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The accurate segmentation of pulmonary nodules is an important preprocessing step in computer-aided diagnoses of lung cancers.
However, the existing segmentationmethodsmay cause the problem of edge leakage and cannot segment juxta-vascular pulmonary
nodules accurately. To address this problem, a novel automatic segmentation method based on an LBF active contour model with
information entropy and joint vector is proposed in this paper. Our method extracts the interest area of pulmonary nodules
by a standard uptake value (SUV) in Positron Emission Tomography (PET) images, and automatic threshold iteration is used
to construct an initial contour roughly. The SUV information entropy and the gray-value joint vector of Positron Emission
Tomography–Computed Tomography (PET-CT) images are calculated to drive the evolution of contour curve. At the edge
of pulmonary nodules, evolution will be stopped and accurate results of pulmonary nodule segmentation can be obtained.
Experimental results show that our method can achieve 92.35% average dice similarity coefficient, 2.19mm Hausdorff distance,
and 3.33% false positive with the manual segmentation results. Compared with the existing methods, our proposed method that
segments juxta-vascular pulmonary nodules in PET-CT images is more accurate and efficient.

1. Introduction

Lung cancer is a crucial threat to human life in recent years
[1]. Peripheral lung cancers are themost common type of lung
cancers. Juxta-vascular nodules are the main symptom in the
early stages of peripheral lung cancers. Due to the abundance
of nutrients in the blood vessels, they are provided with a
good foundation for growth. Therefore, juxta-vascular nod-
ules have the great probability of being malignant nodules.
The early detection and diagnose of juxta-vascular nodules
have important significance to treat the lung cancerwhich can
immensely improve the survival rates of patients. Currently,
computer-aided diagnosis (CAD) systems can analyze a large
number of nodule medical images automatically which are
effective tools to improve the accuracy of pulmonary nodule
diagnosis. Accurate juxta-vascular nodule segmentation is
the prerequisite for nodule detection and benign/malignant
diagnosis by the CADs [2, 3]. However, due to vascular

interference, it is easy to cause the oversegmentation for
juxta-vascular nodules.

Recently, a lot of researches have been done on the seg-
mentation of juxta-vascular pulmonary nodules, and various
methods have been proposed. Chen et al. [4] presented a
segmentationmethod for vessel attachment nodules based on
integrated active contour model, which can effectively solve
the problem of nodules with similar intensity and intensity
inhomogeneity, but this algorithm performance depends
largely on the choice of the initial position. Farag et al.
[5] proposed a variational level set approach for lung nod-
ule segmentation fusing with the image intensity statistical
information in a shape model. This technique does not
depend on the nodule types or locations, but the segmen-
tation performance for juxta-vascular nodules is ineffective.
Mukhopadhyay [6] proposed a segmentation framework for
all types of pulmonary nodules. In the framework, pulmonary
nodules are classified into solid/part-solid and nonsolid
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categories by analyzing intensity distribution in the core of
the nodules. After determining the categories of the nodules,
the particular algorithm is set to remove blood vessels from
the nodule body by vasculature pruning technique. The clas-
sification accuracy is crucial for segmentation performance.
Qi et al. [7] used a two-dimensional ray casting and linear
fittingmethod to segment the juxta-vascular pulmonary nod-
ules, whose algorithm required users to select and determine
an optimal area as the seed points for segmentation, so it is
difficult to guarantee the reproducibility of a segmentation
result. Sun et al. [8] proposed a method for segmentation
of juxta-vascular pulmonary nodules based on flow entropy
and geodesic distance. The average segmentation accuracy
rate reached 91.77%, but the reproducibility of results was
still unsatisfactory. Si et al. [9] proposed a new segmentation
method to deal with the juxta-vascular pulmonary nodules
which used a 3D ray casting method to extract the surface
information of the nodules. Meanwhile, this method adopted
the 3D distance transformation method to improve the
reproducibility of the segmentation results and minimized
influence of selecting seed pointsmanually.The segmentation
accuracy exceeded 90%.

Although researchers have proposed many segmenta-
tion methods of juxta-vascular pulmonary nodules, most of
these methods require manual interaction and make a seed
point manually. Thus, it is difficult to realize the nodule
segmentation automatically. Moreover, there is high gray-
level similarity between nodules and attached blood vessels
in the CT images. The circular area of vascular cross-section
also has a great disturbance for the nodule segmentation.
How to segment the juxta-vascular nodules automatically and
accurately is still a challenging problem.

