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Lung cancer mortality in Tuscany (Italy) for males, from 1971 and 2010, is investigated. A hierarchical Bayesian model for space-
time disease mapping is introduced. Such amodel belongs to the class of shared random effect models and exploits the birth-cohort
as the relevant time dimension. It allows for highlighting common and specific patterns of risk for each birth-cohort. The results
show that different birth-cohorts exhibit quite different spatial patterns, even if the socioeconomic status is taken into account. In
fact, there were different occupational exposures before and after the Second World War. The birth-cohort 1930–35 exhibits high
relative risks related to particular areas.This fact could be connected with occupational exposure to risk factors for silicosis, perhaps
a prognostic status for lung cancer.

1. Introduction

Descriptive epidemiology focuses on the variation of disease
occurrence among populations. Studies of time-space vari-
ations in mortality are widely used in etiologic research in
order to evaluate environmental exposure.Models that jointly
describe space and time variation of disease risk have been
extensively proposed. All of them are essentially extensions
of the hierarchical Bayesian model by Besag et al. [1]. See, for
example, Bernardinelli et al. [2], Waller et al. [3], Assunção et
al. [4], Sun et al. [5], and Knorr-Held and Besag [6].

In particular, Knorr-Held [7] suggests a generalized linear
mixed model where space, time, and different specifications
of interaction terms between space and time effects are
involved. Following the latter, Lagazio et al. [8] proposed
the same model where the birth-cohort is the main time
dimension.

Taking birth-cohort as time dimension is motivated
by several biological reasons, which make it preferable to
calendar period when considering the consequences of a
change in the prevalence of human exposure to risk factors in
the population, even if it requires the mortality or incidence
data for a long time span. As a rule, age effects are related to

the natural history of the disease, while birth-cohort and/or
calendar period effects depend on different temporal patterns
of prevalence of human exposure to risk factors. Therefore,
an appropriate selection of the time scales yields important
clues about the biology of the disease, and it is fundamental
to correctly understand the evolution of the epidemics.

Lung cancer is the most common type of cancer in the
world since 1985 and its spatiotemporal variation is examined
by an extensive epidemiological literature. See, for example,
Boyle and Ferlay [9] and Bray and Weiderpass [10]. The
adopted time scale is the calendar period (e.g., [11]) or birth-
cohort [12, 13].

As regards mortality for lung cancer, socioeconomic fac-
tors are assumed to be associated with individual exposure to
risk factors (e.g., tobacco smoking or occupational exposure).
In this case, the biology of the process of carcinogenesis
suggests that more than 10–15 years (the latency time) should
run between exposure and mortality (see [14]). See the
foundational papers by Glick [15] and Mayer [16] for a
discussion and a motivation of spatial analysis of cancer
mortality as well as for the theoretical models that take into
account the process of carcinogenesis. A strong connection
between smoking habits and material deprivation has been
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stressed by several studies (see, e.g., [17]). Material depri-
vation indicators usually refer to the occurrence of subject
states such as unemployment, low education, living in a very
small dwelling, overcrowding, and not having a car (e.g.,
see [18–22]). So far, material deprivation indicators have
been used as aggregate-level covariates to adjust ecological
regression coefficients in small area studies [23]. In fact, a
strong association with area-based deprivation and mortality
was repeatedly found on one side and area-based deprivation
and exposure to environmental/individual hazards on the
other [24–26]. Relevant risk factors could be considered in
the model with the inclusion of a material deprivation index
(see [27–30]).

In this paper, a space-cohort analysis for disease mapping
is developed. A model, more parsimonious than Lagazio
et al. [8], is introduced in Section 2. Such a model, called
Shared Model for Birth Cohort (SMBC) in the sequel, is
actually a simple version of the usual intrinsic conditional
autoregressive (CAR) models, but it shows reasonably good
performance when comparing a disease among the strata of
a given population. So far, shared models have been used for
various reasons, such as to compare two ormore diseases [31–
33], to compare the same disease for two genders in space
and time [34, 35], and for ecological regression analysis [36].
Using shared models to compare the same disease between
two different birth-cohorts, as done by SMBC, seems to be
new.

