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Drugs are an important way to treat various diseases. However, they inevitably produce side effects, bringing great risks to human
bodies and pharmaceutical companies. How to predict the side effects of drugs has become one of the essential problems in drug
research. Designing efficient computational methods is an alternative way. Some studies paired the drug and side effect as a
sample, thereby modeling the problem as a binary classification problem. However, the selection of negative samples is a key
problem in this case. In this study, a novel negative sample selection strategy was designed for accessing high-quality negative
samples. Such strategy applied the random walk with restart (RWR) algorithm on a chemical-chemical interaction network to
select pairs of drugs and side effects, such that drugs were less likely to have corresponding side effects, as negative samples.
Through several tests with a fixed feature extraction scheme and different machine-learning algorithms, models with selected
negative samples produced high performance. The best model even yielded nearly perfect performance. These models had much
higher performance than those without such strategy or with another selection strategy. Furthermore, it is not necessary to
consider the balance of positive and negative samples under such a strategy.

1. Introduction

Drugs are always special products for the treatment of vari-
ous diseases. However, a drug is also a double-edged sword;
it can bring some unexpected negative effects, usually called
side effects, when it produces therapeutic effects. Side effects
are almost inevitable for all drugs. Determining the side
effects of drugs as early as possible can decrease the risks both
for patients and pharmaceutical companies. It is reported
that side effects cause 100,000 deaths per year in the United
States [1]. On the other hand, an unacceptable side effect is
the major reason for the failure of drug development. Even
some launched drugs (e.g., Rofecoxib) had to be withdrawn
after their unacceptable side effects were discovered. Thus,
it is urgent to design effective methods to determine the side
effects of drugs. However, it takes a lot of time and is of high
costs to ascertain the side effects of a given drug through clin-
ical trials. With the development of computer science, lots of

advanced computational methods have been proposed, which
give abundant resources to build effective computational
models in this regard.

In recent years, many computational methods have
been developed for predicting side effects of drugs. Among
these methods, several of them built an individual classifier
for each side effect [1–5]. They always took the drugs having
a given side effect as positive samples and other drugs as neg-
ative samples. Clearly, to determine all side effects of a given
drug, a large number of classifiers should be performed.
Considering the fact that plenty of drugs have multiple
side effects, some methods deemed the problem of predict-
ing drug side effects as a multilabel classification problem
[6–11]. It is a good idea to build a uniform frame to predict
side effects of given drugs. However, these models are always
complex and have high computational complexity. Different
from the above methods, other methods built regression
models for the prediction of drug side effects [12, 13].
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Recently, some studies proposed a uniform binary classifica-
tion model for predicting drug side effects [14–17]. They
deemed the pairs of drugs and side effects as samples. A pair
containing a drug and a side effect such that the drug has this
side effect was termed as a positive sample and other pairs as
negative samples. Because there were lots of negative sam-
ples, if all negative samples are selected, it is quite difficult
to set up an effective prediction model. In some studies, they
randomly selected some of them to build the model. It is clear
that the utility of these constructed models relied on the
selection of negative samples. Random selection of negative
samples is not a rigorous way because some potential positive
samples that have not been validated may be selected. Fur-
thermore, selecting how many negative samples is also an
important problem. It is necessary to design a refined strategy
for picking up negative samples that are true negative sam-
ples with extreme high probabilities.

In this study, we did some work for selecting negative
samples. A refined negative sample selection strategy was
proposed to select high-quality negative samples. To this
end, a drug network was constructed according to the
chemical-chemical interaction (CCI) information retrieved
from STITCH [18, 19]. Then, the random walk with restart
(RWR) algorithm [20] was applied on the network to access
high-quality negative samples. Based on obtained negative
samples and positive samples retrieved from SIDER [21], clas-
sification models incorporating certain classification algo-
rithms can be built, in which each sample was encoded into
five features used in Zhao et al.’s study [14]. Three classifica-
tion algorithms, random forest (RF) [22], support vector
machine (SVM) [23], and artificial neural network (ANN),
were adopted in this study. Several tests were performed to
evaluate classificationmodels with different classification algo-
rithms and different quality negative samples. The best model
gave the almost perfect classification. Furthermore, the pro-
portion of positive and negative samples was not a problem
when our negative sample selection strategy was used.