Active contour model is one of the most popular seg-
mentation methods in recent years. To achieve accurate
segmentation, a contour curve is driven to evolve toward
the energy reduction direction by minimizing the energy
functional. This method has been widely applied in the field
ofmedical image segmentation and greatly reduces the possi-
bility of the edge leakage [10–12]. The local binary fitting
(LBF) model, as one of the effective active contour mod-
els, is used to fit the local regions gray information by a
Gauss kernel function to improve the segmentation results
of the CT images with noise and intensity inhomogeneity
[13]. However, in the LBF model, it cannot get the precise
pulmonary nodules edge only with the gray features of the
CT images, especially for juxta-vascular nodules. PET-CT is
a diagnostic method to combine metabolic function imaging
and anatomical structure imaging [14]. In PET images, SUV
can accurately reflect the metabolic information of lesion
tissues. SUV can be used to eliminate the influence of vessels
and other tissues to the greatest extent and achieve accurate
analysis of the pulmonary nodules.

In this paper, we propose an automatic juxta-vascular
nodule segmentation method. The multiple features in PET-
CT images based on an LBF active contour model are used to
drive the evolution of a contour curve to stop at the edge of
the pulmonary nodule accurately. Experimental results show
that our method can segment the juxta-vascular nodules
efficiently and accurately.

The rest of the paper is organized as follows. Section 2
presents the PET-CT imaging that was employed to validate
the proposed methods. Section 3 presents our novel segmen-
tation model for juxta-vascular nodules in detail. Section 4
shows the performance metric for evaluation of results.
Section 5 shows the experimental results, comparisons with
other segmentationmethods, and discussion.The conclusion
is presented in Section 6.

2. Materials

The PET-CT imaging data was obtained from a hospital in
Shanxi, China, and was produced byDiscovery ST16 PET/CT
(GEHealthcare, USA)with the parameters of 140 kV, 150mA,
and slice thickness 3.75mm. The size of the CT images is
512 × 512 while that of the PET images is 128 × 128. Because
the different resolutions between them, PET images were
coregistered to the CT images using rigid transformation
based on the Elastix toolbox [15]. After the registration, we
can obtain the one-to-one voxel correspondence between the
PET and CT images.

The experiment used PET-CT images of 392 patients.
There are 299 PET and 299 CT images for each patient.
Among these images, we chose 814 juxta-vascular nodules
PET-CT images for experiment (the maximum diameter
ranged from 1.3 to 24mm, with an average maximum dia-
meter of 6.1mm). Regarding patient privacy, we signed the
relevant confidentiality agreement with the hospital and
patients, and the corresponding processing had been done for
patient’s information on PET-CT images.

3. Methods

3.1. Construction of Initial Contour. The construction of the
initial contour is the first step in active contour model
and usually requires manual annotation. However, because
the pulmonary nodules are smaller and vague in the CT
images, it is difficult for physicians to identify and mark the
pulmonary nodules accurately with naked eyes. Therefore, in
this paper,multiple features in the PET-CT images are used to
construct the initial contour of pulmonary nodules automati-
cally.

3.1.1. Extraction of Pulmonary Nodule Region of Interests
(ROIs). To narrow down the range of segmentation, it is
necessary to extract the ROIs of the pulmonary nodule
before the construction of the initial contour. First, the Otsu
threshold algorithm and the morphological open operation
are used to segment the lung parenchyma [16]. In PET images,
the metabolism of the nodule region is relatively active, and
corresponding SUV is higher than other nonlesion regions.
According to this characteristic, we can get the pixel 𝑂, the
SUVvalue ofwhich is themaximum in lung parenchyma, and
construct a circular template with the center 𝑂 and radius 𝑅
in the PET images. Then, it is registered to the CT image as
the pulmonary nodule ROIs. In general, the diameter of the
pulmonary nodule is in range of 3mm to 30mm. To avoid the
omission of some lesion regions, we set 𝑅 = 30mm. Figure 1
shows the results of ROIs.
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Figure 1: ROIs extraction of the pulmonary nodule. (a) Location of the nodule in PET image; (b) location of the nodule in CT image
corresponding to PET image (a); (c) ROI of the pulmonary nodule.

