicting, and preventing the
health problems (accident, disease, etc.) during exercise.
Then, a fuzzy logical method is employed to deal with our
simulated results in exercise health prediction. Specifically, a
special fuzzy finite state machine is defined to describe the
health state transition in exercise process. Finally, two dif-
ferent cases are designed to evaluate the proposed approach.
Compared with the existing approaches, our approach can be
used to predict the health status before the exercise starts.
Further, the research results can be used in the healthcare
service which may also be beneficial in predicting and
reducing cardiovascular disease mortality [32]. This may also
lead to an improvement in developing training protocols for
athletes and more efficient weight loss protocols for the obese
and in facilitating evaluation of physical fitness and health
of individuals [33]. To clarify, we noted the importance of
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FIGURE 1: Flow chart of health simulation approach.

computer simulation technique in the study of human sports
and proposed a method to assess human exercise comfort
in 2016 [34]. Different from the work of this paper, the
previous one employs human physiological model to obtain
physiological indicators and defines a set of fuzzy rules to
measure the human comfort, while this work applies the
obtained physiological indicators as input of a complicated
fuzzy finite state machine and then quantifies the human
exercise health status.

2. Method

Figure 1 shows the flow chart of the exercise health simulation
method, in which the various parameters in the left side
are input and the predicted health state list is output. From
Figure 1 we can see the important issues are exercise ther-
mophysiological modeling and exercise health prediction.
In exercise thermophysiological modeling, two important
simulation models must be considered, which are human
thermal regulation model and heart rate regulation model.
Using the simulated results, an exercise health prediction
model is developed. That can be used in the exerciser to
obtain the healthy exercise effects.

2.1. An Integrated Exercise Thermophysiological Simulation
Model. During exercise, active tissues in body will produce
large amount of heat; this will break the body thermal balance
and affect the human physiological performances. Hence,
human body thermophysiological regulation mechanisms
used to speed up body heat dissipation are activated to
make the body in a proper thermal status. Such regulation
mechanisms mainly include sweating by stimulating the
sweat gland and automatically adjusting the cardiovascular
system. Modeling of these regulation mechanisms (especially
the thermoregulatory mechanism and heart rate regulation
mechanism) is significant. According to the literature review
we can find that the heat and moisture performances of
human body can be simulated by some mathematical models.

The basic thermoregulation data such as heat conduction,
sweating, vasoconstriction, and vasodilatation, as well as
the physiological indicators of human core temperature,
human skin temperature, sweat rate, and so on, can be
simulated. On the other hand, the individual physiological
regulation models are presented. In this paper, a nonlinear
heat rate regulation model is integrated into the human
heat and moisture transfer model to simulate the exercise
thermophysiological performances. Compared with the ther-
mal simulation model, the main character of the integrated
simulation model is focusing the human exercise thermo-
physiological properties. Particularly the human heart rate
can be simulated during exercise.

2.1.1. Two-Node Thermal Regulation Model. Considering the
complexity and efficiency of numerical simulation, a two-
node thermal regulation model is used to simulate the
thermal behaviors and represent the thermoregulatory mech-
anisms of the human body [21]. Core temperature and
dehydration amount are main parameters used in the exercise
health prediction model. Some mathematical equations are
used to calculate these two parameters.
The mathematical equation of two-node thermal regula-
tory model in unit skin area is presented as follows:
§S=M-W-R-C-E, (1)
where § is the rate of heat storage, M is the rate of metabolic
heat production, W is the heat loss by exercise accomplished,
R is the heat gained or lost by radiation, C is the heat gained
or lost by convection, and E is the total evaporative heat loss,
and it includes the heat of vaporized moisture from the lungs
during respiration (E,.,), the heat of vaporized water diffusing
through the skin layer (Eg;¢), and the heat of vaporized sweat
necessary for the regulation of body temperature (E,). It
should be noted that there is a positive correlation between
M and exercise intensity. Therefore, when exercise intensity
increases, the rate of metabolic heat production increases.
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where S is the rate of heat storage in core, S, is the rate of
heat storage in core, T, is the skin temperature, T, is the core
temperature, K, ;) is the minimum heat conductance of skin
tissue, g, is the specific heat of blood, and V;; is the rate of
skin blood flow.

