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*e widespread application of X-ray computed tomography (CT) in clinical diagnosis has led to increasing public concern
regarding excessive radiation dose administered to patients. However, reducing the radiation dose will inevitably cause server
noise and affect radiologists’ judgment and confidence. Hence, progressive low-dose CT (LDCT) image reconstruction methods
must be developed to improve image quality. Over the past two years, deep learning-based approaches have shown impressive
performance in noise reduction for LDCT images. Most existing deep learning-based approaches usually require the paired
training dataset which the LDCT images correspond to the normal-dose CT (NDCT) images one-to-one, but the acquisition of
well-paired datasets requires multiple scans, resulting the increase of radiation dose.*erefore, well-paired datasets are not readily
available. To resolve this problem, this paper proposes an unpaired LDCT image denoising network based on cycle generative
adversarial networks (CycleGAN) with prior image information which does not require a one-to-one training dataset. In this
method, cyclic loss, an important trick in unpaired image-to-image translation, promises to map the distribution from LDCT to
NDCT by using unpaired training data. Furthermore, to guarantee the accurate correspondence of the image content between the
output and NDCT, the prior information obtained from the result preprocessed using the LDCT image is integrated into the
network to supervise the generation of content. Given the map of distribution through the cyclic loss and the supervision of
content through the prior image loss, our proposed method can not only reduce the image noise but also retain critical in-
formation. Real-data experiments were carried out to test the performance of the proposed method.*e peak signal-to-noise ratio
(PSNR) improves by more than 3 dB, and the structural similarity (SSIM) increases when compared with the original CycleGAN
without prior information. *e real LDCT data experiment demonstrates the superiority of the proposed method according to
both visual inspection and quantitative evaluation.

1. Introduction

X-ray computed tomography (CT) is one of the most sig-
nificant imaging modalities in modern hospitals and clinics.
However, the risk of radiation in CT induces genetic, can-
cerous, and other diseases and has become a critical concern
to patients and operators [1–3]]. A common and effective
strategy to alleviate the risk is to achieve low-dose CT
(LDCT) imaging by reducing the tube current during
scanning and consequently decreasing the number of
photons received by the detector. *e dose reduction

increases noise and artifacts in reconstructed CT images,
thereby severely degrading the image quality and jeopard-
izing the clinical diagnosis. To solve this problem, re-
searchers have proposed various noise-reduction strategies,
including iterative reconstruction (IR) [4, 5], sinogram
domain denoising [6–9], and image domain postprocessing
[10–12].

Over the past decades, researchers have focused on
developing new iterative algorithms for LDCT image re-
construction. In general, these algorithms optimize an ob-
jective function, which incorporates a systemmodel [13, 14],
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a statistical noise model, and prior information in the image
domain [4, 15, 16]. Well-known image priors consist of total
variation (TV) and its variants [17–19], dictionary learning
[20, 21], and wavelet frame [22]. *ese iterative re-
construction algorithms exhibit satisfactory performance in
improving image quality, but their computational burden
and sensitive parameters limit their practical applications.

Image postprocessing is more computationally efficient
compared with iterative reconstruction, which has spawned
a lot of simple and effective methods. Nonlocal means
(NLM) filtering methods estimate noise components by
using multiple patches extracted at different locations in the
image [23] and have been widely used for CT [24]. Moti-
vated by compressed sensing methods, an adaptive K-SVD
method [25] was proposed to reduce artifacts in CT re-
constructions. *e block matching 3D (BM3D) method is
also an outstanding method for image postprocessing in CT
imaging fields [26, 27]; this method exploits similarities in
image blocks. *ese traditional postprocessing methods
have improved the quality of CT images; however, the results
often undergo edge blurring and/or residual artifacts given
the nonuniform distribution of reconstruction noise.

More recently, several supervised machine learning
approaches have been proposed for noise reduction in
LDCT. *ese methods usually reveal a relation between the
pixel value in the LDCT image and the pixel value at the
same location in a corresponding NDCT image by training
with paired images. Chen et al. [28] designed a deep con-
volutional neural network (CNN) to map LDCT images
toward its relative normal-dose counterparts in a patch-by-
patch manner. Kang et al. [29] used a similar method but
adopted CNN to directional wavelet transform of CTimages.
*en, more complex networks were proposed to handle the
LDCT denoising problem such as the residual encoder-
decoder convolutional neural network (RED-CNN) in [30],
which achieves competitive performance relative to state-of-
the-art methods in clinical cases.