2. Materials and Methods

2.1. Materials. Drugs and their side effects used in this study
were the same as those in our previous study [14]. In fact, this
information was obtained from the well-known public data-
base, SIDER [21]. The raw information contained a total of
888 drugs and 1385 side effects. With the same data cleaning
procedures, we excluded the side effects with less than six
drugs and drugs whose properties mentioned in Drug Proper-
ties and Associations were not available. Finally, 841 drugs and
824 side effects were accessed. In this study, the pairs of drugs
and side effects were termed as samples. The above-mentioned
drugs and side effects can comprise 57,058 pairs of drugs and
side effects, which were deemed as positive samples. For con-
venience, these samples constituted the dataset PDS.

2.2. Negative Sample Selection Strategy. In Materials, the
dataset PDS containing the positive pairs of drugs and side
effects was constructed according to the information in
SIDER. To construct the classification model, negative sam-
ples were necessary. In our previous study [14], negative

samples were produced by randomly pairing drugs and side
effects. Here, a refined strategy was proposed, which can gen-
erate high-quality negative samples.

2.2.1. Drug Network. It has been reported in several studies
that interacting chemicals are more likely to share similar
properties [24–29]. It is feasible to adopt such information
for investigating drug side effects because side effect is one
of the important properties of drugs. In this study, we used
the information of CCI to construct a drug network.

The CCI information was retrieved from STITCH
(http://stitch.embl.de/, version 4.0) [18, 19], an online public
database collecting known and predicted interactions between
chemicals and proteins. These interactions were obtained by
the evidence derived from experiments, databases, and the
literature. Thus, they can widely measure the associations
between chemicals and proteins. Each CCI in STITCH is
assigned five scores, titled by “similarity,” “experimental,”
“database,” “textmining,” and “combined_score,” with a range
between 1 and 999. In detail, the first four scores measure the
associations of chemicals according to their structures, activi-
ties, reactions and cooccurrence in the literature, while the last
one integrates all above scores. Clearly, the last score can
widely and accurately evaluate the linkages between chemicals.
Thus, we used such score to construct the drug network. For
formulation, let us denote the “combined_score” of chemicals
c1 and c2 as Qðc1, c2Þ.

The constructed drug network took 841 drugs as nodes,
and two drugs were adjacent if and only if they can comprise
a CCI with a “combined_score” larger than zero. Further-
more, to indicate the different strength of edges, each edge
with d1 and d2 as endpoints was assigned a weight that was
defined as Qðd1, d2Þ.
2.2.2. Random Walk with Restart Algorithm. The RWR algo-
rithm is a powerful and widely used network ranking algo-
rithm [20, 27, 30–33]. In this algorithm, the walker
randomly moves from a seed node set to other nodes in the
network. When the algorithm stops, each node in the net-
work receives a probability, which can be deemed as an
important indicator representing the essential associations
to seed nodes. Given a seed node set SN, the RWR algorithm
first constructs a probability vector, denoted as p0, in which
the probability for each node in SN is defined as 1/jSNj, while
probabilities for other nodes are set to zero. The RWR algo-
rithm repeatedly updates this probability vector until it
becomes stable. Let pt represent such probability vector after
the t-th iteration has been executed. Then, the probability
vector pt+1 is updated by the following equation:

pt+1 = 1 − λð ÞATpt + λp0, ð1Þ

where λ was set to 0.8, as used in other studies [27, 32–34], in
this study and A represents the columnwise normalized adja-
cency matrix of the network. When kpt+1 − ptkL1 < θ, the

update procedure stops, and pt+1 is picked up as the output
of the RWR algorithm. In this study, θ was set to 10‐6.

The refined negative sample selection strategy is based on
the above-mentioned drug network and RWR algorithm. For
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each drug side effect, we picked up the drugs owning such
side effect as seed nodes of the RWR algorithm. Then, the
RWR algorithm was applied on the drug network. When
the RWR algorithm stopped, each node in the network was
assigned a probability. It is clear that a node (drug) with a
high probability had a strong association with seed nodes,
thereby inferring that such node had a high probability of
owning the side effect. On the contrary, nodes (drugs) with
low probabilities were less likely to own the side effect. Given
a threshold ε of the probability, drugs receiving the probabil-
ities less than ε can be extracted, and they were paired with
the side effect as the candidate negative samples. After con-
sidering all side effects, a negative sample set, denoted by
NDS, was built by collecting all candidate negative samples
for each side effect. This set was combined with PDS to con-
stitute the training dataset.

2.3. Drug Properties and Associations. To encode each pair
of drugs and side effects, we employed five drug proper-
ties, which were also used in our previous study [14].
Based on each property, a score evaluating the associations
between two drugs can be obtained. Here, a brief descrip-
tion is given. The detailed description can be found in our
previous study [14].