To assess its behavior, SMBC is then applied to a case
study. The data, described in Section 3, are the lung cancer
death certificates collected for males residing in the 287
municipalities of theTuscanyRegion (Italy) from 1971 to 2010.
The information on material deprivation is based on census
data collected from the Italian Statistical Institute (ISTAT) in
the years 1961, 1971, 1981, and 1991. Four variables are used as
indicator of socioeconomic inequalities, namely, unemploy-
ment, low education (less than 6 years of schooling), being a
tenant, and the absence of a bathroom in the house.

Finally, the results obtained by applying SMBC to the
above data are discussed in Section 4. Overall, the per-
formances of SMBC look encouraging and endorse some
etiologic hypotheses of mortality for lung cancer highlighted
by the medical literature. We refer to Section 4 for a detailed
discussion. Here, we just note that occupational exposure to
risk factors for silicosis, perhaps a prognostic status for lung
cancer, is strongly supported by our application of SMBC.

2. Space-Cohort Models

Let 𝑦𝑖𝑡 denote the observed number of deaths for the 𝑖th area
and the 𝑡th cohort, with 𝑖 = 1, . . . , 𝐼 and 𝑡 = 1, . . . , 𝑇. In the
sequel, following Besag et al. [1], each 𝑦𝑖𝑡 is assumed to have
a Poisson distribution with mean value 𝜃𝑖𝑡𝐸𝑖𝑡, where 𝐸𝑖𝑡 is the
number of expected cases and 𝜃𝑖𝑡 the relative risk. Also, the
random variables 𝑦𝑖𝑡 are conditionally independent given the
matrix {𝜃𝑖𝑡: 𝑖 = 1, . . . , 𝐼; 𝑡 = 1, . . . , 𝑇}.
2.1. Space-Time Interaction Models. In Lagazio et al. [8], 𝜃𝑖𝑡 is
modelled as

log (𝜃𝑖𝑡) = 𝛽0 + 𝛽1𝑥𝑖𝑡 + V𝑖 + 𝑢𝑖 + 𝜙𝑡 + 𝜓𝑖𝑡, (1)

where 𝑥𝑖𝑡 is a time-dependent covariate, V𝑖 and 𝑢𝑖 are, respec-
tively, the unstructured and structured spatial variability
terms [1], 𝜙𝑡 is an unstructured effect for the 𝑡th cohort,
and 𝜓𝑖𝑡 is an area specific cohort effect (the interaction term
spatially structured). The prior distributions for V𝑖, 𝑢𝑖, and𝜙𝑡 are multivariate normal with mean zero and precision
matrices 𝜏VKV, 𝜏𝑢K𝑢, and 𝜏𝜙K𝜙, respectively. Proper Gamma
priors with very high dispersion have been assumed for the
hyperparameters 𝜏V, 𝜏𝑢, 𝜏𝜙.

The structure matrices [37] KV, K𝑢, and K𝜙 are specified
following the different nature of effects. In particular, KV and
K𝜙 are taken to be identity matrices, while the structured
spatial component K𝑢 is modelled as an intrinsic Gaussian
autoregression [1, 2, 37]. Precisely, the entries 𝑘𝑖𝑗 of K𝑢 are
given by

𝑘𝑖𝑗 = {{{{{{{{{
−1 if areas 𝑖 and 𝑗 are contiguous0 if areas 𝑖 and 𝑗 are not contiguous𝑛𝑖 if 𝑖 = 𝑗, (2)

where 𝑛𝑖 is the number of areas contiguous to the 𝑖th one.
With this definition of K𝑢, the mean of the conditional

distribution of 𝑢𝑖 given all the other 𝑢 terms is 1/𝑛𝑖∑𝑖∼𝑗 𝑢𝑗,
where 𝑖 ∼ 𝑗 indicates that areas 𝑖 and 𝑗 are spatially
contiguous. The conditional precision is given by 𝑛𝑖𝜏𝑢.

Interaction terms are assumed to be structured in space.
The prior distribution is multivariate normal with mean zero
and precision matrix 𝜏𝜓K𝜓. Again, a highly dispersed proper
Gamma prior was used for 𝜏𝜓. The structure matrix K𝜓 was
defined as theKroneker product between thematricesK𝑢 and
an identity matrix [7, 37].