With the heat storage changed, the values of skin and
core temperature at any simulation time can be calculated as

follows:
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where dTy, is the skin temperature change rate, dT, is the
core temperature change rate, T is the initial temperature
of skin, T, is the initial temperature of core, m,, is the
core mass, ¢, is the core specific heat capacity, and A is the
body surface area, it is a function of body height and weight
proposed by Schlich et al. [35].

Sweating is usually caused by temperature stimuli from
both the skin and core. An effective sweating mechanism can
take away the additional heat and help human body work well
during exercise. The sweat rate g, is used to measure the
performance of the sweating mechanism in our model, and it
is written as follows:

Meay = ko # (Ter = Teg,, ) + e * (Ter = Tor, )
* (tl<;l( N ilﬂS}(ini ) ] * A,

where T and T .., are the initial values of Ty and T, Tg —
T, and T, T, can be seen as the temperature control
signals (they are responsible for the thermoregulatory control
actions), k, is the coefficient of the additional sweat amount
during activities, and kg, is the coefficient of sweating rate
model.

The sweating accumulation in (5) can be used to diagnose
whether the body is dehydrated or not; it is defined as
dehydration amount (DA) in this paper.

(4)

t
DA = j m_ dt. )
0

2.1.2. Heart Rate Regulation Model. Heart rate regulation
behaviors are important in maintaining a physiological bal-
ance state in exercise process. During exercise, large amount
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of blood is required to facilitate heat dissipation and deliver
oxygen into muscles. The human heart rate increases to sus-
tain cardiac output and blood supply to the working muscles
and the skin. Nonlinear heart rate regulation model aiming to
simulate the heart rate behaviors and represent the heart rate
regulation mechanisms of the body can be introduced [27]. In
this model, the neuroregulation mechanism can well reflect
the dramatic change of heart rate especially in the strenuous
exercise. The thermal regulation mechanism combined with
some other mechanisms is usually utilized to describe the
slow-acting effects of HR. The mathematical equations of
the nonlinear heart rate regulation model are presented as
follows:

%, (t) = —ayx, (t) + ayx, (t) + agu ()%,

%, (1) = —azx, (1) + © (x, (1)),
HR (£) = 4.0 = x, (£) + HR (6)

rest>

ax, (£)
1+ e_(xl(t)_ai) ?

@ (x, (1) =

where x,(t) describes the change of HR mainly due to the
neural effects to exercise (the effects comprise the sympa-
thetic and parasympathetic), x,(t) describes the change of
HR due to the peripheral effects comprising the human
thermoregulation system, the hormonal system, and other
physiological phenomena, u is the exercise intensity, and it
directly affects human metabolic rate, a; (i = .,6) is
positive parameter which depends on the specific individual
performing various exercise, HR . is the heart rate at rest,
and its default value is 74, and HR is the output we need.

2.2. Exercise Health Prediction. Applying various indicators
obtained from the proposed thermophysiological model to
predict the potential exercise health risk is a worthwhile
method. Among the various simulated physiological indica-
tors, core temperature, dehydration amount, and heart rate
are the most important ones in exercise symptoms diagnos-
ing, and they are chosen as health prediction variables.

2.2.1. Fuzzification. Instead of characterizing simulated phys-
iological indicators in a crisp manner, we can employ fuzzy
logic [36] to describe the degree of occurrence of a certain
indicator. Particularly, the trapezoidal function in fuzzy logic
is selected to define the membership function of every
input indicator. With the guidance of medicine experts,
the severity interval for health symptoms is divided and
the corresponding fuzzy symptoms are obtained. Figure 2
shows fuzzy symptoms extracted from simulated indicators.
Especially in the heart rate membership function, the THR
is the target heart rate, which indicates the recommended
optimal heart rate [37]. MHR is the maximum heart rate that
the human body can tolerate [38]. These two thresholds are
directly related to the participant’s age and exercise intensity;
their values should be calculated as follows:

MHR = 163 + (1.16 * age) — (0.018 = age’),
@)
THR = ((MHR - HR ;) * EIP) + HR

Test>
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FIGURE 2: Fuzzy symptoms extracted from simulated indicators.

where HR ., is the rest heart rate (its default value is 74) and
EIP is the exercise intensity percentage.