Although the abovementioned networks presented im-
pressive denoising results, they all belong to the end-to-end
network, which typically utilizes mean squared errors (MSE)
between the network output and the ground truth as loss
function. However, recent studies [31, 32] indicated that this
per-pixel MSE often suffers from oversmoothed edges and
loss of details. MSE-based approaches tend to take the mean
of high-resolution patches by using Euclidean distance
rather than geodesic distance. Given that the medical images
usually lie in a highly nonlinear manifold [33], the algorithm
is prone to neglect subtle details that are vital for clinical
diagnosis when it tries to minimize per-pixel MSE. To
overcome the limitations of per-pixel regression in noise
reduction, the generative adversarial network (GAN) [34]
based on adversarial loss is introduced to medical image
reconstruction. In 2017, Wolterink et al. [35] were the first to
apply the GAN for cardiac CT image reconstruction. And,
Yang et al. [36] utilized a GAN with Wasserstein distance
(WGAN). In order to enhance the capability of noise re-
duction, perceptual loss is simultaneously used to optimize
the loss function. Yi and Babyn [37] combined an adversarial
trained network and a sharpness detection network to

mitigate noise in LDCT and achieved satisfactory perfor-
mance. Hence, a general framework for estimating gener-
ative models by using an adversarial process has shown
outstanding performance in medical image reconstruction.

*e above-mentioned denoising networks usually re-
quire spatially paired counterparts. However, in medical
imaging, well-paired counterparts are difficult to obtain.
For example, in LDCT imaging, continuously scanning a
patient twice in normal and low dose is impossible under
normal circumstances. *e shortage of paired data has been
one of the factors that restrict the wide application of deep
learning in low-dose CT reconstruction. Recently, un-
supervised variants of GANs, such as CycleGAN [38] and
DualGAN [39], have been proposed for mapping different
domains without matching data pairs. Motivated by their
success in image processing, unpaired GANs have been
successfully applied to CS-MRI reconstruction [40] and CT
synthesis based on MR images [41, 42]. For LDCT re-
construction, well-paired clinical scans acquired at different
dose levels are not readily available. Even if we obtain the
same patient data at different dose levels, the data are difficult
to match perfectly due to physical activity and the inevitable
slight movement of the scanning position, which may affect
the denoising ability of the networks.

In this study, we propose an unpaired LDCT denoising
network based on CycleGAN with prior image information.
In the proposed network, the design of cycle-consistent
structure impels the network to learn the mapping re-
lationship between the LDCT image collection and NDCT
image collection (Figure 1(a)), rather than an image pair of
an LDCT image and NDCT image (Figure 1(b)). *erefore,
the proposed network does not need a one-to-one corre-
sponding training dataset and can learn with the unpaired
dataset. Meanwhile, the prior image information extracted
from the preprocessed image by using LDCT is introduced
into the network to supervise the generation of content and
ensure correspondence of the image content. *e map of
image collections through cyclic loss and the supervision of
content through prior image loss confer our proposed
method to produce results that have not only lower noise but
also accurate details.

2. Methods

2.1. Noise ReductionModel. In LDCT imaging, serious noise
typically occurs in CT images as the number of photons
received by the detector decreases. One of the effective ways
to improve the image quality is designing a tailored network
to make the input LDCT images as close as possible to the
NDCT images. *is process can be classified as an image
denoising problem, which can be described by the following
model:

G : x⟶ y, (1)

where x ∈ RN×N denotes an LDCT image and y ∈ RN×N

denotes the corresponding NDCT image. *e goal of the
noise reduction process is to obtain a transformation G that
maps x to y.
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In this process, x can be seen as a sample from the LDCT
distribution Pl and y can be seen as a sample from the
NDCT distribution Pn. *e denoising process transforms x

to a certain distribution Pg. And, the denoising process aims
to determine an optimal G to make Pg close to Pn. However,
in the reconstructed LDCT images, noise is complicated and
uniformly distributed over the whole image; as such, dis-
tributions Pl and Pn have no explicit mathematical re-
lationship up to date [36]. *e traditional methods usually
have difficulty in denoising LDCT images. For deep learn-
ing-based methods, the uncertainty of a noise model can be
ignored due to the learning capability of high-level features
and presentation of data distribution by the CNN.*erefore,
designing a tailored CNN is an effective method to suppress
noise in LDCT and improve image quality.