2.3.1. Drug Association in Fingerprint. A drug can be rep-
resented by a SMILES (simplifying the molecular linear
input specification) string [35], from which its fingerprints
(ECFP_4) were extracted via RDKit [36]. Then, the Tani-
moto coefficient is adopted to quantify the association
between two drugs based on their fingerprints. For formula-
tion, the thus-obtained association between drugs d1 and d2
is denoted by Wf ðd1, d2Þ.

2.3.2. Drug Association in Structure. Apart from the SMILES
strings to represent drugs, drugs can also be represented by a
graph [37]. Then, the association between two drugs can be
assessed according to the sizes of two graphs and their max-
imum common subgraph. The online tool “SIMCOMP” in
KEGG adopts such scheme to evaluate the associations of
drugs [38]. The score between d1 and d2 obtained by “SIM-
COMP” is denoted by Wsðd1, d2Þ.

2.3.3. Drug Association in ATC Code. In the Anatomical
Therapeutic Chemical (ATC) classification system, each drug
is assigned one or more five-level ATC codes. According to
the ATC codes of two drugs, their associations can be quan-
tified. Detailed descriptions can be found in [14].Wcðd1, d2Þ
is used to represent the associations of drugs in terms of their
ATC codes.

2.3.4. Drug Literature Association. The drug association can
further be assessed by text-mining methods. Here, we
adopted such association reported in STITCH [18, 19]. For
drugs d1 and d2, their association is denoted by Wlðd1, d2Þ.

2.3.5. Drug Association in Target Protein. A drug has one or
more target proteins. This information can be represented by
a 0-1 vector. Then, the association of two drugs can be quan-

tified by the direction cosine of corresponding vectors. Let us
denote such association between d1 and d2 by W

tðd1, d2Þ.
2.4. Feature Construction. Based on the five types of drug
associations mentioned in Drug Properties and Associations,
we used the “similarity” concept to extract features for each
sample. For each type of drug association, one feature was
extracted. Here, we gave a procedure for extracting one fea-
ture from the drug association in the fingerprint. Others
can be obtained in a similar way.

For a sample containing a drug d and side effect s, let S be
a drug set consisting of drugs owning side effect s. The feature
derived from the drug association in the fingerprint for such
sample was defined as

Qf d, sð Þ =max Wf d, d′
� �

∣ d′ ∈ S − df g
n o

, ð2Þ

where Wf ðd, d′Þ indicated the strengthen of the association
between d and d′ according to their fingerprints (see Drug
Properties and Associations for detail). Obviously, a high
Qf ðd, sÞmeant the drug d was highly related to drugs owning
side effect s. Thus, it was more likely to have side effect s.

Finally, each sample can be represented by a 5-dimension
vector.

2.5. Classification Algorithm. Selecting a proper classification
algorithm is very important for constructing an efficient
classification model. This study adopted three classic algo-
rithms: RF [22], SVM [23], and ANN. To quickly implement
these algorithms, three tools “RandomForest,” “SMO,” and
“MultilayerPerceptron” in Weka [39] were employed. For
convenience, these tools were executed with their default
parameters. Although the performance of models can be
improved if more proper parameters were tried for each of
the above-mentioned algorithms, it is not the keynote of this
study. In our study, we tried to prove that the quality of neg-
ative samples selected by the proposed negative sample
selection strategy was high no matter which algorithm was
chosen as the prediction engine.

2.6. Performance Measurement. This study modeled a binary
classification model for the prediction of drug side effects.
For a binary classification problem, several measurements
can be calculated to evaluate the performance of the model.
In this study, we used the following measurements: Recall
(also known as Sensitivity (SN) and true positive rate (TPR)),
false positive rate (FPR), Specificity (SP), prediction accuracy
(ACC), Matthews correlation coefficient (MCC) [40], Precisio
n, and F1‐measure [41]. Their formulations are as follows:

Recall = SN = TPR = TP
TP + FN

,

FPR =
FP

FP + TN
,

SP =
TN

TN + FP
,
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ACC =
TP + TN

TP + FN + FP + TN
,

MCC =
TP × TN − FP × FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TN + FNð Þ × TN + FPð Þ × TP + FNð Þ × TP + FPð Þp ,

Precision =
TP

TP + FP
,

F1‐measure =
2 × Precision × Recall
Precision + Recall

,

ð3Þ

where TP and TN represent true positive and true negative,
respectively, while FP and FN indicate false positive and false
negative, respectively.