3.1.2. Automatic Threshold Iteration. There is no need for a
high degree of accuracy in the construction of the initial
contour of the pulmonary nodule; instead, there is need
for high execution efficiency. The threshold segmentation
algorithm can roughly determine the initial contour of
pulmonary nodules with the higher segmentation speed.The
main idea of the threshold segmentation is that users have
to set fixed gray values before segmenting. However, it is
hard to choose a suitable global threshold manually to get
the optimal initial contour due to the differences of gray
values in the different pulmonary nodule CT images.Thus, in
this paper, automatic threshold iterative algorithm is adopted
to construct the initial contour. The description of steps for
initial contour is given as follows.

Step 1. Set the initial threshold value 𝑇 according to

𝑇 = (𝐺max + 𝐺min)2 , (1)

where𝐺max and𝐺min represent the maximum andminimum
gray values in the CT images, respectively.

Step 2. Divide the entire ROIs into two sets of pixels using 𝑇:
the set 𝐵 (background region) and𝑁 (nodule region).

Step 3. Calculate the average gray values 𝛼𝑏 in set 𝐵 and 𝛼𝑛 in
set𝑁.

Step 4. Update the new threshold according to

𝑇 = 𝛼𝑏 + 𝛼𝑛2 . (2)

Step 5. Repeat Steps 2–4 until |𝑇𝑛 − 𝑇𝑛−1| ≤ 𝜆, where 𝑇𝑛−1 is
the threshold at iteration 𝑛−1 and𝑇𝑛 represents the threshold
at iteration 𝑛. 𝜆 is the preset parameter.

After several iterations, optimal gray threshold value 𝑇 is
obtained, and the operation of binarization in the CT images
can be done according to

𝐼bin (𝑥, 𝑦) = {{{
1, 𝐼 (𝑥, 𝑦) ≥ 𝑇
0, 𝐼 (𝑥, 𝑦) < 𝑇, (3)

where 𝐼bin(𝑥, 𝑦) denotes the binary CT images.
After the above operations, we cannot get the initial

contour of pulmonary nodule due to some noise spots or
complicated tissue in the ROIs.Therefore, we detect the edges
of the binary CT images and calculate the area enclosed by
these edges. Finally, the edge of the maximum area is selected
as the optimal initial contour.The result of the initial contour
is shown in Figure 2.

3.2. LBF Active Contour Model Based on Information Entropy
and Joint Vector

3.2.1. LBF Active Contour Model. Li et al. proposed the LBF
active contour model to overcome the poor image segmenta-
tion with noise and intensity inhomogeneity [13]. In the LBF
model, the energy functional is redefined by the variable
local fitting energy. Let the initial contour 𝐶 divide the image
domain 𝐼 into two regions:Ω1 andΩ2, whereΩ1 denotes the
inside region of 𝐶 and Ω2 denotes the outside region of 𝐶.
For image 𝐼, local fitting energy functional of each pixel is
formulated as follows:

𝐸𝑥 (𝐶, 𝑓1 (𝑥) , 𝑓2 (𝑥))
= 𝜆1 ∫

Ω1

𝐾𝜎 (𝑥 − 𝑦) 𝐼 (𝑦) − 𝑓1 (𝑥)2 𝑑𝑦
+ 𝜆2 ∫

Ω2

𝐾𝜎 (𝑥 − 𝑦) 𝐼 (𝑦) − 𝑓2 (𝑥)2 𝑑𝑦,
(4)

where 𝜆1 and 𝜆2 are the weighted coefficients that balance the
energy between two regions. 𝑓1(𝑥) and 𝑓2(𝑥) represent the
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Figure 2: The result of initial contour. (a) ROI of pulmonary nodule; (b) binary CT image; (c) initial contour.

local gray fitting values of inside and outside initial contour,
respectively.They are determined by the set of pixels 𝑦which
is in the neighborhood of pixel 𝑥.𝐾𝜎(𝑥−𝑦) denotes theGauss
kernel function with the standard deviation 𝜎.𝐾𝜎(𝑥 − 𝑦) can be formulated as follows:

𝐾𝜎 (𝑥 − 𝑦) = 1√2𝜋𝜎 exp(−(𝑥 − 𝑦)22𝜎2 ) . (5)

The LBFmodel uses the Gaussian kernel function𝐾𝜎(𝑥−𝑦). Thus, it can deal with intensity inhomogeneity very well.
However, the LBFmodel only considers the distance relation-
ship between the different pixels and ignores the information
of the pixel itself by the Gaussian kernel function. Thus, the
LBF model may cause the problem of edge leakage especially
for the segmentation of juxta-vascular nodules. In addition,
some boundary regions between the pulmonary nodules and
the pulmonary parenchyma may be blurred and the contrast
is relatively low. It cannot get the precise pulmonary nodule
edge only using the gray features of the CT images.Therefore,
we improve the LBF active contour model by combining the
multiple features in PET-CT images to achieve the accurate
segmentation of juxta-vascular nodules.