As shown in Figure 2, concerning the core temperature,
the human health is commonly classified into three states,
that is, hypothermia, normothermia, and hyperthermia. The
hypothermia usually shows symptom of low temperature (It).
The normothermia shows symptom of normal temperature
(nt). The symptoms of hyperthermia include slightly high
temperature (sht), moderate high temperature (mht), and
high temperature (ht). The dehydration amount is classified
into two states, that is, normal and dehydration. The normal
shows symptom of nondehydration (nd). The dehydration
shows three symptoms, namely, mild dehydration (mid),
moderate dehydration (mod), and severe dehydration (sd).
The heart rate is also classified into three states, that is,
bradycardia, normal, and tachycardia. Each state corresponds
to one symptom, namely, low heart rate (lhr), normal heart
rate (mhr), and high heart rate (hhr), respectively.

2.2.2. Finite State Machine Definition. Once the fuzzy symp-
toms are generated, we need to predict the health transition
states based on the obtained fuzzy data. Traditional rule-
based health judgment method is wildly used to calculate
the health state of discrete time [39], the degree of healthy,
and the health tendency during the whole process which are

unknown. Therefore, the finite state machine (FSM) [40] is
introduced and applied in exercise health prediction. Finite
state machine is useful in the situations where behavior is
driven by many different types of events; the response to a
particular event depends on the sequence of previous events.
In this case, the change of CT, DA, and HR can be used as
trigger events and a specific finite state machine is defined to
simulate the health transition sequence during exercise. The
FSM is represented as a 4-tuple (%, Q, ¢, &), where we have
the following:

(1) Z denotes the set of all possible health symptoms
extracted from the simulated physiological data. The
total number of symptoms in the current FSM is 12
(5+4+3). All the symptoms and their corresponding
notations are listed in Table 1. Each symptom has
a degree of membership (DOM) 0 < pu(i, j,x) <
1, which denotes the certainty or strength of the
corresponding symptom, where i belongs to the set of
all indicators simulated by our physiological model,
j belongs to the set of all symptoms that can be
extracted from the ith indictor, and x is the simu-
lated value. For example, y(1, 3,37.7) means that the
current core temperature is 37.7°C, and the symptom
of core temperature is slightly high temperature. The
current membership degree of (1, 3,37.7) is 1.
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TABLE 1: Notations in FSM.
Health variables States Symptoms
H (hypothermia) It (low temperature)

N (normothermia)

Core temperature (CT)

nt (normal temperature)
sht (slightly high temperature)

F (hyperthermia) mht (moderate high temperature)
ht (high temperature)
N (normal) nd (nondehydration)
mid (mild dehydration)

Dehydration amount (DA)

D (dehydration)

mod (moderate dehydration)
sd (severe dehydration)

B (bradycardia) lhr (low heart rate)
Heart rate (HR) N (normal) nhr (normal heart rate)
T (tachycardia) hhr (high heart rate)

TABLE 2: Health states and syndromes in FSM.

E{gla:l\tllgzt\al’;em Syndrome (possible)

HNB Hypothermia, arrhythmia

HNN Hypothermia

HNT Hypothermia, arrhythmia

HDB Hypothermia, dehydration, arrhythmia

HDN Hypothermia, dehydration

HDT Hypothermia, dehydration, arrhythmia

NNB Bradycardia

NNN Normal

NNT Tachycardia

NDB Dehydration, arrhythmia

NDN Dehydration

NDT Dehydration, arrhythmia

FNB Hyperthermia, arrhythmia

FNN Hyperthermia

ENT Hyperthermia, arrhythmia

FDB Hyperthermia, dehydration, heatstroke,
syncope, arrhythmia

FDN Hyperthermia, dehydration, heatstroke,
syncope

FDT Hyperthermia, heatstroke, syncope,

arrhythmia, shock

(2) Q denotes the set of all possible health states. These
states signify the various possible combinations of
health symptoms presented in 2. The total number of
health states in the current FSM is 18 (3 * 2 * 3). These
health states and their possible syndromes [41, 42] are
summarized in Table 2, where the first letter signifies
the state of the core temperature, the second letter
means the percentage of dehydration amount, and the
third letter means the heart rate. The state NNN is
usually regarded as the beginning state; any state can
be regarded as the final state when the exercise ends.

(3) w denotes the weighting function. It associates a
weight with every transition rule in the FSM and
represents the causal associations between symptoms
and unhealthy/healthy states. This function is com-
monly based on the medicine knowledge [41] and it is
helpful to determine the occurrence of a health state.
In current FSM, all the transitions weight values are
set equal to 1; for example, for HR signs, wy_,n =
WN_T = WNop = Wrr =Wp g =wp Ny =1

(4) & denotes the transition function. The state transition
in FSM is in the form of A— «B, where A (e.g,
NNN) signifies the current health state, B (e.g., NNT)
is the new estimated health state (B can be equal to A),
and « (e.g., hhr) is a new extracted symptom being
processed. That is, by accepting a new symptom of
hhr, the state NNN can be changed to NNT.