2.2. Introduction of CycleGAN. In 2017, Zhu et al. [38]
proposed an unpaired network named CycleGAN, which
has gained extensive attention. *is network can capture the
special characteristics of one image collection and figure out
how these characteristics could be translated into other
image collection without using any paired training exam-
ples; this network has been successfully utilized in style
transfer, object transfiguration, season transfer, and photo
enhancement.

Under the assumption that there is some underlying
relationship between the source domain X and target do-
main Y, the goal of CycleGAN is to learn mapping G :

X⟶ Y so that the distribution of image from G(x) is
indistinguishable from the distribution of image from do-
main Y. *is network includes two mapping functions,
namely, G : X⟶ Y and F : Y⟶ X and also introduces
two discriminators, namely, DX and DY. Discriminator DY

aims to distinguish between translated samples G(x) and
real samples y. Discriminator DX aims to distinguish be-
tween translated samples F(y) and real samples x. In theory,
adversarial training can identify mappings G and F that
produce outputs identically distributed as target domains Y

and X [34]. However, with its large sufficient capacity, a
network can map the same set of input images to any
random permutation of images in the target domain, where
any of the learned mappings can induce an output distri-
bution that matches the target distribution. *erefore,
adversarial loss alone cannot guarantee that the learned
function can map individual input x to desired y. To further
reduce the space of possible mapping functions, the map-
ping functions G and F should be cycle consistent. As shown
in Figure 2(a), for each image x from domain X, the image
translation cycle should be able to bring x back to the
original image: x⟶ G(x)⟶ F(G(x)) ≈ x, which is
named as forward cycle consistency. Similarly, as demon-
strated in Figure 2(b), for each image y from domain Y, the
image translation cycle should be able to bring y back to the
original image: y⟶ F(y)⟶ G(F(y)) ≈ y, which is
named as backward cycle consistency. *e abovementioned
behavior can be incentivized by cycle-consistency loss.

Lcyc(G, F) � Ex∼Pdata(x) ‖F(G(x)) − x‖1􏼂 􏼃

+ Ey∼Pdata(y) ‖G(F(y)) − y‖1􏼂 􏼃,
(2)

where Pdata(x) is the distribution of x and Pdata(y) is the
distribution of y.

In LDCTimaging, although the projection data contain a
lot of noise, it is usually complete. *erefore, the recon-
structed images still contain useful information that is ba-
sically consistent with corresponding NDCT images. *is
indicates that there is a close relationship between the LDCT
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Figure 1: Schematic diagram of (a) unpaired dataset and (b) paired dataset.
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image and NDCTimage and satisfies the basic assumption of
CycleGAN. *us, this study considers using this unpaired
network for LDCT image reconstruction.

Based on its structure, CycleGANmainly focuses on the
map of distributions. *is network is better at the overall
conversion of images and may overlook the correspon-
dence of details. However, for LDCT noise reduction, the
outputs should not only appear similar to an NDCT image
but also retain details as much as possible; more impor-
tantly, the output must not contain false information,
which may cause misdiagnosis. *ese issues require ad-
ditional supervision and restraint to the network in the
training process to make it more suitable for LDCT re-
construction. In this study, we consider incorporating prior
image information into the network to guarantee content
correspondence and prevent the generation of fake details
during denoising process.

2.3. Unpaired Denoising Network Based on CycleGAN with
Prior Information. Figure 3 shows an overview of our
proposed method. *e network contains forward and
backward cycles and two generators and discriminators. In
order to more clearly illustrate the training mechanism of
the proposed network, we randomly selected an LDCT
image from LDCT image collection and an NDCT image
from the NDCT image collection as the input-ground truth
pair. Note that the LDCT image is not corresponding to the
NDCT image, as shown in Figure 4.