3.2.2. Edge Guide Function of Information Entropy. To over-
come the edge leakage in segmentation of juxta-vascular
nodules, we use an edge guide function based on information
entropy to drive the evolving contour curve, which will stop
at the edges of pulmonary nodules accurately.

In 1948, Shannon introduced the concept of entropy into
information theory from thermodynamics and proposed the
information entropy theory for the purpose of quantification
of uncertain information in systems [17]. Assuming that
an information system is composed of 𝑛 random variables{𝑥1, 𝑥2, . . . , 𝑥𝑛} and the probability of each random variable𝑥𝑖 is 𝑝𝑖, the information entropy of this system can be
formulated as

𝐻 = − 𝑛∑
𝑖=1

𝑝𝑖log2𝑝𝑖. (6)

Initial contour

Pulmonary nodules edge

Ω3
r

Ω4

Ω2

Ω1

Figure 3: Schematic diagram of region.

Formula (6) indicates that information entropy 𝐻 is the
maximum value if the probability distribution of the random
variables is equal.

In PET images, the metabolism of pulmonary nodules is
more active than that of vessels, and SUV value of pulmonary
nodules is higher than that of vessels.The distribution of SUV
value between nodules and vessels has a greater difference.
Motivated by this characteristic, we present the SUV infor-
mation entropy to drive the evolving contour curve.

Given a point 𝑥 on the initial contour curve, 𝑅(𝑥)
represents a circular region with the center point 𝑥 and the
radius 𝑟 pixels, as shown in Figure 3. 𝑅(𝑥) is partitioned
into two parts, Ω3 and Ω4, by the initial contour curve. SUV
information entropy in region Ω3 and Ω4 is formulated as
follows:

𝐻𝑖SUV = −∬
𝑅(𝑥)

𝑃𝑖 (𝑥) log2𝑃𝑖 (𝑥) , (7)

where𝑃𝑖(𝑥) represents the SUVprobability distribution value
in region Ω3 and Ω4. Because the area of the pulmonary
nodule is small, the probability of SUV is equal to the Gauss
distribution approximately. Therefore, 𝑃𝑖(𝑥) is formulated as
follows:

𝑃𝑖 (𝑥) = 1√2𝜋𝜎𝑖 (𝑥) exp(−
(𝐼𝑖 (𝑥) − 𝑐𝑖 (𝑥))22𝜎2𝑖 (𝑥) ) , (8)
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where 𝐼𝑖(𝑥) is the SUV value of pixel 𝑥. 𝑐𝑖(𝑥) and 𝜎𝑖(𝑥)
represent the mean and standard deviation of SUV value in
regionΩ3 andΩ4, respectively.

Further, we define a characteristic function in terms of𝑅(𝑥) and formulate it as follows:

𝜑 (𝑥, 𝑦) = {{{
1, 𝑦 ∈ 𝑅 (𝑥)
0, 𝑦 ∉ 𝑅 (𝑥) . (9)

Thus, the edge guide function based on SUV information
entropy can be written as

𝐹𝑖 (𝑥) = 𝑒−𝜑(𝑥,𝑦)𝐻𝑖SUV . (10)

For the regionsΩ3 andΩ4, if the SUVdistribution ismore
homogeneous in one of them, the information entropy is
bigger and the corresponding edge guide function is smaller.
Therefore, the evolving contour curve should gradually stop
at the boundaries of this region. At this moment, the target
and the background can be segmented well. On the contrary,
it indicates that this region contains both the target and the
background and the curve should continue to deform and
displace until the SUV information entropy in regionΩ3 andΩ4 does not change. For the juxta-vascular nodules, there is
a larger difference in SUV value between nodules and vessels.
The distribution of SUV is inhomogeneous in the boundary
region of juxta-vascular nodules; thus the contour curve can
evolve continuously and accurately with the guidance of the
edge guide function.