The precision is 𝑛𝑖𝜏𝜓 for 𝑡 = 1 or 𝑡 = 𝑇 and 2𝑛𝑖𝜏𝜓 for𝑡 = 2, . . . , 𝑇 − 1.
To complete the model specification, highly dispersed

normal prior has been assumed for the regression coefficients𝛽0 and 𝛽1.
Posterior distributions of the parameters of interest have

been approximated using Gibbs sampling. After a burn-in of
100,000 iterations, we retained 1,000 samples taken from the
last 100,000 iterations. The posterior distributions have been
summarised using the posterior mean. Because of the high
number of terms in themodel, convergence has been assessed
only on a subset of the identifiable parameters. Gelman and
Rubin [38] test and partial autocorrelation plots have been
used to check for achieved convergence of relative risks and
of the 𝜏 hyperparameters.

The interaction terms represent the differences of the
spatial pattern between two or more birth-cohorts.

2.2. Shared Models for Birth-Cohort Analysis. As noted in
Section 1, in this paper, shared models are used for a space-
time (birth-cohort) analysis of relative risk and the resulting
model is denoted by SMBC.

Sharedmodels allow highlighting the differences between
the spatial patterns of two or more birth-cohorts and repre-
sent an effective alternative to space-time interactionmodels.
In fact, usually, shared models provide reliable information
and lead to more parsimonious models.
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In SMBC, following Besag et al. [1] and Knorr-Held and
Best [31], it is assumed that

log (𝜃𝑖𝑡) = 𝛽0 + 𝛽1𝑥𝑖𝑡 + 𝛼𝑡 + 𝛿𝑖𝑡, (3)

where 𝛼𝑡 is a birth-cohort specific intercept (overall risk level)
and 𝛿𝑖𝑡 a spatial term. In turn, 𝛿𝑖𝑡 is decomposed into a shared
and birth-cohort specific spatial effect; namely,

𝛿𝑖𝑡 = 𝜔𝑡𝜓(𝑠)𝑖 + 𝜓(𝑝)𝑖𝑡 = 𝜔𝑡 (𝛾(𝑠)𝑖 + 𝜙(𝑠)𝑖 ) + (𝛾(𝑝)𝑖𝑡 + 𝜙(𝑝)𝑖𝑡 ) , (4)

where

(i) the shared component 𝜓(𝑠)𝑖 is the convolution of
an unstructured spatial effect 𝛾(𝑠)𝑖 and a spatially
structured term 𝜙(𝑠)𝑖 ;

(ii) the specific component 𝜓(𝑝)𝑖𝑡 is the convolution of
an unstructured spatial effect 𝛾(𝑝)𝑖𝑡 and a spatially
structured term 𝜙(𝑝)𝑖𝑡 ;

(iii) the scale parameter 𝜔𝑡 allows the shared component
to vary per birth-cohort by a constant factor.

The prior distributions are as follows. The intercept 𝛼𝑡
has a flat “noninformative” prior (a centered normal distri-
bution with “large” variance). The terms log𝜔1, . . . , log𝜔𝑇,
constrained to ∑𝑇𝑡=1 log𝜔𝑡 = 0, are jointly normal with zero
mean and covariance matrix

Σ𝜔 = 𝜎2𝜔((((
(

1 − 1(𝑇 − 1) ⋅ ⋅ ⋅ − 1(𝑇 − 1)− 1(𝑇 − 1) 1 ⋅ ⋅ ⋅ − 1(𝑇 − 1)... ... ... ...
− 1(𝑇 − 1) − 1(𝑇 − 1) ⋅ ⋅ ⋅ 1

))))
)

. (5)

The heterogeneity terms 𝛾(𝑠)𝑖 and 𝛾(𝑝)𝑖𝑡 are independent cen-
tered normal with precision parameters 𝜆𝛾 and 𝜆𝛾

𝑡

. In order
to cope with the spatial structure, the random effects 𝜙(𝑠)𝑖 ,𝜙(𝑝)𝑖𝑡 are modelled as intrinsic CAR models, as discussed, for
example, in Lee [39], with precision parameters 𝜆𝜙 and 𝜆𝜙

𝑡

.
Hyperprior distributions for the precision parameters 𝜆𝛾,𝜆𝛾
𝑡

, 𝜆𝜙, and 𝜆𝜙
𝑡

are assumed to be Gamma (0.5, 0.0005).
Posterior distributions of the parameters of interest have

been sampled by Gibbs sampling.
Once SMBC is implemented, an inspection of the esti-

mated values of 𝜓(𝑠)𝑖 and 𝜓(𝑝)𝑖𝑡 provides valuable information
about common and uncommon risk factors for different
birth-cohorts. This procedure is exemplified in Section 4,
where SMBC is applied to a real situation.

