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Magnetic resonance (MR) images are often contaminated by Gaussian noise, an electronic noise caused by the random thermal
motion of electronic components, which reduces the quality and reliability of the images. /is paper puts forward a hybrid
denoising algorithm forMR images based on two sparsely represented morphological components and one residual part. To begin
with, decompose a noisy MR image into the cartoon, texture, and residual parts by MCA, and then each part is denoised by using
Wiener filter, wavelet hard threshold, and wavelet soft threshold, respectively. Finally, stack up all the denoised subimages to
obtain the denoised MR image. /e experimental results show that the proposed method has significantly better performance in
terms of mean square error and peak signal-to-noise ratio than each method alone.

1. Introduction

Magnetic resonance imaging (MRI) is one of the advanced
imageological examination methods for modern medicine.
MRI uses powerful magnets and computer-generated radio
waves instead of injected contrast agents to create multidi-
mensional images of human organs and tissues. It does not
damage the body with ionizing radiation, so it is safer than
emission computed tomography (ECT). For this reason, MRI
is frequently used for imaging tests of the brain and spinal
cord. However, compared with computed tomography (CT),
MR image has a lower spatial resolution, longer scan time, and
more artifacts. /e longer the scanning time, the greater the
thermal noise (a kind of Gaussian noise). Besides, medical
images are always polluted by various noises during

collection, transmission, and storage. /e magnitude of MRI
data in the presence of noise generally follows a Rician dis-
tribution if acquired with single-coil systems [1]. Also, the
Gaussian distribution can approximate Rician noise in high
SNR (signal-to-noise ratio) regions [2]. Quite often, noise
affecting the pixels in an image is Gaussian in nature and
uniformly deters information pixels in the image [3]. MR
image denoising, as an essential preprocessing step for MRI
data processing, has been a hot topic in the related area.

Many scholars and researchers have performed much
work on image denoising. Various image denoising methods
can be broadly classified as five categories: spatial domain
filtering, transform domain filtering, methods in other
domains, sparse representation and dictionary learning
methods, and hybrid methods [3].
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/e spatial domain filtering can be further divided into
linear (such as Wiener filters) and nonlinear filters (such as
median filters) [4]. Wiener filter, a denoising method used
when the noise is a stationary random process, minimizes
the mean square error between the output signal and the
desired noise-free signal. It has a wide range of applications,
regardless of whether the stationary random process is
continuous or discrete, scalar or vector. Jingdong Chen et al.
studied the quantitative performance behavior of theWiener
filter in the context of noise reduction in 2006 [5]. A new
filtering method based on the neutrosophic set approach of
the Wiener filter was proposed for MRI denoising in 2013
[6].

Transform domain filtering includes many classic
methods, such as Fourier transform, wavelet transform,
threshold function, curvelet, and contourlet. Wavelet
transform uses a series of wavelets with different scales to
decompose the original image to get the coefficients of
different wavelets. In general, for a noisy image, the wavelet
transform will decompose most of the noises and effective
signals into coefficients with small and big moduli, re-
spectively. So, it is easy to remove lots of the noises by
removing the low-frequency parts. Wavelet thresholding is a
powerful denoising method based on the wavelet transform.
Donoho and Johnstone gave two kinds of thresholding
functions: hard thresholding and soft thresholding [7, 8].
/e deficiency of hard thresholding is its discontinuity, while
the drawback of soft thresholding is that it causes constant
deviation [9]. Fei Xiao and Yungang Zhang explored the
properties of several representative thresholding techniques
in wavelets denoising in 2011 [10]. Zhang et al. proposed an
improved threshold function to overcome the drawbacks of
hard thresholding and soft thresholding functions in 2019
[9]. Wavelet transform has been widely applied in image
processing [11, 12].