3.2.3. Energy Functional. The LBF model neglects the infor-
mation of the pixel itself by the Gaussian kernel function.
Thus, we replace the Gaussian kernel function by an edge
guide function based on SUV information entropy. In addi-
tion, the contrast may be lower between pulmonary nodules
and pulmonary parenchyma. It is difficult to locate the edge of
the pulmonary nodule accurately only using the gray values
in the CT image. In PET images, the gray value of nodules
is higher than that of other nonlesion tissues. According to
this, we define a joint vector f = (𝑓1, 𝑓2)𝑇 by combining the
gray values in CT and PET images, where𝑓1 and𝑓2 represent
the Gaussian gray fitting values of the CT image and the PET
image, respectively. Therefore, the energy functional of an
improved LBF model is formulated as follows:

𝐸𝑥 (𝐶, f1 (𝑥) , f2 (𝑥))
= 𝜆1 ∫

Ω1

𝐹1 (𝑥) Λ I (𝑦) − f1 (𝑥)2 𝑑𝑦
+ 𝜆2 ∫

Ω2

𝐹2 (𝑥) Λ I (𝑦) − f2 (𝑥)2 𝑑𝑦,
(11)

where f1(𝑥) and f2(𝑥) represent the Gaussian gray fitting
values of the joint vector in region of Ω1 and Ω2. We set𝜆1 = 𝜆2 = 1. The standard deviation of the Gaussian kernel
function is 𝜎.Λ is the coefficient matrix and is defined in (12).
In this paper, we set Λ 1 = Λ 2 = 1.

Λ = (Λ 1 0
0 Λ 2) . (12)

3.2.4. The Level Set Formulation. The level set function 𝜙
introduced byOsher and Sethian [18] is an efficient numerical
method for solving curve evolution. Curve 𝐶 can be repre-
sented by the zero level set. With the level set representation,
the energy functional in (11) can be reformulated as follows:

𝐸𝑥 (𝜙, f1 (𝑥) , f2 (𝑥)) = 𝜆1 ∫
Ω1

𝐹1 (𝑥) Λ I (𝑦) − f1 (𝑥)2

⋅ 𝐻 (𝜙 (𝑦)) 𝑑𝑦 + 𝜆2 ∫
Ω2

𝐹2 (𝑥) Λ I (𝑦) − f2 (𝑥)2
⋅ (1 − 𝐻 (𝜙 (𝑦))) 𝑑𝑦,

(13)

where𝐻(𝑥) is the function ofHeaviside and the level function𝜙 is defined as follows:

𝜙 (𝑥) > 0, 𝑥 ∈ Ω1
𝜙 (𝑥) = 0, 𝑥 ∈ 𝐶
𝜙 (𝑥) < 0, 𝑥 ∈ Ω2.

(14)

In practice, it is approximated by a smooth function 𝐻𝜀(𝑥),
which is formulated as follows:

𝐻𝜀 (𝑥) = 12 [1 + 2𝜋 arctan(𝑥𝜀 )] , (15)

where 𝜀 is a positive constant and used to control the rising
rate of Heaviside function from 0 to 1. We set 𝜀 = 1. Thus, the
fitting energy terms in (13) can be reformulated as

𝐸 = ∫
Ω
𝐸𝑥 (𝜙, f1 (𝑥) , f2 (𝑥)) 𝑑𝑥. (16)

Tomaintain the smoothness of the evolving curve during
the segmentation process, we introduce the length term of
zero level curve [19]:

𝐿 (𝜙) = ∫
Ω
𝛿 (𝜙 (𝑥)) ∇𝜙 (𝑥) 𝑑𝑥, (17)

where 𝛿(𝑥) is called Dirac function and is the derivative of𝐻𝜀(𝑥). It is formulated as

𝛿 (𝑥) = 𝑑𝑑𝑥𝐻𝜀 (𝑥) = 1𝜋 𝜀𝜀2 + 𝑥2 . (18)

After several iterations, the evolution of the level set
function may be unstable and the result is likely to be
inaccurate. It needs reinitializing the level set function in
a certain period of time. Therefore, we add the distance
regularizing term into (16) to penalize the deviation of the
level set function from a signed distance function [19]. The
distance regularizing term is

𝑃 (𝜙) = ∫
Ω

12 (∇𝜙 (𝑥) − 1)2 𝑑𝑥. (19)

Thus, we define the entire level set energy functional as
follows:

𝐹 = 𝐸 + ]𝐿 (𝜙) + 𝜇𝑃 (𝜙) , (20)
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where ] and 𝜇 are the positive constants and denote the
coefficients of the length penalty term and the distance
regularizing term, respectively.