3. Data

Lung cancer death certificates were collected for males resid-
ing in the 287 municipalities of the Tuscany Region (Italy)
from 1971 to 2010. For the 40 years analyzed, amounting to

a total of 34,666,951 person-years, the number of recorded
death certificates is 66856.

The data were made available by the Tuscany Regional
Government under the research project Tuscany Atlas of
Mortality 1971–1994 (see [40]) and by the Regional Mortality
Register for the period 1995–2010. Deaths and corresponding
populations for each municipality were cross-classified in 10
age-classes (40–45, 45–50, . . . , 80–85, 85 and over; the first
eight age-classes being omitted) and 8 calendar periods(1971–74, 1975–79, 1980–84, . . . , 2005–10).

The 1971–2010 database of lung cancer mortality, divided
by gender at a municipality level, allows us to investigate
several birth-cohorts.

The expected number of cases for each municipality
was evaluated by the predicted age-specific reference rates
calculated by the age-cohort model (see [41]) for the whole
Tuscany Region. Figure 1 shows the epidemic curve for
the considered age-classes (a) and birth-cohorts (b). The
reference birth-cohort is 1920–30,when the epidemic reached
its maximum. Presumably, the exposure to smoking for such
a cohort began in the 1940s, after the Second World War.
Thismodel allows disentangling age effects frombirth-cohort
components present in longitudinal mortality data. In this
way, the expected number of cases is adjusted by age and is
not affected by cohort effects.

Observed and expected cases were subsequently aggre-
gated along the diagonals of the Lexis diagram representing
birth-cohorts, thus collapsing on the age dimension. For
the space-time analysis, we focused on the six birth-cohorts(1905–15, . . . , 1930–40). Table 1 illustrates incidence rates
and observed cases for the whole Tuscany Region, as well
as the correspondence among birth-cohorts, age-classes, and
calendar periods.

Data on material deprivation were taken from census
data collected from Italian Statistical Institute (ISTAT) in the
years 1961, 1971, 1981, and 1991. Four variables were used as
indicator of socioeconomic inequalities: unemployment, low
education (less than 6 years of schooling), being a tenant,
and the absence of a bathroom in the house. A composite
index was then computed as the sum of the 𝑧-score of the
proportion of people with the conditions listed above for each
municipality (see [28], for details).

The space-time dynamics of the association betweenmor-
tality and deprivation level were studied using a deprivation
score which results in a meaningful absolute level across the
years.We considered socioeconomic factors observed in 1961,
1971, 1981, and 1991 and imputed, using a first-order random
walk process, in 1956, 1966, 1976, 1986, and 1996. Further,
we considered a temporal lag of 10 years between these and
mortality.

4. Results

To compare birth-cohorts 1905–15 and 1930–40, we describe
estimates for space-time interaction terms from the Lagazio
et al. [8] model and the specific terms from the proposed
model (SMBC). We focused on these birth-cohorts since
their comparison seemed to be the most meaningful. In
fact, the comparison highlights differences before and after
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Figure 1: Epidemic curves for age (a) and cohort (b) dimensions.

Under 2.65
Over 3.422.65–2.91

2.91–3.11

3.11–3.42

(a)

Under 2.81
Over 3.242.81–2.96

2.96–3.09

3.09–3.24

(b)

Figure 2: Maps of the interaction terms from the Lagazio et al. 2001 model [8]: birth-cohorts 1905–15 (a) and 1930–40 (b).

SecondWorld War. In addition, 1905–15 and 1930–40 are the
youngest and oldest cohorts for which age-classes between 60
and 75 years were observed. Consequently, such cohorts have
a substantial observed number of events.

Figure 2 shows the estimates for the space-time inter-
action terms. The areas with the highest mortality (north-
western part of the region) exhibit a decrease in relative
risk, while the low-risk areas in the south-eastern part of the

region behave in the opposite way, still showing an increase
in relative risk.