In the forward cycle, generator GN is trained to generate
images that are as close to corresponding NDCT images as
possible (Figure 3(a)). Generator FL is trained to translate
the resulting image GN(x) back to the corresponding LDCT
image. In the backward cycle, generator FL is trained to
generate images that are as close to corresponding LDCT
images as possible (Figure 3(b)). Generator GN is trained to
translate the resulting image FL(y) back to the NDCTimage.
In the training process of network, the discriminators DN

and DL are used to estimate the probability that the sample is

from the real image rather than generating image. At the
same time, the generators GN and FL attempt to generate
images that are not easily distinguishable by the discrimi-
nators. *is paper utilizes the adversarial loss [43] as the
objective function to train the “game” process:

LGANN
GN, DN, X, Y( 􏼁 � Ey∼pdata(y) logDN(y)􏼂 􏼃

+ Ex∼pdata(x) log 1 − DN GN(x)( 􏼁( 􏼁􏼂 􏼃,

LGANL
FL, DL, X, Y( 􏼁 � Ex∼pdata(x) logDL(x)􏼂 􏼃

+ Ey∼pdata(y) log 1 − DL FL(y)( 􏼁( 􏼁􏼂 􏼃.

(3)

In order to reduce the feasible domain space of the
mapping functions, the cycle consistency is introduced to
further constrain the training process of the network so that
the network can be trained under unpaired data:

Lcyc GN, FL( 􏼁 � Ex∼Pdata(x) FL GN(x)( 􏼁 − x
����

����1􏽨 􏽩

+ Ey∼Pdata(y) GN FL(y)( 􏼁 − y
����

����1􏽨 􏽩.
(4)

For this cycle consistency network, the performance of a
generator requires the indirect supervision through the
results of another generator. For example, in the forward
cycle, in addition to discriminator DN, the performance of
generator GN also needs to be supervised by the results
FL(GN(x)) of another generator FL. *is mechanism does
not guarantee the accuracy of the final input and may lead to
the occurrence of fake details. For LDCT image re-
construction, the accuracy of the results is critical, and if
false information is generated, it may cause misdiagnosis,
leading to serious consequences. *ese circumstances re-
quire direct constraints to the generators, especially to
generator GN, which directly produces the desired outcome.
*erefore, this paper incorporates the prior image in-
formation into the network to directly supervise the gen-
erator GN, as shown in Figure 3(a). For fear of changing the
unpaired property of the network, the resulting images
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Figure 2: Structure diagram of CycleGAN. (a) Forward cycle-consistency loss. (b) Backward cycle-consistency loss.
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processed by BM3D method utilizing LDCT images are
regarded as prior images. And, the mean absolute error
(MAE) between the prior image and the generated image is
introduced into the loss function to constrain the training of
the network. *e adversarial loss of the forward cycle can be
written as

L
p

GANN
GN, DN, X, Y( 􏼁 � Ey∼pdata(y) logDN(y)􏼂 􏼃

+ Ex∼pdata(x)􏼔log 1 − DN(x)( 􏼁

+ α GN(x) − Iprior_img

�����

�����1
􏼕,

(5)

FL

GN ||GN (IL) – Iprior_img||1

||FL (GN (IL)) – IL||1

IL

GN (IL) DN

BM3D

ILIprior_img

FL (GN (IL))

(a)

IN

FL

DL

||GN (FL (IN)) – IN||1 FL (IN)

GN

GN (FL (IN))

(b)

Figure 3: Overview of the proposed method. (a) Forward cycle. (b) Backward cycle.

Input-LDCT image Ground truth-NDCT image

Figure 4: One input-ground truth pair of the proposed unpaired network.
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where α is the weight of theMAE. In the training process, the
generator GN tries to minimize the objective function (5)
while the discriminator DN tries to maximize it, that is,
minGN

maxDN
L

p

GANN
(GN, DN, X, Y). We denote the pro-

posed network as CycleGAN-BM3D.
*rough the above analysis, the total loss function of our

proposed method is

L GN, FL, DN, DL( 􏼁 � L
p

GANN
GN, DN, X, Y( 􏼁

+ LGANL
FL, DL, Y, X( 􏼁

+ λLcyc(G, F),

(6)

where λ is a nonnegative parameter used to balance the
weight of the cycle consistency loss. *e total objective
function of the proposed CycleGAN-BM3D is

G
∗
N, F
∗
L � arg min

GN,FL

max
DN,DL

L GN, FL, DN, DL( 􏼁. (7)