The defined fuzzy finite state machine is depicted in
Figure 3, which shows all possible transition paths, health
judgment rules, health symptoms, and states graphically.

2.2.3. Health State Transition Metrics. In order to derive the
heath state transition sequence during exercise and assess
the healthy degree, it is necessary for us to calculate the
state transition probabilities as well as the state probabilities
[16]. For each input fuzzy symptom s, its state transition
probability p(s) in every time step is given by

p(5) = max {min (ds, (), w)} (8)

where S; means the symptom set of the ith indicator (CT, DA,
and HR), ds,- (s) signifies the DOM of s, and it can be achieved
by the degree of membership in Figure 2, and w denotes the
transition weight between the current state and the state we
are transitioning to. The equation means that when a new
symptom is acquired, we will look for the most plausible
transition state. In general, the initial state probabilities of the
health variables as well as the initial transition probabilities
are assumed to be 1.0.
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FIGURE 3: Fuzzy finite state machine (FSM) used in health prediction.

After the transition probability u(s) has been computed,
the state probability corresponding to each indicator is
calculated as follows:

pi(n—=1)+pu(s)

— 2 ’
B =Y (12 (n= 1)+ ()
- :

)

y;(n) is the state probability of the ith indicator at the
discrete time n. When the current state is unchanged, y;(n)
is calculated as the average of the previous state and the
new computed probability. However, when the current state
changes to a new state, the complement of the previous
state probability is averaged with the transition probability to
calculate y;(n).

In order to evaluate the whole health status under the
three input health indicators, we should deduct an overall
probability pyen(#) at the discrete time 7 for the current
health state.
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TABLE 3: Scene settings for the model validation.

Scene Environment conditions
1 25°C,70% RH
2 30°C, 50% RH

Exercise settings
Walking at 5 km/h for 15 min
Running at 8 km/h for 30 min

where N is the number of indicators that did not change, M
is the number of indicators that did change, and y;(n — 1) is
the state probability of the ith indicator at time n — 1.

3. Experiments and Discussion

3.1. Thermophysiological Model Validation. To validate the
integrated thermophysiological simulation model, five adult
male subjects are selected to do exercise in two different
scenes [6]. The average information of the subjects is 21.7
years, 176.8 cm, and 72.2 kg. The detailed settings of these two
exercise scenes are shown in Table 3.

Figure 4 shows the comparison curves of the core temper-
ature in measurement and simulation in walking and running
scenes. The pink dot line represents the measured values and
the blue line represents the simulated values. The range of
error bars is £0.3°C. It can be seen that the simulated core
temperature curves in both scenes have good agreements
with the experimental ones and the errors between the
simulated values and measured values are acceptable [43].
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TABLE 4: Comparison values of water loss.

Measured results Simulated results
Water loss (g) Dehydration percentage’ Water loss (g) Dehydration percentage’
Walking 41 0.057% 30.98 0.043%
Running 505 0.699% 419.35 0.581%

!Dehydration percentage: the ratio between water loss and body weight.
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FIGURE 4: Comparison curves of core temperature.

Time (min)

—— Simulated
--- Measured

(a) Walking

F1GURE 5: Comparison

The weight loss before and after exercise is usually consid-
ered to be the amount of sweating. As the weight loss is easy
to measure, we adopt weight loss to validate the effectiveness
of sweating mechanism in our thermophysiological model.
Table 4 lists measured average weight loss and simulated
water loss of the two scenes. It can be seen that the simulated
values are slightly below the experimental values, and the
dehydration percentages which were used to determine
whether there was dehydration or not in measurement and
simulation are very close.

Figure 5 shows the measured and simulated heart rate in
the walking and running, respectively. The purple dot line
represents the measured values and the blue line represents
the simulated values. The range of error bars is 10 bmp. In
Figure 5, the heart rate values in measurement and simulation
are increased sharply in the first few minutes and then slowly.

200
180
160 |
140
120
100
80

60 - L I 1 1 L
0 5 10 15 20 25 30

Time (min)

Heart rate (bpm)

—— Simulated
--- Measured

(b) Running

curves of heart rate.