Thebirth-cohorts 1905–15 and 1930–40 are also compared
through the more parsimonious SMBC. Figure 3 shows
relative risks from SMBC for the 1905–15 and 1930–40 birth-
cohorts. Figure 4(a) shows the estimates of the exponential-
ized parameters 𝜓(𝑠)𝑖 , that is, the common spatial distribution
of relative risk for lung cancer for males in Tuscany (Italy) for
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Under 0.77
Over 1.040.77–0.85

0.85–0.94

0.94–1.04

(a)

Under 0.77
Over 1.040.77–0.85

0.85–0.94

0.94–1.04

(b)

Figure 3: Relative risks for lung cancer mortality from SMBC model: for birth-cohort 1905–15 (a) and birth-cohort 1930–40 (b).

1905–15 and 1930-40. There is a high-risk area in the north-
western part of the region and a low-risk area near the south-
eastern border. This pattern has a strong connection with the
spatial distribution of socioeconomic characteristics over the
region. Indeed, the heavily industrialized anddeveloped areas
within Tuscany are located in the river Arno valley, from the
capital, Florence, to Pisa and the main port of Livorno. At
the beginning of 1900, the first industrial settlements were
mainly close to the mountain areas. In the map, this pattern
corresponds to the north-western part of the region.

Figure 4(b) also shows the estimates of the parameters𝜔𝑡, namely, the relative importance of the common pattern
for the two birth-cohorts 1905–15 and 1930–40.The box-plots
suggest that the epidemic of lung cancer clearly declines.

Figures 4(c) and 4(d) illustrate the estimates of the
exponentialized parameters 𝜓(𝑝)𝑖𝑡 , that is, the specific spatial
distribution of relative risk for birth-cohorts 1905–15 and
1930–40. For the birth-cohort 1905–15, there are some high
values for the cities of Florence, Siena, Pisa, Livorno, Grosseto
and for the industrial municipalities of Massa, Carrara, and
Piombino. On the contrary, there is a prominent pattern
for the 1930–35 birth-cohort, with higher relative risks for
the municipalities of Mount Amiata (southern Tuscany).
Furthermore, a decrease in the risk is observed for the
cities (with the exception of Arezzo that moves in the
opposite direction), mainly for Florence and its metropolitan
municipalities (Scandicci, Signa, and Lastra a Signa). High
risks are also observed in themunicipality of Colle ValD’Elsa.

Consequently, an opposite trend can be observed in
Arezzo, Colle Val D’Elsa, and the Mount Amiata areas.
Results from the two different models are comparable. The

proposed model seems to highlight more directly and par-
simoniously the differences between two and more cohorts.
Themaps for the specific components are not oversmoothed,
since there is minor information from the data but also a less
structured model.

After the SecondWorldWar, the mines of Mount Amiata
were supplying 50% of the world production of Cinnabar (a
mineral consisting of mercury) and they remained the top
supplier for decades. Cinnabar, with its vermilion red color,
was used mainly as a primary colorant of walls, fabrics, and
crockery. Before the advent of mining on a large scale, the
economy of almost all the municipalities in the territory of
Mount Amiata was based on agro-forestry-pastoral activities.
The arrival of the mines leads to a striking transformation
of this type of economy. The mining centers of Abbadia
San Salvatore, Castellazzara, Piancastagnaio, and Santa Fiora
reported a marked improvement in living standards. But the
two occupational diseases typical ofmining andmetallurgical
activities linked to mercury were silicosis and mercury-
poisoning. Silicosis is a pneumoconiosis caused by prolonged
inhaling (20–30 years) of dust containing small crystalline
free silica particles. In the seventies, the mercury crisis hit the
mines of Mount Amiata. In any case, the 1930–40 cohort of
workers had been exposed for a long period from the postwar
erawhen theminewas “in the fullest activity” to the closure of
the mines in 1970, that is, 20–30 years of exposure. Moreover,
exposure to crystalline free silica also involved the workers
in the gold casting sector of Valtiberina and Arezzo and the
glassware sector of Colle Val D’Elsa.

The units most at risk include those working in the
metal mines, ceramics and glass factories, foundries, and the
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Figure 4: Results from SMBC model: the common clustering term exp(𝜓(𝑠)𝑖 ) (a), the distribution of the 𝜔1 and 𝜔2 parameters (b), the
distribution and the specific clustering terms exp(𝜓(𝑝)𝑖1 ) for birth-cohort 1905–15 (c), and exp(𝜓(𝑝)𝑖2 ) for birth-cohort 1930–40 (d).

sandstone mining and granite industries. Workers with high
dust exposure who develop silicosis are at increased risk of
lung cancer; however, high levels of exposure to silica dust on
its own are significant in the pathogenesis of lung cancer and
silicosis is coincidental.