Besides, to fully evaluate the performance of different
classification models, we further employed a receiver operat-
ing characteristic (ROC) curve and a precision-recall (PR)
curve. By setting several thresholds for predicting positive
samples, a series of TPRs, FPRs, and Precisions can be
obtained. The ROC curve takes the TPR as the y-axis and
FPR as the x-axis. Likewise, the PR curve sets the Precision
as the y-axis and Recall as the x-axis. The areas under these
two curves, called AUROC and AUPR, respectively, can be
further calculated to assess the performance of the model.
Clearly, a high AUROC or AUPR indicates high performance.

3. Results and Discussion

In this study, a binary classification model incorporating a
refined negative sample selection strategy was proposed to
predict drug side effects. The whole procedures are illustrated
in Figure 1. This section gave detailed testing results of differ-
ent models and made further analysis.

3.1. Negative Samples with Different Thresholds of
Probability. The negative sample selection strategy applied
the RWR algorithm to the drug network and extracted nega-
tive samples according to the threshold ε of the probability.
We tried nine values of ε to construct nine different NDSs.
The numbers of negative samples under different values of
ε are listed in Table 1. It can be observed that the numbers
of negative samples followed an increasing trend with the
increasing of ε.

According to the principle of the RWR algorithm, it can
be inferred that negative samples obtained by small ε were
of high quality. To confirm this, based on nine thresholds
listed in Table 1, we divided 333,797 negative samples
selected by setting the threshold ε = ε9 into nine parts
(½0, ε1�, ðε1, ε2Þ, ½ε2, ε3Þ, ½ε3, ε4Þ, ½ε4, ε5Þ, ½ε5, ε6Þ, ½ε6, ε7Þ, ½ε7,
ε8Þ, and ½ε8, ε9Þ). Then, for each negative sample with the
drug d and side effect s, the “combined_score” between d
and drugs owing side effect s was extracted. For each part,
we counted the proportions of such scores in ten intervals
from 0 and 999, which are illustrated in Figure 2, where
Figure 2(a) considers zero scores, whereas Figure 2(b)
excludes these scores. It can be observed from Figure 2 that
all scores were zeros for the first four parts, indicating that

the drug in each of these samples had no direct links to drugs
owning the side effect in the same sample. It is suggested that
this drug shared such side effect with a quite low probability.
For the following five parts, they contained more and more
high scores, implying that in some samples, drugs had direct
links to those sharing the side effects and these links became
stronger. Thus, it can be deduced that drugs had the side
effects with higher probabilities than the samples in the first
four parts. In Figure 2, we also counted the scores of positive
samples. Score distributions of some of the first parts were
quite different from those of the positive samples, and with
increase of the probability, the distribution became more
and more similar to that of the positive samples. This sug-
gested that with the increase of the part index, samples
became more and more similar to positive samples. With
the above analysis, it can be partly concluded that the quality
of samples decreased with the increase of the part index.
Thus, with the increase of the threshold, quality of selected
negative samples became worse and worse because more
and more negative samples with low quality were poured
in. Especially when ε = 0, 128,220 negative samples were of
the highest quality.

3.2. Performance of the Models with the Highest Quality
Negative Samples. As mentioned in Negative Samples with
Different Thresholds of Probability, 128,220 negative sam-
ples were obtained when ε = 0. These samples were deemed
to be of the highest quality. Based on them and three classifi-
cation algorithms: RF, SVM and ANN, three models, named
as RF, SVM, and ANN models, respectively, were built.
Then, tenfold crossvalidation [42–45] was adopted to eval-
uate their performance. Six measurements, SN, SP, ACC,
MCC, Precision, and F1‐measure, mentioned in Perfor-
mance Measurement, were calculated and are listed in
Table 2. It can be observed that the RF model yielded the best
performance. The MCC, ACC, and F1‐measure obtained by
the RF model were 0.943, 0.975, and 0.959, respectively. As
for the SVM and ANN models, they produced perfect SPs
and Precisions; however, their SNs were much lower, induc-
ing much lower ACCs, MCCs, and F1‐measures. In addi-
tion, we plotted the ROC curves and PR curves of these
models, as shown in Figure 3. Clearly, the ROC curve of
the RF model was always above those of the SVM and
ANN models. It was also true for the PR curve. The AUROC
and AUPR of the RF model was 0.986 and 0.983, respec-
tively, indicating the high utility of the RF model. The AUR-
OCs and AUPRs of the other two models were at least 10%
lower than those of the RF model. Therefore, it is suggested
to select RF as the classification algorithm for building the
classification model.