The errors between the simulated values and measured values
are within 10 bmp and they are acceptable [27].

Through the comparison analysis in model validation
experiments, it can be concluded that the integrated thermo-
physiological model can well simulate physiological mech-
anisms as well as the dynamic changes of body physiolog-
ical indicators in different ambient conditions and exercise
intensities. That is, our integrated thermophysiological model
is effective and it is feasible to apply this model for exercise
health prediction.

3.2. Exercise Health Prediction Cases. After human thermo-
physiological model validation, two exercise health predic-
tion cases with different subjects, clothes, external environ-
ments, and exercise intensities are designed in Table 5. The



Computational and Mathematical Methods in Medicine

8¢0 €8 977000 1€80°0 9661 [ 01 0S 958D
8¢0 €8 12€00°0 9¢90°0 (4% ¢4 781 001 0s¢ 1 3seD
v v 7 v W v Sy Py
sI1o)oweIeq
0¢ %08 4! Suruumy %05 8¢ %08 uonon YL €Ll 59 958D
0zI %09 L Surd3o( %S9 ST %0L uonon 89 LLT T 1 9seD
(unwr) voneng  JIg  (Yuy) paads  adAyesroxyg  Aiprumyeanepy (D) armjeradwd],  djeraferoao)  [edely  (3Y)IySopy (W) ySy  (s1eak) o8y

Sumnyag asoraxy Sunyag yuswuoIAuy Surpes SurpoD Surpes 102(qng aseD

sSumeg

‘s1ojowrered pue sSunjos ase)) i AIAV],



10

Computational and Mathematical Methods in Medicine

42 - 2000 ¢
1800
41
1600
®) C)
8 40 L \‘E/: 1400
[ =3
E g 1200 +
g 39t = 1000 -
g* g
3 £ 800
2 38t =
S 5 o0
37 400
200 +
36 L L L L L ) 0 1 1 1 L 1 )
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Time (min) Time (min)
(a) Core temperature tendency (b) Dehydration amount tendency
220 -
200
180 |
160
o
—E 140 |
o~
am
120 +
100
80
60 1 1 1 1 1 )
0 20 40 60 80 100 120
Time (min)

(c) Heart rate tendency

FIGURE 6: The change curves of the simulated physiological indicators of subject A.

thermophysiological simulated results and the corresponding
health state transition list are given and discussed.

Case 1. Subject A (25 yrs, male, 68 kg, and 1.77 m) participates
in treadmill exercise at the speed of 7km/h (jogging) for
2 hours while wearing shorts and a t-shirt in environment
conditions of 25°C and 65% RH. The related parameters in
our thermophysiological model for subject A are estimated
in [27, 44] and they are set as k, = 250, k,,, = 100, a, =
1.84, a, = 24.32, a; = 0.0636, a, = 0.00321, a; = 8.32,
and g = 0.38. Other parameters needed in exercise health
prediction like body areas, THR, and MHR are calculated
and their values are A = 19199 cm®, MHR = 176.05, and
THR = 145.435.

Figure 6 shows the simulation results of the thermo-
physiological model. In Figure 6(a), the core temperature
increases rapidly in the first twenty minutes, and then it
remains approximately 38.8°C. At the same time, lots of sweat
are secreted; the changes of sweat accumulation (dehydration

amount) are shown in Figure 6(b). Figure 6(c) shows the
change curve of the simulated heart rate.

By analyzing the simulated indicator values, a series of
fuzzy symptoms along with their probabilities are extracted
and the assessed health states are listed in Table 6. In Table 6,
the values behind the states are the probabilities of the current
state. While a new set of fuzzy symptoms is extracted, the
current state probabilities can be updated by (10). The greater
the probability value, the greater the likelihood for the subject
to be in the current state. For example, from the 6th minute
to the 10th minute, the probability of FNN is increased
from 0.68 to 0.98. That is to say, while the core temperature
increases and reaches slightly high temperature, the body
health state of the subject A is in FNN with a high-probability.
As listed in Table 6, the user is initially in state NNN and
its corresponding probability is 1. The end state is FDT and
its corresponding probability is 0.89. In the 5th minute of
simulation, the fuzzy symptom of core temperature changes
from nt to dt and the health state changes from NNN to
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TABLE 6: Health state transition sequence of subject B.