Hybrid methods are popular since different denoising
methods have different advantages. Here, we focus on the
application of morphological component analysis (MCA)
and wavelet thresholding. MCA is a signal separation
method proposed by Starck et al. in 2005 [13], which
combines the advantages of sparse representation and
variational method. When the features contained in an
image present different morphological aspects, we can
separate multiple components with different shapes from the
image (as shown in Figure 1). /e morphological compo-
nent analysis assumes that each morphological component
can find a dictionary for sparse representation, and the
dictionaries for different morphological components are
independent. /e authors in [14] proposed an image
denoising method based on morphological component
analysis (MCA) to remove the rain component successfully
in 2013. Naimi et al. proposed a denoising approach basing
on dual-tree complex wavelet and shrinkage with theWiener
filter technique in 2014 [15]. Deng and Liu proposed an
improved image denoising method based on MCA and
median filter to resist mixed noises in 2015 [16]. Cheng and
Liu used APBT and BM3D to denoise texture and structure
part, respectively [17]. MCA has been widely used in medical
image processing [18].

In this paper, we propose a method to remove Gaussian
noise in MR brain images based on image decomposition by
MCA. Wiener filter (classical spatial domain filtering),
wavelet hard threshold, and wavelet soft threshold (classical
transform domain filtering) are employed to remove noise in
the cartoon, texture, and residual parts, respectively. /e
experimental results show that the proposed method ach-
ieves better noise reduction, both objectively and
subjectively.

2. Materials and Methods

In this study, we present a hybrid MR image denoising
method based on MCA, Wiener filtering, and wavelet hard
and soft thresholds./e whole denoising flow chart is shown
in Figure 2. Firstly, add Gaussian white noise to the three
original MR brain images. Secondly, use MCA to decompose
the noisy images into three parts: cartoon, texture, and
residual parts. In general, the residual part is regarded as a
“noise component” and discarded directly by traditional
MCA. Nevertheless, this study retains the residual part,
which contains the outline of the brain. /irdly, use Wiener
filter, wavelet hard threshold, and wavelet soft threshold to
remove noise in cartoon, texture, and residual parts, re-
spectively. At last, superimpose the three denoised sub-
images to get denoised MR images.

2.1. Materials. /e original data are a very thorough set of
sequences of MR brain imaging of Axial T2, which was
obtained from the open-edit educational radiology resource
radiopaedia.org [19]. /is paper chooses three static images
at different moments of the original data for research. /ey
are noise-free and of high resolution.

2.2.WienerFilter. /eWiener filter is an optimal linear filter
proposed by Norbert Wiener in 1942. It seeks the linear
time-invariant filter whose output comes as close as possible
to the original signal. In other words, the goal is to minimize
the mean square error (MSE) between the expected noise-
free signal and the actual output signal. /e Wiener filter
assumes that the input is the sum of valuable signals and
noise, both of which are generalized stationary processes,
and their second-order statistical characteristics are known.
/erefore, it is not adaptive and always implemented in the
frequency domain.

Formally, let f(x, y) be the input image and g(x, y) be
the degraded image with some point-spread function h(x, y)

and additive noise η(x, y). So, in the spatial domain, the
blurred image is

g(x, y) � H(x, y)
∗
f(x, y) + η(x, y), (1)

where ∗ means two-dimensional convolution, H(x, y) is the
blurring function, and additive noise η(x, y) often refers to
Gauss white noise, uniform noise, etc. /e Wiener filter
treats images and noises as random processes, and the
objective is to find an estimate f of the original image
f(x, y)such that the MSE is minimum. /e optimization
problem is as follows:
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min e
2

� E (f − f)
2

 , (2)

where E means mathematical expectation. In the frequency
domain, the optimization solution is given by [20]

F(u, v) �
H∗(u, v)

|H(u, v)|2 + Sη(u, v)/Sf(u, v) 
, (3)

where H∗(u, v) is the complex conjugate of H(u, v), Sη(u, v)

is the power spectrum of the noise, and Sf(u, v) is the power
spectrum of the original image. If (Sη(u, v)/Sf(u, v)) is
larger, the Wiener filter is smaller, so the frequency will be
ignored. For more detailed information on the Wiener filter
denoising, please refer to the textbook [21].