3.3. Performance of the Models with Different Quality
Negative Samples. Given different thresholds of the probabil-
ity, we can obtain different negative samples and construct
different models. As listed in Table 1, nine thresholds were
tried in this study. For RF, we constructed nine RF models.
These models were evaluated by tenfold crossvalidation.
The results are listed in Table 3 from which we can see that
the MCCs followed a general decreasing trend with the
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increase of the threshold. ACC and F1‐measure also followed
such trend. It is reasonable because when the threshold
increased, more and more negative samples were added and
their quality became poorer. It can also be concluded from
Table 3 that when the thresholds were small, the perfor-
mance of the RF model followed a sharp decreasing trend

with the increase of the threshold, while this trend became
alleviative when the thresholds were large. With the increase
of the threshold, the added negative samples were poor
enough which cannot influence the performance of the
model a lot. Besides, we also plotted the ROC curves and
PR curves yielded by these RF models, as shown in
Figure 4. The AUROCs and AUPRs followed the similar
trend of ACCs, MCCs, and F1‐measures. Thus, it is better
to use a small threshold for determining negative samples.

To prove that the above results were not special for RF,
we also did the same tests for SVM and ANN. The predicted
results are provided in Table S1 and S2. The ROC curves and
PR curves are available in Figure S1 and S2. All results were
almost identical to those of the RF models, indicating that
with the increase of the threshold, the quality of negative
samples became poorer. It is suggested to extract negative
samples with a small threshold.

3.4. Analysis of the Models on Balanced and Imbalanced
Datasets. For the problem investigated in this study, it is a
dilemma to determine the number of negative samples.
Based on our negative sample selection strategy, it is not a
problem. The negative samples can be determined by a
proper threshold, which suggests choosing a small threshold.

Table 1: Numbers of negative samples under different thresholds of
the probability.

Tag of
threshold

Threshold
Number of

negative samples
Times of

positive samples

ε1 0 128,220 2.25

ε2 5 × 10−7 131,301 2.30

ε3 5 × 10−6 152,596 2.67

ε4 1 × 10−5 173,822 3.05

ε5 2 × 10−5 216,256 3.79

ε6 3 × 10−5 259,566 4.55

ε7 4 × 10−5 294,260 5.16

ε8 5 × 10−5 317,971 5.57

ε9 6 × 10−5 333,797 5.85

Chemical-
chemical

interaction
(CCI)

Drugs for each
side effect

Random walk
with

restart (RWR)

Data sources Drug features

Training
dataset

Classification
algorithm

10-fold
crossvalidation

Performance
measure

STITCH

KEGG

DrugBank

SIDER

Drug fingerprint

Drug ATC code

Drug literature

Feature
construction

Seed nodesNetwork

Positive
samples

Negative
samples

�reshold filter

𝜀1 𝜀2 𝜀3 𝜀4 𝜀5 𝜀6 𝜀7 𝜀8 𝜀9

Drug structure

Drug target
protein

RDKit

Figure 1: Entire procedures of the construction of classification models with a refined negative sample selection strategy.
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It can be seen that the above-constructed models all used
much more negative samples than positive samples (Table 1).
For example, when ε = 0, the negative samples were more
than twice the positive samples. With the increase of ε, the
negative samples became more and more. Thus, the above-
constructed models were all based on imbalanced datasets.
This section proved that when the threshold was given, the
proportion of positive and negative samples cannot be con-
sidered. To this end, we did the following tests.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

[0, 𝜀1] (𝜀1, 𝜀2) [𝜀2, 𝜀3) [𝜀3, 𝜀4) [𝜀4, 𝜀5) [𝜀5, ε6) [𝜀6, ε7) [𝜀7, ε8) [𝜀8, ε9) Positive
sample

[0, 99]
[100, 199]
[200, 299]
[300, 399]
[400, 499]

[500, 599]
[600, 699]
[700, 799]
[800, 899]
[900, 999]

(a)

[1, 99]
[100, 199]
[200, 299]
[300, 399]
[400, 499]

[500, 599]
[600, 699]
[700, 799]
[800, 899]
[900, 999]

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

[𝜀4, 𝜀5) [𝜀5, 𝜀6) [𝜀6, 𝜀7) [𝜀7, ε8) [𝜀8, 𝜀9) Positive sample

(b)

Figure 2: Distribution of “combined_score” of drugs and drugs sharing the side effects for negative samples in nine parts and positive
samples. (a) Zero scores were included; (b) zero scores were not included.