2.4. Network Architecture. In the proposed method, the
network of the generator, as shown in Figure 5(a), includes
three submodules: encoder, convertor, and decoder. *e
encoder extracts the features from the input image utilizing
CNN. *e network of the encoder includes one 7× 7
Convolution-InstanceNorm-ReLU layer with 64 filters and
stride 1 denoted as c7s1-64, two 3× 3 Convolution-
InstanceNorm-ReLU layers with k filters and stride 2 in
which k equals to 128 and 256, respectively. We denote these
two layers as d128 and d256. *e convertor, as shown in
Figure 5(b), is used to convert feature vectors extracted from
the source domain X to the target domain Y. *e convertor
contains six residual network (Resnet) blocks [44], and each
block contains two 3× 3 convolutional layers with 256 filters
on both layers. *e decoder includes three layers. *e first
two layers are 3× 3 fractional-strided-Convolution-Instan-
ceNorm-ReLU layers with stride 1/2 and 64 and 32 filters,
respectively. We denote the two layers as u64 and u32. *e
third layer is a 7× 7 Convolution-InstanceNorm-ReLU with
3 filters and stride 1 denoted as c7s1-3. *e network of the
discriminator, as shown in Figure 5(c), consists of five
convolution layers. *e first four layers are 4× 4 Convo-
lution-InstanceNorm-LeakyReLU layers with stride 2 and
64, 128, 256, and 512 filters, respectively. We denote them as
C64, C128, C256, and C512. We use leaky ReLUs with slope
0.2. In the last layer, a 4× 4 convolution layer with 1 filter
and stride 1 is utilized to produce a one-dimensional output.

3. Experiments and Results

3.1. Experimental Dataset and Performance Evaluations.
*e CT images of a deceased piglet were selected as the
experimental dataset to verify the performance of the pro-
posed network. *e images were scanned by a 64-slice
multidetector GE Healthcare scanner (Discovery CT750
HD) by using 100 kV and 0.625mm slice thickness. Five
different tube currents were set to yield CT images with
different dose levels. *e specific scanned parameters and
effective dose of different tube currents are listed in Table 1.

In each dose level, 906 images with size 512× 512 were
acquired. As shown in Figure 6, we partitioned the slices by
taking oneʼs data and then skipping 10 slices. We finally
obtained 360 images reconstructed by FBP using the pro-
jection data of 5% dose as the noisy dataset, that is, source
collection X. And, 180 images were obtained for testing. *e
normal dose dataset utilized consists of 360 images, which
are corresponding to the noisy dataset and obtained from the
NDCT images constructed by FBP. *e normal dose dataset
is the target collection Y. Given the unpaired property of the
proposed network, the training images and the ground truth
do not require a one-to-one correspondence. *e number of
two image datasets can also be different. In the training stage,
we performed an unpaired operation for the inputs and
labels of the network. In addition, each image was divided
into sixteen 128×128 images to enlarge the training dataset
to 5760 images.

For comparison, we selected some representative tra-
ditional methods and other networks.

3.1.1. BM3D. *is method exhibits outstanding perfor-
mance in noise reduction over other traditional image
denoising methods.

3.1.2. Original CycleGAN. *is network is trained without
the constraint of prior image to test the supervised effect of
the prior image. *e input dataset and ground truth dataset
are the same as the proposed method CyclGAN-BM3D,
which are not one-to-one correspondence.

Structural similarity (SSIM) [45], peak signal-to-noise
ratio (PSNR), and normalized mean absolute distance
(NMAD) are selected as measures of reconstruction quality
for the quantitative assessment of the proposed network and
abovementioned contrast algorithms. Specifically, PSNR and
NMAD are defined as follows:

PSNR � 10 log10
MAX2(f)

1/N􏽐
N
i�1 f(i) − f0(i)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

⎛⎝ ⎞⎠,

NMAD �
􏽐

N
i�1 f(i) − f0(i)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽐
N
i�1|f(i)|

,

(8)

where f and f0 represent the denoising image and ideal
image, respectively, i is the pixel in the image, and N is the
total number of pixels in the image. A higher PSNR indicates
that the image is of higher quality. *e NMAD value close to
0 indicates small differences between the ideal image and the
reconstructed results. In general, SSIM≤ 1 and SSIM� 1
indicate the exact theoretical reconstruction.

3.2. Implementation Details. In the training process, the
negative log likelihood objective of the first two items in
LGANN

and LGANL
is replaced by least squares loss to stabilize

the proposed model [46]. After the replacement, we train GN

to minimize
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Ex∼pdata(x) DN GN(x)( 􏼁 − 1( 􏼁
2

+ α GN(x) − Iprior_img

�����

�����1
􏼔 􏼕.