The optimal segmentation result is usually the process
of solving the minimum of the energy functional. Thus, the
energy functional in (20) can be minimized by using the
gradient descent flow equations. It is formulated as follows:

𝜕𝜙𝜕𝑡 = −𝛿 (𝜙) (𝜆1𝑒1 + 𝜆2𝑒2) + ]𝛿 (𝜙) div( ∇𝜙∇𝜙)
+ 𝜇(∇2𝜙 − div( ∇𝜙∇𝜙)) ,

(21)

where 𝑒1 and 𝑒2 are defined as formula (22). f1(𝑥) and f2(𝑥)
are defined as formula (23).

𝑒1 = ∫
Ω1

𝐹1 (𝑥) Λ I (𝑦) − f1 (𝑥)2𝐻(𝜙 (𝑦)) 𝑑𝑦
𝑒2 = ∫

Ω2

𝐹2 (𝑥) Λ I (𝑦) − f2 (𝑥)2 (1 − 𝐻 (𝜙 (𝑦))) 𝑑𝑦
(22)

f1 (𝑥) = ∫Ω𝐾𝜎 (𝑥 − 𝑦) I (𝑦)𝐻𝜀 (𝜙 (𝑦)) 𝑑𝑦∫
Ω
𝐾𝜎 (𝑥 − 𝑦)𝐻𝜀 (𝜙 (𝑦)) 𝑑𝑦

f2 (𝑥) = ∫Ω𝐾𝜎 (𝑥 − 𝑦) I (𝑦) (1 − 𝐻𝜀 (𝜙 (𝑦))) 𝑑𝑦∫
Ω
𝐾𝜎 (𝑥 − 𝑦) (1 − 𝐻𝜀 (𝜙 (𝑦))) 𝑑𝑦 .

(23)

The description of steps of our proposed method based
on information and joint vector is given as follows.

Step 1. Set the initial level set function 𝜙 = 0 and the counter𝑘 = 0.
Step 2. Calculate the edge guide function 𝐹1(𝑥) and 𝐹2(𝑥)
according to (10), and calculate the gray fitting values of joint
vector f1(𝑥) and f2(𝑥) according to (23).
Step 3. Calculate the level set energy functional𝐹, and set 𝑘 =𝑘 + 1.
Step 4. Update the level set function according to (21).

Step 5. Repeat Steps 2–4 until any one of the following
conditions is met:

(1) The level set energy functional is stable; that is, Δ𝐹 =𝐹𝑘–𝐹𝑘−1 ≤ 𝜒.
(2) k reaches the maximum number of iterations 𝐾max,;

that is, 𝑘 ≤ 𝐾max.

4. Performance Metric for
Evaluation of Results

To demonstrate the superiority of our method objectively,
three metrics (dice similarity coefficient [20], Hausdorff dis-
tance [6], and false positive [21]) are used to evaluate the
performances of our method.

It is difficult to get each patient’s pathological samples as
the ground truth for segmentation of pulmonary nodules.
Thus, in experiment, we invited an expert with rich experi-
ence to domanual segmentation for pulmonary nodules.The
results were used as the ground truth.

4.1. Dice Similarity Coefficient. Dice similarity coefficient
(DSC) is a measure to evaluate the overlap ratio between
ground truth 𝐴𝑔 and actual segmentation results 𝐴𝑟. DSC
can be computed as follows:

DSC (𝐴𝑔, 𝐴𝑟) = 2 × (𝐴𝑔 ∩ 𝐴𝑟)𝐴𝑔 + 𝐴𝑟 × 100. (24)

The higher the value of Dice similarity coefficient is, the
better the performance of nodules segmentation algorithm is.

4.2.HausdorffDistance. Hausdorff distance (HD) is a param-
eter to evaluate the shortest distance between ground truth
and actual segmentation boundaries, which can reflect the
coincidence degree of two images.