5. Discussion and Conclusions
In this paper, the space-time epidemic of lung cancer in
Tuscany (Italy) is investigated.The analysis is performed via a
hierarchical Bayesian model with shared and cohort-specific
risk components.
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It should be mentioned that this work is mainly a
descriptive epidemiological investigation. In addition, three
possible criticisms are the ecological bias, the misleading
specification of the deprivation measure, and considering
the lag of association between deprivation and mortality of
10 years. Despite such (and possibly other) limitations, our
analysis yields some information on the space-time behavior
of lung cancer in Tuscany and gives a few hints on the etiology
of this disease.

It should be also noted that socioeconomic factors, when
used at aggregate level, could give rise to the problem
of “ecological fallacy.” However, they allow for identifying
homogeneous groups, to study large populations at low costs,
and to address questions of environmental health that might
be difficult or impossible to study using other approaches (see
[42], for a review of ecological analysis).

Lung cancer mortality for males in Tuscany has increased
over the last 40-year period (1971–2010), showing a strong
epidemic curve with the highest rates for the birth-cohorts
born between 1920 and 1930. The geographical distribution
of relative risk is very spatially structured and the north-
western areas have a higher risk (see also [43]) due to the
location of industrial plants [44]. The resulting pattern has
an interesting interpretation as it highlights small towns with
industrial plants in the north-west of Tuscany, the Massa-
Carrara, Piombino, and the Island of Elba (with coke and
iron industries since 1905). The spatial patterns suggest a
role played by occupational and environmental factors. For
males, the specific high-risk municipalities correspond to
early industrialized areas. Lung cancer epidemics are now
decreasing in all the municipalities of Tuscany. The overall
time trend is moving toward greater homogeneity among
areas. However, some areas (the municipalities of Mount
Amiata, Arezzo, and Colle Val D’Elsa) show the opposite
behavior for the younger cohorts: a new occupational risk
factor, namely, silica, could be the cause of lung cancer in
workers in mines and the gold and glass sectors.

The role of silicosis in the development of lung cancer,
associated with silica exposure, remains controversial. Some
studies indicate an increased risk of lung cancer from expo-
sure to silica, and others limit such association to individuals
with silicosis, while others show no association at all. The
association has been studied for many decades. See Lynge et
al. [45], Hnizdo and Sluis-Cremer 1991 [46], Amandus and
Costello [47], NIOS [48], EC 2006 [49], Maciejewska [50],
Vida et al. [51], MH [52], Chen et al. [53], and Liu et al.
2013 [54]. Although controversial, the decision taken in 1997
by the International Agency for Research on Cancer (IARC)
[55] classified the respirable fraction of crystalline silica as a
carcinogen of the first group for humans. This was followed
by several epidemiological studies in different industrial
fields, meta-analyses and reviews. However, unequivocal
conclusions were not always reached. In 2002, the Italian
Silica Network (consisting of the regions, provinces, INAIL,
ISPESL, National Institute of Health, local health authorities,
and scientific research centers) was set up in the aim of inter-
vening in the field of prevention which lacked the required
completeness and clarity of legislation at a European level.
An international estimation conducted in 2003 by CAREX

(CARcinogen EXposure, Canada) suggested that in Italy
more than 254 thousand peoplewere exposed toword-related
crystalline silica risks, 12–15 thousand of whom in Tuscany.
In 2004, the Region of Tuscany launched a project aimed
at the prevention, measurement, and intervention in critical
sectors such as quarries, construction sites, glass factories,
and cement plants. Silicosis, the terrible plague which in the
past, and only until a few decades ago, accompanied the
industrial and economic development of our country, is not
almost completely eradicated. However, still far from being
won, in Italy as in the rest of Europe, is the battle against
another big risk that those who work with crystalline free
silica are exposed to lung cancer.

Conflicts of Interest

The author declares that they have no conflicts of interest.

Acknowledgments

Theauthorwould like to express their gratitude toMariangela
Vigotti (University of Pisa, Italy) and to Elisabetta Chellini
(Istituto per lo Studio e la Prevenzione Oncologica, Firenze,
Italy) for kindly making available the datasets 1971–1994 and
1995–2010, respectively.

References

[1] J. Besag, J. York, and A. Mollié, “Bayesian image restoration,
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