(9)

We also train FL to minimize

minEy∼pdata(y) DL FL(y)( 􏼁 − 1( 􏼁
2

􏽨 􏽩. (10)

For discriminators DN and DL, the objectives are

minEy∼pdata(y) DN(y) − 1( 􏼁
2

􏽨 􏽩 + Ex∼pdata(x) DN G(x)
2

􏼐 􏼑􏽨 􏽩,

minEx∼pdata(x) DL(x) − 1( 􏼁
2

􏽨 􏽩 + Ey∼pdata(y) DL FL(y)
2

􏼐 􏼑􏽨 􏽩.

(11)

For the setting of parameters, λ is set as 10. Adam solver
with a batch size of 1 is selected as the optimizer to optimize
the networks. We keep the same learning rate for the first

Table 1: CT scanning protocol for the experiment.

Normal dose 50% dose 25% dose 10% dose 5% dose
Tube current (mAs) 300 150 75 30 15
Effective dose (mSv) 14.14 7.07 3.54 1.41 0.71

……

20 training slices 10 testing slices 20 training slices 10 testing slices

Skipped 10 slices Skipped 10 slices Skipped 10 slices Skipped 10 slices

Figure 6: Schematic diagram of data preparation. *e yellow rectangular blocks represent the training data, the green rectangular blocks
represent the test data, and the white rectangular blocks represent the skipped slices.
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10,000 epochs and linearly decay the rate to zero over the
next 10,000 epochs. *e proposed network in this paper
trained 40,000 epochs. α is an important parameter for
controlling the weight of prior information during training.
When the value of α is too small, the effect of prior in-
formation will be negligible and cause minimal improve-
ment in image quality. By contrast, a very large α will
overemphasize the role of prior information and, to some
extent, limit the learning ability of the network itself. In this
paper, a series of networks was trained by setting different
values of α to determine a suitable value. For the sake of
fairness, each network has the same parameters’ setting,
except α. We randomly selected 10 LDCT images to test the
performance of different networks. *e effect of α was
quantitatively determined by plotting the average SSIM and
NMAD of the denoising images in Figure 7.

From the curves of Figure 7, when α � 10, the SSIM
reaches the maximum, indicating that the denoising images
are most similar to the NDCT images in structure, that is,
under this circumstance, the network has the greatest ability
to retain the details of the LDCT images. NMAD reflects the
accuracy of denoising to some extent. Smaller NMAD in-
dicates that the noise in the LDCT images is removed more
completely. Considering the detail retention and noise re-
duction of the network, this paper set α as 10.

To analyze the potential denoising capability of selected
algorithms and networks, two representative slices and the
corresponding zoomed regions of interest (ROIs) are shown
in Figures 8–10, respectively.

As shown in Figure 8, when using traditional methods
(BM3D) or deep learning-based methods, the noise that ap-
pears in the LDCTimage is suppressed to varying degrees.*e
classic BM3D method has an outstanding noise suppression
effect but makes the processed image oversmoothed so that
some vital details disappear. As indicated by the red arrows in
ROI, the results of BM3D lose some information of the bone.
Although the result of the original CycleGAN is not over-
smoothed, it shows fake details, connecting the unconnected
bones in the NDCT image. *e CycleGAN-BM3D, which
introduces prior image information, does not have redundant
details and retains the information that should be retained.

Figure 9 shows the overall second slice of different
methods and the corresponding absolute difference images
between NDCT images and the resulting images. In the
difference images, the darker the color is, the smaller the
error will be. It can be clearly observed that the result of
CycleGAN-BM3D has the smallest difference.

For further analysis of image details, two regions were
selected as ROIs, which are shown in Figure 10. In ROI I, the
tissue pointed by red squares is smeared out in the BM3D
images but is easily identifiable in the CycleGAN and
CylceGAN-BM3D images. As marked by the yellow ellipses
in ROI II, the three black holes in the results of BM3D and
CycleGAN are blurred and inseparable but are recognizable
in the result of CycleGAN-BM3D. Furthermore, the smooth
area below the ROI II of CycleGAN-BM3D is the most
similar to the NDCT image.

Based on the visual effect, the proposed network
CycleGAN-BM3D can not only better suppress noise but

also retain more details than the other networks. More
importantly, after adding the constraint of prior in-
formation, CycleGAN-BM3D can effectively prevent the
generation of fake details compared with the original
CycleGAN without prior information.