Table 2: The performance of three models with the highest quality
negative samples.

Model SN SP ACC MCC Precision F1‐measure
RF model 0.923 0.999 0.975 0.943 0.997 0.959

SVM model 0.656 1.000 0.894 0.754 1.000 0.792

ANN model 0.670 1.000 0.898 0.764 1.000 0.802
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For a given threshold ε, we can obtain several negative
samples. Among them, we randomly selected negative sam-
ples, which were as many as positive samples. These selected
negative samples were combined with positive samples to
construct a balanced dataset. Because the selection of nega-
tive samples may influence the results, we constructed four
additional datasets in the same way. Thus, five balanced data-
sets, denoted by BDε

1 ,…, BDε
5, were constructed. Further-

more, we constructed five imbalanced datasets in a similar
way. These datasets contained negative samples twice as
many as positive samples. These imbalanced datasets were
denoted by IBDε

1,…, IBDε
5. A RF model was built based on

each of the above-mentioned datasets and evaluated by ten-
fold crossvalidation. The performance of these RF models
on balanced datasets is shown in Figure 5. It can be observed
that with the increase of the threshold, the performance of RF
models decreased, which conformed to the results in Perfor-
mance of the Models with Different Quality Negative Sam-

ples. Furthermore, the performance of the RF models on
imbalanced datasets is illustrated in Figure 6, giving the same
conclusion. In addition, SVM andANNmodels were also con-
structed on the above-mentioned balanced and imbalanced
datasets. Their performance, evaluated by tenfold crossvalida-
tion, is shown in Figure S3-S6. The same conclusion can be
arrived at; that is, the performance of the models decreased
when the threshold increased.

Given a threshold ε, three types of datasets were con-
structed. The first one contained all negative samples; the sec-
ond one, imbalanced datasets, containing negative samples
twice as many as positive samples; and the last one, balanced
datasets, containing negative samples as many as positive
samples. As shown in Table 1, the first type of dataset had
the highest imbalanced degree, followed by the second and
third ones. Here, we investigated the performance of RF
models on these three types of datasets under different
thresholds of the probability. The MCCs are illustrated in
Figure 7. It is interesting that given a threshold, the model
on the first type of datasets always provided the best perfor-
mance although it contained much more negative samples
than the other two types of datasets. The reason may be that
negative samples under a certain threshold were quite similar
for the RFmodel; thus, employing more negative samples can
improve the performance. For the two other types of datasets,
when the threshold was smaller than or equal to ε6, RF models
on imbalanced datasets were superior to those on balanced
datasets, while it became contrary when the threshold was
larger than ε6. It is indicated that there existed a critical value
to control the performance of the RF model on balanced and
imbalanced datasets. Furthermore, we investigated the per-
formance of the SVM and ANN models on three types of
datasets. Obtained MCCs are illustrated in Figure S7 and
S8. For the SVM and ANN models, their performance was
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Figure 3: The ROC curves and PR curves of three models with the highest quality negative samples. (a) The ROC curves; (b) the PR curves.

Table 3: The performance of the RF models with different quality
negative samples.

Threshold SN SP ACC MCC Precision F1‐measure
ε1 0.923 0.999 0.975 0.943 0.997 0.959

ε2 0.910 0.978 0.958 0.899 0.948 0.929

ε3 0.816 0.960 0.921 0.796 0.883 0.849

ε4 0.751 0.964 0.912 0.754 0.873 0.808

ε5 0.668 0.975 0.911 0.715 0.877 0.758

ε6 0.622 0.982 0.917 0.698 0.884 0.730

ε7 0.605 0.986 0.924 0.695 0.890 0.720

ε8 0.594 0.987 0.927 0.691 0.891 0.713

ε9 0.588 0.989 0.930 0.694 0.901 0.712
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Figure 4: The ROC curves and PR curves of the RF models with different quality negative samples. (a) The ROC curves; (b) the PR curves.
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Figure 5: Continued.
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not always best on the first type of datasets when the
threshold was fixed. However, when the threshold was
small (smaller than ε3), the first type of dataset still yielded
the best performance. For the second (imbalanced) and third
(balanced) types of datasets, similar phenomena occurred.
The only difference was the different critical values for SVM
and ANN.

All in all, when we used threshold ε, which was suggested
to be small in Performance of the Models with Different
Quality Negative Samples, to determine the candidate nega-
tive samples, it is better to pick up all these candidates to con-
struct the model, and it was not necessary to consider the
proportion of positive and negative samples in this case.