Let 𝐴𝑔 = {𝑎𝑔1, 𝑎𝑔2, . . . , 𝑎𝑔𝑚} represent the contour pixels
set of the ground truth and 𝐵𝑟 = {𝑏𝑟1, 𝑏𝑟2, . . . , 𝑏𝑟𝑚} represent
the contour pixels set of the actual segmentation algorithm.
HD can be computed as follows:

HD (𝐴𝑔, 𝐵𝑟) = max (ℎ (𝐴𝑔, 𝐵𝑟) , ℎ (𝐵𝑟, 𝐴𝑔))
ℎ (𝐴𝑔, 𝐵𝑟) = max

𝑎𝑔∈𝐴𝑔
min
𝑏𝑟∈𝐵𝑟

𝑎𝑔 − 𝑏𝑟 , (25)

where ‖𝑎𝑔 − 𝑏𝑟‖ is the Euclidean distance between the pixel𝑎𝑔 and 𝑏𝑟. The smaller the HD is, the better the segmentation
results are.

4.3. False Positive. False positive (FP) denotes the number of
false positive pixels, which is marked as the nodule in actual
results but not in ground truth results. It can be computed as
follows:

FP =
𝐴𝑟 − 𝐴𝑔 ∩ 𝐴𝑟𝐴𝑔 × 100. (26)

The smaller the FP is, the better the accuracy of segmen-
tation algorithm is.

5. Results and Discussion

In this section, we compare the segmentation results of our
method with some existing algorithms. All of experiments
were implemented in Matlab 2012b and executed on a
personal computer equipped with 8GB RAM and a 2.53GHz
Intel Core i5-3770 processor.

To evaluate the performances of our method for segmen-
tation of juxta-vascular nodules, we compared our method
with the existing algorithms, including the LBF active con-
tour model [13], the vasculature pruning technique (VP) [6],
the 2D ray casting and linear fitting algorithm (RCLF) [7],
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Table 1: Parameters settings in our method.

Index Parameters Value
1 𝜆 in Section 3.1.2 0.1
2 𝑟 in Section 3.2.2 15
3 𝜎 in Section 3.2.3 1.5
4 ], 𝜇, 𝜒, 𝐾max in Section 3.2.4 0.001 ∗ 2552, 1, 10−3, 300
The parameters of LBF, RCLF, FEGD, and VP are stetted according to their
original paper.

and the flow entropy and geodesic distance method (FEGD)
[8]. The results of ground truth are used as the standard for
the performances of the above algorithms.

5.1. Parameters Setting. We need to set the appropriate
parameters to ensure the efficiency and accuracy of the algo-
rithm. There are 7 important parameters. 𝜆 is the number of
difference between two thresholds. It will affect the position
of initial contour. 𝑟 represents the number of radius pixels.𝜎 is the standard deviation of the Gaussian kernel function.
] and 𝜇 denote the coefficients of the length penalty term
and the distance regularizing term, respectively. 𝜒 represents
the difference between energy functional 𝐹𝑘−1 and 𝐹𝑘. 𝐾max
denotes the maximum number of iterations of the program.
These parameters were optimized through a large number
of experiments which can ensure both accurate results and
lower time complexity. Table 1 lists the parameters and the
values used in our method.

5.2. Results of Segmentation. We applied the proposed seg-
mentation method to 400 juxta-vascular nodules for testing.

Figure 4 shows the segmentation results of the juxta-
vascular nodules segmentation. The red curve is the result of
the ground truth; the yellow curve is the result of the different
algorithms for juxta-vascular nodules. In Figure 4, the first
row contains 4 original ROI images of juxta-vascular nodules
(a–d). In (c) and (d) images, P and Q are the areas of vascular
cross-section; the second row is the results of the ground
truth (a1–d1); the third row is the results by the LBF model
(a2–d2); the fourth row is the results by the RCLF algorithm
(a3–d3); the fifth row is the results by the FEGD algorithm
(a4–d4); the sixth row is the results by the VP algorithm
(a5–d5); and the last row is the results by ourmethod (a6–d6).

As shown in (a2), (b2), (c2), and (d2) of Figure 4, there
is severe edge leakage by the LBF model and the vessel is not
separated from nodules.

For nodule (a) and (b), the results of our method
(Figure 4, (a6) and (b6)), RCLF (Figure 4, (a3) and (b3)),
FEGD (Figure 4, (a4) and (b4)), and VP (Figure 4, a(5) and
b(5)) are consistent with the ground truth (Figure 4, (a1) and
(b1)). However, for nodule (c) and (d), there is certain edge
leakage by the RCLF and FEGD. And VP cannot segment the
area Q. The reason is that methods of RCLF, FEGD, and VP
cannot deal with the circular area of vascular cross-section
very well.