2.3. Wavelet Transformation. Wavelet denoising is widely
used to remove noise from various signals, including one-
dimensional signals (such as EEG) and two-dimensional
signals (such as MR images). /e algorithm is relatively
simple to implement and has been proven effective in image
denoising [22]. /e energy obtained by using the wavelet
transform usually concentrates on large coefficients, which
correspond to the chief portion of the original signal because

common noises such as Gaussian white noise do not cor-
relate with wavelets. /erefore, wavelet coefficients with
large amplitudes are mostly the required signals, while
wavelet coefficients with small amplitudes are usually noise.
Due to this property, the most common technique for re-
ducing image noise by wavelet is thresholding. In this study,
we use hard and soft thresholds.

/e hard threshold is defined as follows:

wj,k �
wj,k, wj,k



≥ λ,

0, wj,k



< λ.

⎧⎪⎨

⎪⎩
(4)

Moreover, the soft threshold is defined as follows:

wj,k �
sgn wj,k  wj,k| − λ

 , wj,k



≥ λ,

0, wj,k



< λ.

⎧⎪⎪⎨

⎪⎪⎩
(5)

In both definitions, wj,k. is the wavelet coefficient and λ is
the threshold value. /en, we can use wj,k to perform the
inverse wavelet transform to obtain the denoised image.
Hard thresholding and soft thresholding are widely used and
effective. It should be noticed that the hard threshold
function is discontinuous when wj,k � ±λ, which would
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Figure 2: /e flow chart of denoising an MR image.

Original Cartoon Texture Residual

Figure 1: An original MRI and its decomposition based on MCA.
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cause oscillation in the denoised signal. On the contrary, the
soft threshold method is continuous globally, but there is a
constant error between wj,k and wj,k when wj,k ≥ λ, which
would reduce the accuracy of the approximation. /erefore,
the choice of threshold is the primary concern for the
wavelet transform denoising and should be validated by
experiments. More detailed theories of the wavelet trans-
form with its application could be found in many pieces of
the literature, such as in [23].

2.4. Our Proposed Method Based on MCA. /e main idea of
MCA is to decompose an image into different additive
layers, and each layer corresponds to a kind of morpho-
logical component of the image. Besides, the layer decom-
position is required to optimize the sparsity of its
representation./e coremethod of layer decomposition is to
use adapted dictionaries, one for texture part representation
and the other for cartoon part representation. /e dictio-
naries are mutually unrelated. Each dictionary can only
sparsely represent one morphological component and
cannot sparsely represent other morphological components.
/e algorithm has been proven to perform well in many
applications.

Formally, let s be a signal, which could be divided into K

parts. Let

s � 
K

k�1
sk, (6)

where each sk represents a different type of signal decom-
posed from the signal s. For each possible representation sk,
there must be a dictionary Φk ∈MN×Lk (where Lk≫N

normally) such that the optimization problem
αk � argmin

α
‖α‖0, subject to sk � Φkα, (7)

Has a very sparse solution (‖αk‖0is very small). On the
contrary, the optimization problem

αl � argmin
α

‖α‖0, subject to sl � Φkα (k≠ l), (8)

Does not have a sparse solution.
For the decomposition of a signal, the MCA requires to

optimize the following equation:

α1, α2, . . . , αK  argmin
α1 ,α2,...,αK{ }



K

k�1
αk

����
����0, subject to s � 

K

k�1
Φkαk.

(9)

For the decomposition of an image, the MCA usually
decomposes it into three components: cartoon, texture, and
additive noise. /en, we can throw away the noise com-
ponent and add only cartoon and texture components as the
denoised image.