3.5. Comparison of the Model without Negative Sample
Selection. In this study, we proposed a refined negative sam-
ple selection strategy to extract high-quality negative sam-
ples. When using the highest quality negative samples, the
RF model produced the best performance, listed in Table 2.
If such strategy was not adopted, we randomly selected neg-
ative samples that were as many as positive samples to con-
struct the RF model, which was identical to that in our
previous study [14]. The predicted results yielded by the ten-
fold crossvalidation are listed in Table 4. It is easy to see that
our model was much superior to the previous model. Each
measurement was improved more than 10%. In detail, the
ACC, MCC, and F1‐measure improved about 20%, 40%,
and 18%, respectively. Thus, the proposed negative sample

selection strategy can sharply improve the utility of the
model. Furthermore, we also did the same comparisons for
the SVM and ANN models. Predicted results are also listed
in Table 4. The same conclusion can be obtained.

3.6. Comparison of the Model with Another Negative Sample
Selection Strategy. In [46], another negative sample selection
strategy, namely, finding reliable negative samples (FIRE),
was proposed to improve the model for predicting protein-
RNA interactions. This strategy was employed in this study
to compare with the proposed strategy. We termed drugs
as proteins and side effects as RNAs in FIRE. Furthermore,
the “combined_score” between drugs was deemed as the
protein-protein similarity score in FIRE. According to FIRE,
each pair of drug and side effect that was not a positive sam-
ple was assigned a score. It was claimed in [46] that samples
with low scores were of high quality. Thus, we picked up the
pairs of drugs and side effects with zero scores as negative
samples for making comparison, obtaining 355,634 negative
samples. The negative samples with the highest quality
(using threshold ε1) filtered by our strategy were selected
to make comparison. Several RF models were constructed
on these two different negative sample sets and the same
positive samples.

First, we compared the RF models with balanced positive
and negative samples; that is, 57,058 negative samples were
randomly selected from two negative sample sets, which were
combined with the positive samples to construct RF models.
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Figure 5: The performance of the RF models on balanced datasets, in which negative samples, as many as positive samples, are randomly
selected under different thresholds. (a) Six measurements; (b) the ROC curves; (c) the PR curves.
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Figure 6: Continued.
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Tenfold crossvalidation results are listed in Table 5. Clearly,
the RF model obtained by the proposed strategy (called the
proposed model in the following text for convenience) was

superior to that obtained by FIRE (called the FIRE model in
the following text for convenience). The MCC was 10.7%
higher. Furthermore, we also did the ROC and PR curve
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Figure 6: The performance of the RF models on imbalanced datasets, in which negative samples, twice as many as positive samples, are
randomly selected under different thresholds. (a) Six measurements; (b) the ROC curves; (c) the PR curves.
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analyses, which are shown in Figure 8. Clearly, the ROC and
PR curves of the proposed model were always above the cor-
responding curves of the FIRE model. The AUROC and
AUPR were 2.2% and 1.8% higher, respectively. Thus, the
proposed model was better than the FIRE model. Second,

we compared the RF models with imbalanced positive and
negative samples. In this case, negative samples were twice
as many as positive samples. According to the results listed
in Table 5 and Figure 8, the proposed model was also supe-
rior to the FIREmodel. Third, the RFmodels with all samples

Table 4: Comparison of the models with or without negative sample selection strategy.

Model Negative sample selection strategy SN SP ACC MCC Precision F1‐measure

RF model
√ with ε1ð Þ 0.923 0.999 0.975 0.943 0.997 0.959

× 0.791 0.759 0.775 0.550 0.766 0.778

SVM model
√ with ε1ð Þ 0.656 1.000 0.894 0.754 1.000 0.792

× 0.585 0.715 0.650 0.302 0.672 0.625

ANN model
√ with ε1ð Þ 0.670 1.000 0.898 0.764 1.000 0.802

× 0.631 0.695 0.663 0.332 0.682 0.650

Table 5: Comparison of RF models with two different negative sample selection strategies.