Time (min) Current state & Prob' CSCT & Prob? CSD & Prob’ CSHR & Prob*
t=0 NNN 1 nt1 nd1 nhr1
t=1 NNN 1 nt1 nd1 nhrl
t=2 NNN 1 nt1 nd1 nhrl
t=3 NNN 1 nt1 nd1 nhr1
t=4 NNN 1 nt 0.7 nd1 nhr 1
t=5 NNN 0.95 nt 0.73 nd1 nhr1
t=6 FNN 0.68 sht 1 nd1 nhr1
t=7 FNN 0.84 sht 1 nd 1 nhr 1
t=38 FNN 0.92 sht 1 nd 1 nhr 1
=9 FNN 0.96 sht1 nd1 nhrl
t=10 FNN 0.98 sht 0.9 nd1 nhrl
t=11 FNN 0.97 mht 0.56 nd1 nhrl
t=12 FNN 0.91 mht 1 nd1 nhr1
t=13 FNN 0.96 mht 1 nd1 nhr1

t =47 FNN 0.86 mht 1 nd1 nhr 0.54
t =48 FNN 0.85 mht 1 nd1 nhr 0.52
t=49 FNN 0.85 mht 1 nd1 hhr 0.5
t =50 FNT 0.61 mht1 nd1 hhr 0.52
t =51 FNT 0.73 mht1 nd1 hhr 0.54
t=113 ENT 0.86 mht1 nd 0.52 hhr1
t=114 ENT 0.85 mht1 mid 0.51 hhr1
t=115 FDT 0.62 mht1 mid 0.55 hhr1
t=116 FDT 0.73 mht1 mid 0.58 hhr1
t=117 FDT 0.8 mht 1 mid 0.61 hhr1
t=118 FDT 0.83 mht 1 mid 0.65 hhr1
t=119 FDT 0.86 mht 1 mid 0.68 hhr1
t=120 FDT 0.88 mht 1 mid 0.71 hhr1
— FDT 0.89 — — —

!Prob: probability; *CSCT: current symptoms of core temperature; >CSD: current symptoms of dehydration; *CSHR: current symptoms of heart rate.

ENN; at this time, subject A's core temperature is higher than
normal body temperature. As the core temperature continues
to increase, the fuzzy symptom of core temperature changes
into mt and lasts until the end of simulation. With the heart
rate increasing during running, the fuzzy symptom of HR is
from nhr to hhr at the 49th minute. The health state is from
FNN to ENT correspondingly. Besides, people are dehydrated
at the 114th minute, and the fuzzy symptom of DA is from nh
to mih and the health state is from FNT to FDT.

It is known that high body temperature in people for a
long time is harmful to the human organs and physiological
functions. Some symptoms like dehydration and heatstroke
usually appear at the same time. Hence, when the current
state is FNN, especially when the fuzzy symptom of CT
is mht, health warning should be given to users and heat
dissipation of body should be enhanced. While the fuzzy
symptom of DA is mih, people must drink more water to
stay hydrated and to stay in a good physiological condition.
Moreover, tachycardia for a long time also can cause poor

physical fitness. We should adjust the sport plans while the
symptom hhr of HR arises.

In short, during the whole simulation process, the body
goes through four states: NNN, FNN, FNT, and FDT. This
health state tendency agrees with the real physiological
changes. Based on the simulated results, we can take reason-
able behaviors to avoid potential health risk.

Case 2. Subject B (35yrs, male, 74 kg, 1.73 m) participates
in treadmill exercise at the speed of 12km/h (running) for
0.5 hours while wearing shorts and a vest in environment
conditions of 28°C and 50% RH. The related parameters in
our heat physiological models for subject B are set as follows:
k, = 50, k,, = 10,a, = 2.2,a, = 19.96, a; = 0.0831,
a, = 0.002526, a; = 832, a; = 038, A = 19697 cm?,
MHR = 181.55, and THR = 160.04 [28, 35].