In this study, MCA separated two morphological
components with different features and different dictio-
naries from the MR image, namely, the cartoon and texture
parts. Accordingly, the optimization equation is as follows:
for an MR image s,

αc, αt  � argmin
αc,αt{ }

αc

����
����0 + αt

����
����0 , subject to s � Φcαc +Φtαt,

(10)

where Φc andΦt represent the overcomplete dictionaries of
cartoon and texture parts, respectively. αc and αt are the
corresponding sparse coefficients. Because this is an NP-
hard problem, l1-norm would be used for approximation
[24]. On the contrary, a noisy MR image cannot be accu-
rately decomposed into cartoon and texture parts of sparse
representations. So, a less strict constraint can be used to
approximate the decomposition. /e optimization equation
used is as follows:
αc, αt  argmin

αc ,αt{ }

αc

����
����1 + αt

����
����1 , subject to s −Φcαc −Φtαt

����
����2≤ ε,

(11)

where ε is the value of noise tolerance. /e solution of the
problem results in that the decomposition would leave out
some components (i.e., the residual), which cannot be
sparsely represented by both dictionaries. Let R be the re-
sidual part. /en, our decomposition model can be sum-
marized as follows:

s � Φcαc +Φtαt + R. (12)

As shown in Figure 1, the MCA decomposes the original
MR image into the cartoon, texture, and residual parts,
which represent a meaningful component, an insignificant
component, and the residual part, respectively.

After the noise-added MR image is decomposed into
three components, each component is denoised by different
methods. Specifically, the Wiener filter, wavelet hard
threshold, and wavelet soft threshold are used to denoise the
cartoon, texture, and residual parts, respectively. Finally, all
the denoised subimages are superimposed together as the
final denoisedMR image./e flow chart of denoising anMR
image is shown in Figure 2.

2.5. EvaluationMethods. /ere are two ways to evaluate the
performance of different image denoising methods: objec-
tive method and subjective method. /e subjective evalu-
ation method is to compare the original image and the
denoised image visually with naked eyes. /e objective
evaluation method is an index to quantify denoising per-
formance. Here, we employ two common objective evalu-
ation indexes: mean square error (MSE) and peak signal-to-
noise ratio (PSNR).

/e mean square error (MSE) is calculated as follows:

MSE �
1

M × N


M−1

i�0


N−1

j�0
fij − fij 

2
, (13)

whereM and N represent the length and width of the image,
respectively, fij denotes the pixel value of the original image,
and fij represents the pixel value of the denoised image.

/e peak signal-to-noise ratio (PSNR) is computed as
follows:
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PSNR � 10∗ log
L2

MSE
, (14)

where L represents the maximum grayscale value of the
pixels in an image. Here, L� 255.

3. Analysis of Results

In this section, all of the simulation experiments were ac-
complished in Matlab 2012. /e Wiener filter, wavelet hard
threshold, wavelet soft threshold, and proposed method (a

combined method of the previous three methods based on
MCA) are adopted for experimental comparison.

3.1.ObjectiveEvaluation. In this section, the noise reduction
effects are achieved when the mean value of Gaussian noise
is zero, and the noise variance is 0.01, 0.03, 0.05, 0.07, and
0.09, respectively.

/e objective comparison results of the three MRI im-
ages are shown in Tables 1–3, respectively. /e tabulation
results indicate that the MSE values of the proposed method

Table 1: Denoising results of MRI 1 in different ways.

Results MSE of MRI 1 PSNR of MRI 1
Noise variance 0.01 0.03 0.05 0.07 0.09 0.01 0.03 0.05 0.07 0.09
Wiener filter 87 257 422 577 723 28.75 24.03 21.88 20.52 19.54
Hard threshold 252 334 425 523 628 24.04 22.89 21.85 20.95 20.15
Soft threshold 74 231 382 702 1043 29.44 24.49 22.31 19.67 17.94
Proposed 73 174 284 399 522 29.48 25.73 23.6 22.13 20.95

Table 2: Denoising results of MRI 2 in different ways.