Last row in Figure 4 shows that the results of the proposed
method are more consistent with the ground truth and can
segment the juxta-vascular nodules accurately, especially for

Table 2: Average values of DSC, HD, and FP for five methods on
pulmonary nodules.

Metrics LBF RCLF FEGD VP Our method
DSC (%) 87.43 90.46 91.38 89.02 92.35
HD (mm) 2.87 2.40 2.43 2.58 2.19
FP (%) 6.16 4.30 4.67 4.80 3.33

nodule (c) and (d). Meanwhile, the edge of the proposed
method is smoother than other results.

5.3. Quantitative Comparisons. Figure 5 shows the DSC
values of five methods for the segmentation of 400 images of
juxta-vascular nodules.

Figure 6 shows the HD values of five methods for the
segmentation of 400 images of juxta-vascular nodules.

Figure 7 shows the FP values of five methods for the
segmentation of 400 images of juxta-vascular nodules.

It is clear from Figure 5 that FEGD algorithm is close
to our method which is better than the LBF, RCLF, and VP
algorithms in terms of the DSC value. For 400 images of
juxta-vascular nodules, the DSC value of our method varies
less than those of the other four algorithms.The change ofHD
value of ourmethod is relatively stable, which is slightly lower
than that of RCLF algorithm in Figure 6. Figure 7 shows that
our method is the global minimum in terms of the FP value.

Table 2 illustrates the average values of DSC, Hausdorff,
and FP by our method and other algorithms. It is clear from
Table 2 that our method performs better than LBF, RCLF,
FEGD, and VP algorithms in terms of the average values of
DSC, Hausdorff, and FP.

In general, based on the analysis of the threemetricsDSC,
Hausdorff, and FP, the segmentation results of our method
are more consistent with the ground truth results, which
can further reflect the high preformation and stability of our
method for the segmentation of test images of juxta-vascular
nodules.

In addition to the above three metrics, the time complex-
ity is also an important factor in assessing the performance of
an algorithm. Figure 8 shows the average processing time per
nodule by our method and other three algorithms.

As can be seen from Figure 8, our method consumes less
time than the RCLF, FEGD, and VP algorithms, but much
more (1.4 s) than LBF algorithm. This is because that SUV
information entropy of each point on the contour curve needs
to be recalculated in each iteration. However, in terms of
acceptable time complexity, we should pay more attention
to the accuracy and stability of the segmentation algorithm,
trying to avoid the errors of the lung cancer diagnosis caused
by the incorrect nodule segmentation.

Accurate segmentation of juxta-vascular pulmonary nod-
ules can improve the diagnostic accuracy rates of benign and
malignant nodules to some extent. Our method, combining
the metabolic and structural information of nodules, can
drive the evolution of the initial contour curve. In aspect
of DSC, Hausdorff FP, and consuming time metrics, the
segmentation results of our method are superior to those of
the other four methods.
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Figure 4: Comparison of segmentation results by different algorithms for juxta-vascular nodules.

6. Conclusion

In this paper, we present an automatic juxta-vascular nodules
segmentation algorithm based on LBF active contour model
in PET-CT images. In the method, SUV information entropy
and the joint vector in PET-CT images are incorporated into
the LBF model for driving the evolution of contour curve to
stop at the boundary of the pulmonary nodule accurately.

To verify the effectiveness of our method, we applied it on
PET-CT images of 400 juxta-vascular nodules and the results
were compared with the manual segmentation by an expert.
Experimental results show that our method can obtain high-
quality segmentation results and reduce the edge leakage
to some extent. Compared with the existing methods, our
method achieves better segmentation accuracy and stability.
Thus, it is an accurate segmentation scheme for juxta-vascular
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Figure 5: The DSC values of the five methods on the segmentation
results of pulmonary nodules.

4.0

3.5

3.0

2.5

2.0

1.5

1.0

Va
lu

es
 o

f H
D

 (m
m

)

0 50 100 150 200 250 300 350 400

38 images of juxta-vascular nodules
LBF
RCLF

FEGD
VP

Figure 6: The HD values of five methods on the segmentation
results of pulmonary nodules. The black solid line at the bottom
refers to the proposed method.

pulmonary nodules. Because SUV information entropy of
each point on contour curve needs to be recalculated in each
iteration, it may consume more processing time. In future
work, we need to find ways to optimize this issue.
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