The tendency curves of core temperature, dehydration
amount, and heart rate of subject B are shown in Figure 7.
Compared with jogging of subject A, the physiological values
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TABLE 7: Health state transition sequence of subject B.
Time (min) Current state & Prob’ CSCT & Prob? CSD & Prob’ CSHR & Prob*
t=0 NNN1 ntl nd1 nhrl
t=05 NNN1 ntl nd1 nhrl
t=1 NNN 1 ntl nd1 nhr 0.86
t=15 NNN 0.98 ntl nd1 nhr 0.52
t=2 NNT 0.63 nt 0.73 nd 1 hhr 0.68
t=25 NNT 0.72 sht 0.58 nd1 hhr 0.76
t=3 FNT 0.6 sht 0.87 nd1 hhr 0.82
=6 ENT 0.99 sht 0.94 nd 1 hhr1
t=6.5 FNT 0.98 sht 0.56 nd1 hhr1
t=7 FNT 0.92 mht 0.8 nd1 hhr1
t=75 FNT 0.93 mht 1 nd1 hhr1
t=135 FNT1 mht 1 nd1 hhr1
t=14 FNT1 mht 0.9 nd1 hhr 1
t =145 FNT 0.98 mht 0.65 nd1 hhr1
t=15 FNT 0.93 ht 0.6 nd1 hhr1
t =155 FNT 0.9 ht 0.84 nd 1 hhr1
t=16 FNT 0.92 ht1 nd1 hhr1
t =295 FNT1 ht1 nd1 hhr1
— FNT 1 — — —

!Prob: probability; >CSCT: current symptoms of core temperature; >CSD: current symptoms of dehydration; *CSHR: current symptoms of heart rate.

of subject B increase more quickly. Particularly the core
temperature increases to 40°C and the heart rate increases
to 170 immediately. The corresponding health state transition
sequence is shown in Table 7.

In Table 7, the human health symptom goes through three
states: NNN, NNT, and FNT. At the 2nd minute, the fuzzy
symptom of HR changes from nhr to hhr and the current
health state changes from NNN to NNT. And immediately
following that, the fuzzy symptom of core temperature
changes from nt to sht, mht, and ht; the health state changes
in FNT. During this case, the sweat accumulation is in the
normal range; its related symptom is nh during the whole
simulation process. As the heart rate sharply increased to the
MHR, the exercise performed by subject B is risky. That is,
subject B is not suitable for this running plan. We should
adjust the running intensity or running time.

3.3. Discussion. The experiments show that our approach
can simulate the physiological changes of human body and
predict the health states in different exercises. Furthermore,
important exercise health warnings can be given to partici-
pants when the human body gets into a risky health state [45].
This is very helpful for individual when he (or she) is not sure
about how long he (or she) should be running in a specific
environment temperature while maintaining a healthy state.
And the appropriate exercise suggestions also can be given
according to the simulated health states before they start the
exercise.

Case 1 shows that jogging for a long time may cause
a mild dehydration phenomenon, although in a pleasant
environment. This is because sweating takes effect in ther-
moregulation system and a lot of sweat is secreted in the
whole exercise process. So water should be supplemented in
a longtime jogging in time and exercise duration should be
arranged reasonably (e.g., not more than 2 hours) [44, 46].

Case 2 simulates the physiological changes of human
body in fast running. When fast running is more than 15
minutes in an environment temperature of 28°C, human body
reaches a high load state (performance at core temperature
and heart rate). Therefore, our simulation result suggests that
fast running should not be more than 15 minutes when the
environment temperature exceeds 28°C [47, 48]. Also, a fast
running is not suitable for the people with heart disease, since
the heart rate sharply increases at the first minutes of running.

4. Conclusion

During exercise, the physiological changes of human body
are caused by the various physiological regulation mecha-
nisms such as thermoregulation and cardiovascular regu-
lation. These physiological mechanisms are directly related
to the health evaluation and prediction. For the purpose of
obtaining the human exercise health, we propose a novel
exercise health simulation approach, which comprises an
integrated thermophysiological model and a fuzzy finite
state machine. Some common physiological indicators like
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FIGURE 7: The change curves of the simulated physiological indicators of subject B.

core temperature, dehydration amount, and heart rate used
in exercise health prognosis can be well simulated by our
thermophysiological model. Then a fuzzy finite state machine
is defined to describe the health state transition during
exercise, and the health status can be obtained at an earlier
stage.

The further work is discussed as follows: (1) The exercise
health simulation and analysis in this paper are aimed at
healthy people; the similar research on specific populations
(such as cardiac patients or other unhealthy people) should be
analyzed and discussed; (2) the real-time exercise monitoring
is a hot research topic. We have proposed a real-time exercise
monitoring framework based on the given thermophysiolog-
ical model; its corresponding real-time exercise monitoring
APP has been implemented. However, with the increasing
of client users, the problems such as simulation efficiency,
load balancing, and the analysis and storage of the increasing
physiological data are yet to be solved.
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