Negative sample selection strategy Number of selected negative samples SN SP ACC MCC Precision F1‐measure

Proposed strategy

57,058 0.904 0.994 0.949 0.901 0.993 0.946

114,116 0.919 0.999 0.972 0.938 0.997 0.956

128,220 0.923 0.999 0.975 0.943 0.997 0.959

57,058 0.887 0.907 0.897 0.794 0.905 0.896

FIRE

114,116 0.844 0.954 0.917 0.811 0.901 0.872

128,220 0.832 0.961 0.921 0.812 0.904 0.867

355,634 0.745 0.992 0.957 0.812 0.934 0.829
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Figure 8: ROC and PR curves of models with different negative samples obtained by two different negative sample selection strategies. (a) The
ROC curves; (b) the PR curves. The proposed model is constructed with negative samples obtained by the proposed strategy, whereas the
FIRE model is built with negative samples obtained by FIRE. NS: negative sample.
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in two negative sample sets were constructed to make com-
parison. The results are also listed in Table 5 and Figure 8.
The MCC of the FIRE model was 0.812, which was 13.1%
lower than that of the proposed model. As for AUROC and
AUPR, they were 3% and 8.1% lower than those of the pro-
posed model, respectively. It was also indicated that the pro-
posed model was better than the FIRE model. Finally,
considering the fact that negative samples selected by FIRE
were much more than those filtered by the proposed strategy,
we randomly selected 128,220 samples from the negative
samples obtained by FIRE and used them to construct the
RF model. The tenfold crossvalidation results are also listed
in Table 5 and Figure 8. Clearly, such model was inferior to
the proposed model with the same number of negative sam-
ples. According to the above arguments, the proposed
models were superior to the FIRE models, proving that the
proposed negative sample selection strategy can screen out
negative samples with higher quality than FIRE.

From the above arguments, negative samples selected by
the proposed strategy were of higher quality than those fil-
tered by FIRE. Here, we provided an investigation to explain
the reason. Figure 9(a) shows the distribution of 355,634
negative samples selected by FIRE on nine parts of negative
samples mentioned in Negative Samples with Different
Thresholds of Probability. Each of the nine parts contained
several such negative samples. For example, the first part
contained 36.05% such negative samples and the second part
contained 0.87% such negative samples. This result sug-
gested that our strategy can classify negative samples gener-
ated by FIRE into different parts, which contained negative
samples with different quality. Furthermore, as shown in
Figure 9(b), all negative samples generated by the proposed
strategy with threshold ε4 were selected by FIRE, and this
proportion decreased with the increase of the threshold.
Most negative samples in each part (more than 87%) were

also selected by FIRE. Thus, our strategy improved the eval-
uation scheme on negative samples and gave a more refined
partition on negative samples. FIRE evaluated the quality of
negative samples by only considering the direct links
between drugs. If the distances between one drug and drugs
sharing one side effect were all larger than one, such pair of
drug and side effect was assigned a zero score and deemed as
a negative sample with the highest quality by FIRE. FIRE did
not consider the factor of distance. In fact, such pairs can be
further classified. Pairs with long distances were clearly more
likely to be actual negative samples. For the proposed strategy,
it adopted the RWR algorithm to evaluate the quality of nega-
tive samples. Generally, pairs with long distances would be
assigned low probabilities. Therefore, we can further classify
negative samples selected by FIRE into many parts by setting
different thresholds on the probability. However, FIRE cannot
divide them because their scores were all zeros. All these
induced the phenomenon shown in Figure 9, and it was the
main reason why our strategy was better than FIRE.

4. Conclusions

This study proposed a novel negative sample selection
strategy for the prediction of drug side effects. Under a
small threshold, the negative samples are of high quality,
indicating that it is not necessary to consider the balance of
positive and negative samples. It is hopeful this strategy can
give useful help for determining novel side effects of given
drugs and new insights for dealing with similar biological
and medicine problems.

Data Availability

The original data used to support the findings of this study are
available at SIDER and in supplementary information files.
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Figure 9: Breakdown of the negative samples selected by FIRE. (a) Distribution of such negative samples on nine parts of negative samples
obtained by the proposed strategy. (b) Proportions of negative samples selected by FIRE in each part of the negative samples obtained by the
proposed strategy.
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Table S1: the performance of the SVM models with different
quality negative samples. Table S2: the performance of the
ANN models with different quality negative samples. Figure
S1: the ROC curves and PR curves of the SVM models with
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the performance of the ANN models on balanced datasets,
in which negative samples, as many as positive samples, are
randomly selected under different thresholds. (A) Six mea-
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S6: the performance of the ANNmodels on imbalanced data-
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selected. Figure S8: the MCCs yielded by the ANN models
on three types of datasets. “All” means that all negative sam-
ples under the given threshold are selected; “Imbalanced”
indicates that negative samples, twice as many as positive
samples, under the given threshold are randomly selected;
and “Balanced” indicates that negative samples, as many as
positive samples, under the given threshold are randomly
selected. (Supplementary Materials)
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