Results MSE of MRI 2 PSNR of MRI 2
Noise variance 0.01 0.03 0.05 0.07 0.09 0.01 0.03 0.05 0.07 0.09
Wiener filter 87 254 417 566 701 28.76 24.09 21.93 20.6 19.67
Hard threshold 233 308 397 493 586 24.46 23.25 22.14 21.2 20.45
Soft threshold 132 319 1682 436 2591 26.91 23.09 15.75 21.73 13.88
Proposed 68 167 272 388 501 29.79 25.92 23.78 22.24 21.13

Table 3: Denoising results of MRI 3 in different ways.

Results MSE of MRI 3 PSNR of MRI 3
Noise variance 0.01 0.03 0.05 0.07 0.09 0.01 0.03 0.05 0.07 0.09
Wiener filter 85 256 423 583 730 28.85 24.05 21.87 20.48 19.5
Hard threshold 232 311 404 510 618 24.45 23.2 22.07 21.06 20.22
Soft threshold 230 339 393 728 797 24.5 22.81 22.19 19.5 19.11
Proposed 68 167 278 400 530 29.85 25.9 23.7 22.11 20.89
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Figure 3: Average MSE values of the three MRI images in different ways.
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are always significantly lower than other methods, while the
PSNR values of that are always higher than other methods.
More intuitively, the line graphs in Figure 3 and Figure 4
visualize the averageMSE values and the average PSNR values
of the three MRI images, respectively. It is observed that the
average MSE line of the proposed method is lower than other
methods, and the average PSNR line of the proposed method
is higher than other methods. To sum up, the proposed
method achieves better denoising effects in terms of the MSE
value and the PSNR value than each method alone.

3.2. Subjective Evaluation. In this section, the denoising
effects are achieved when the mean value of Gaussian noise
is zero and the variance of that is 0.05.

/e denoising visual effects of the three MRI images
are shown in Figures 5–7. /e images denoised by hard
and soft thresholds lose more important outline infor-
mation than the other methods and therefore appear
blurry. On the contrary, the images denoised by the
Wiener filter retain most of the edge information as well as
considerable noises. By contrast, the images denoised by

(a) (b) (c)

(d) (e) (f )

Figure 5: Subjective denoising results of MRI 1 in different ways. (a) Original image, (b) noisy image, (c) Wiener filter, (d) hard threshold,
(e) soft threshold, and (f) proposed.
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Figure 4: Average PSNR values of the three MRI images in different ways.
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(a) (b) (c)

(d) (e) (f )

Figure 6: Subjective denoising results of MRI 2 in different ways. (a) Original image, (b) noisy image, (c) Wiener filter, (d) hard threshold,
(e) soft threshold, and (f) proposed.

(a) (b) (c)

(d) (e) (f )

Figure 7: Subjective denoising results of MRI 3 in different ways. (a) Original image, (b) noisy image, (c) Wiener filter, (d) hard threshold,
(e) soft threshold, and (f) proposed.
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the proposed method preserve more edge information and
less noise.

4. Discussion

/e proposed method achieves better denoising effects than
other concerned methods, both objectively and subjectively.
Let us explore the relative optimality of the proposed
method.

Our goal is to use a combination of classical spatial and
transform domain filters to achieve better denoising effects.
/e MCA can decompose an image into different mor-
phological components, which enables us to combine dif-
ferent methods conveniently. /e Wiener filter is a spatial
domain filter that can preserve most of the edge information.
/e wavelet thresholding is a transform domain filter based
on the property of sparsity. It can amplify the dissimilarity
between noise and true signal by transformation and then
use thresholding functions to reduce noise. /ere are two

common thresholding functions: hard thresholding and soft
thresholding. Hard thresholding gives better results by
preserving edge information in some cases [25]. Soft
thresholding tends to over smoothen the restored image.
Transform domain methods can represent textures and low
contrast information [3].