For quantitative analysis, the average of PSNR, SSIM,
and NMADwas calculated for 180 slices in the test dataset to
measure performance of the proposed method and the other
compared methods. (Table 2).

In each evaluation item, the results with the best per-
formance are marked black. CycleGAN-BM3D ranks first in
terms of SSIM even with the unpaired training dataset. As
such, the results of CycleGAN-BM3D are the most struc-
turally similar to the NDCT images. In terms of PSNR and
NMAD, CycleGAN-BM3D also exhibits satisfactory per-
formance, indicating that the noise removal is relatively
clean. Compared with the other algorithms, CycleGAN
shows the worst performance because it mainly focuses on
mapping the data distribution from the LDCTto NDCT, and
cyclic loss may not be enough to supervise the generation of
details and suppression of noise. *is method needs to add
supervision during training to improve image quality. *e
introduction of prior information in CycleGAN-BM3D
enhances the constraints to the image content. *at is, in the
proposed CycleGAN-BM3D method, cyclic loss plays a role
in distributionmapping and prior information loss is used to
guarantee the relevance of the content. *erefore, the
proposed method demonstrates good performance in noise
suppression and detail preservation. We note that the nu-
merical results of BM3D are in the front rank. From the
visual effect, the noise removal of BM3D is complete and the
main information of the image is basically retained, as much,
BM3D has a high quantitative evaluation result. *at finding
is the reason why we choose the result of BM3D as the prior
information.

4. Discussion and Conclusion

In the modern CT imaging field, the hidden risk of radiation
dose has increased the demand for LDCT. However, LDCT
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Figure 7: Average SSIM and NMAD of 10 images in different
values of α. *e blue line indicates the SSIM curve and the orange
line represents the NMAD curve.
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Figure 8: Results of (a) NDCT, (b) LDCT, (c) BM3D, (d) CycleGAN, and (e) CycleGAN-BM3D, respectively.*e display widow is [800, 1300].
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Figure 9: Results of (a) NDCT, (b) LDCT, (c) BM3D, (d) CycleGAN, and (e) CycleGAN-BM3D, respectively.*e display widow is [800, 1300].
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Figure 10: Zoomed-in ROIs of slice 2. *e first column is the NDCT (a). *e following columns are the results from (b) LDCT, (c) BM3D,
(d) CycleGAN, and (e) CycleGAN-BM3D, respectively. *e display widow is [800, 1300].
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images often suffer from serious noise, which degrades
image quality and troubles clinical diagnosis. In the past two
years, deep neural network provides a new idea for LDCT
noise reduction. Most of the existing neural networks for
LDCT reconstruction usually require well-matched datasets
for network training. However, the well-matched CT images
of different dose levels are difficult to obtain. *is may affect
the performance of networks and lead to blurred details or
fake information in the resulting images.

To improve the quality of LDCT image and broaden the
application of neural networks in LDCTnoise reduction, this
paper proposed an unpaired network based on CycleGAN
with prior image information. In contrast to existing
denoising networks, the proposed network can be trained by
unpaired datasets, thereby alleviating the limitation of paired
dataset requirement. Most GANs used to reduce noise
mainly focus on the distribution mapping from LDCT to
NDCT, and this process may overlook the accurate content
correspondence. To enhance the constraint to the content
and prevent producing fake details, we incorporate the prior
image processed by BM3D into CycleGAN to supervise the
generation of image content. In the experiment of real data,
visual inspection demonstrated that the proposed method
can suppress noise in the LDCT image and prevent the
generation of fake details. *e result of quantitative evalu-
ations indicated that, after incorporating prior information,
the PSNR improvedmore than 3 dB and SSIM also increased
compared with the original CycleGAN without prior in-
formation. *e results of qualitative and quantitative eval-
uations indicated that the proposed method exhibits
reasonable performance and outperforms the original
CycleGAN when applied to LDCT reconstruction.

*e validity of prior information affects the performance
of the proposed method. In this work, the LDCT images
processed by traditional methods are obtained as prior in-
formation, which is a simple and efficient way. In the future,
we intend to explore other representative shared features
between LDCT and NDCT images as prior information to
further improve the performance of the proposed network,
such as the sparsity or sharpness information.
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