Decompose the noise-added MR images by MCA into
three parts: the cartoon, texture, and residual parts. /e
denoising methods used in the proposed method are the
Wiener Filter, hard threshold, and soft threshold. As an
experiment validation, we will use all possible combinations
of the three methods to remove noises in the three parts. To
keep things simple, denote byW,H, and S the Wiener Filter,
hard threshold, and soft threshold, respectively. Table 4
shows the PSNR values of different methods used in the
three parts of the images. For example, WHS means using
the Wiener filter, hard threshold, and soft threshold to
remove noises in the cartoon, texture, and residual parts,
respectively. In contrary, WHS is our proposed method. It is

Table 4: PSNR values of denoising the cartoon, texture, and residual parts in order (W: Wiener filter, H: hard threshold, and S: soft
threshold).

Noise variance 0.01 0.03 0.05 0.07 0.09
PSNR of MRI 1
SHW 29.34 25.5 23.52 21.42 20.99
SWH 28.7 24.07 22 20.06 19.67
HSW 24.7 23.02 19.49 19.65 17.66
HWS 24.34 22.24 20.91 19.83 19.13
WSH 29.77 25.32 20.25 20.34 18.03
WHS (proposed) 29.48 25.73 23.6 22.13 20.95
Max 29.77 25.73 23.6 22.13 20.99
PSNR of MRI 2
SHW 29.24 23.99 23.63 22.14 21.16
SWH 28.19 22.72 21.94 20.62 19.75
HSW 24.98 23.32 15.52 20.54 13.89
HWS 24.47 22.34 21.03 20.04 19.32
WSH 29.81 25.56 15.78 21.27 14.01
WHS (proposed) 29.79 25.92 23.78 22.24 21.13
Max 29.81 25.92 23.78 22.24 21.16
PSNR of MRI 3
SHW 29.51 25.66 23.26 21.46 20.81
SWH 28.73 24 21.86 20.08 19.6
HSW 22.48 22.95 20.65 19.69 18.57
HWS 24.7 22.41 20.95 19.88 19.18
WSH 24.49 24.91 21.54 20.3 18.95
WHS (proposed) 29.85 25.9 23.7 22.11 20.89
Max 29.85 25.9 23.7 22.11 20.89

Table 5: Average PSNR values of denoising the cartoon, texture, and residual parts in order (W: Wiener filter,H: hard threshold, and S: soft
threshold).

Noise variance 0.01 0.03 0.05 0.07 0.09
SHW 29.36 25.05 23.47 21.67 20.99
SWH 28.54 23.60 21.93 20.25 19.67
HSW 24.05 23.10 18.55 19.96 16.71
HWS 24.50 22.33 20.96 19.92 19.21
WSH 28.02 25.26 19.19 20.64 17.00
WHS (proposed) 29.71 25.85 23.69 22.16 20.99
Max 29.71 25.85 23.69 22.16 20.99
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observed that the proposed method always has the highest
PSNR values except when the noise variance in MRI 1-2 is
0.01. However, the average PSNR values of the proposed
method still reach the highest even when the noise variance
is 0.01. Table 5 reveals the fact.

As an exploratory research method, the proposed MRI
denoising method is relatively effective, but the denoising
effect is not so satisfactory. In the future, we will study more
excellent denoising methods for MRI and fMRI.

5. Conclusion

In summary, we can illustrate our work in three steps.
Firstly, describe the merits and drawbacks of traditional
image denoising methods: Wiener filter, wavelet hard
threshold, and wavelet soft threshold. Secondly, propose a
comprehensive denoising algorithm based on the mor-
phological component analysis. It can be briefly described as
follows. Separate a noise-added image into three parts: two
components that can be sparsely represented (cartoon and
texture parts) and one residual part that cannot be sparsely
represented (the residual part). /en, use the Wiener filter,
wavelet hard threshold, and wavelet soft threshold to denoise
the cartoon, texture, and residual parts, respectively. Finally,
reconstruct the denoised image by adding the three denoised
parts. /irdly, analyze the relative best performance of the
proposed method objectively and subjectively, explain our
original intention, and verify the experimental results.
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