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Drug-drug interactions (DDIs) are one of the indispensable factors leading to adverse event reactions. Considering the unique
structure of AERS (Food and Drug Administration Adverse Event Reporting System (FDA AERS)) reports, we changed the
scope of the window value in the original skip-gram algorithm, then propose a language concept representation model and
extract features of drug name and reaction information from large-scale AERS reports. The validation of our scheme was tested
and verified by comparing with vectors originated from the cooccurrence matrix in tenfold cross-validation. In the verification
of description enrichment of the DrugBank DDI database, accuracy was calculated for measurement. The average area under the
receiver operating characteristic curve of logistic regression classifiers based on the proposed language model is 6% higher than that
of the cooccurrence matrix. At the same time, the average accuracy in five severe adverse event classes is 88%. These results indicate
that our language model can be useful for extracting drug and reaction features from large-scale AERS reports.

1. Introduction

Drug-drug interactions (DDIs) accounted for over 30% of all
adverse drug events [1]. More serious fact is that large quan-
tity of DDIs manifested after a long period of exposure. As a
result, AERS reports have been served as the cornerstone for
detecting unanticipated interactions. The development of
computational prediction and assessment of DDIs become
attractive to the US FDA and pharmaceutical companies
[2]. Harpaz et al. developed a taxonomy that characterized
the associations and predicted several potential multi-item
drug adverse effects [3]. They revealed that duplicate reports
caused spurious associations. Tatonetti et al. constructed a
drug-reaction frequency matrix and used Fisher’s exact test
for feature extraction from frequency matrices for DDI pre-
diction [4]. Logistic regression was used for classification.
Predicted DDIs were significantly enriched for known effects.
Cheng and Zhao integrated drug phenotypic, therapeutic,

chemical, and genomic properties to predict DDIs [5]. These
four types of drug-drug similarities were calculated as fea-
tures of each drug-drug pair for prediction. Five machine
learning algorithms were implemented, and they found that
integration of multidata sources can improve the perfor-
mance of DDI prediction. Cami et al. proposed a Predictive
Pharmacointeraction Network [6]. They exploited the net-
work structure of all known DDIs, combined with various
taxonomic and intrinsic properties of drugs to predict
unknown DDIs. While these methods performed well, their
limitations are obvious either. From the above, similarity-
based methods rely on various profiles including drug molec-
ular structure profiles, drug-drug interaction profiles, and
pharmacophoric profiles [7, 8]. First of all, barely any of the
previous work took a systematic data preprocessing method
before taking advantage of AERS reports; a standard lan-
guage description framework should be used to organize all
the reports. Second, in the face of the large amount of free
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text reports, to solve the problem that the integration of
profiles cost large amount of manually check and selection
biases, a language concept representation model is urgently
needed. Third, the existing approaches do not seem to
extract features from AERS reports efficiently and to test
the quality of the new-mined DDI concept by our MSG
model, which also are needed to be distinguished in the
DrugBank database.

The skip-gram algorithm was one of the language models
set in the open-source word2vec [9, 10]. This algorithm was
used to render distributional representation of words from
large-scale unmarked text. The skip-gram algorithm has been
widely acknowledged and successfully applied to many natu-
ral language processing tasks, such as text clustering, entity
completion in incomplete knowledge bases or ontologies,
and text retrieval [11–13]. At the same time, there are few
researchers focusing on applying this language model to min-
ing the pharmacovigilance information from large-scale
reports in free text format.

The main contribution of this work can be listed as
follows:

(1) We proposed a new language concept representation
model by changing the scope of the window value in
the original skip-gram algorithm

(2) Compared to the previous traditional language
model, the new model can extract features of drug
name and reaction information from large-scale
AERS reports more efficiently

(3) The new drug-drug interaction datasets can be mined
through the use of the proposed MSG language con-
cept representation model

2. Method

As shown in Figure 1, in the whole research scheme, we
proposed a modified skip-gram (MSG) algorithm for drug
name and reaction description feature extraction from
FDA AERS reports, and the description of DDIs in Drug-
Bank was enriched.

In Step 1, original free text AERS reports are transformed
into structured tables (Figure 1(a)). Our study refers to the
framework of OHDSI (Observational Health Data Sciences
and Informatics) and puts Banda et al.’s research into prac-
tice, completing the cleaning and standardization of AERS
reports [14, 15]; all the structured tables are stored in a Post-
greSQL database. In addition, we extracted DrugBank DDI
and toxicity data into text files as shown in Figure 1(b).

In Step 2, the MSG algorithm was applied to calculate
the embeddings of drug name and reaction descriptions
from AERS reports and DrugBank DDI. The vectors with
a dimension of 100 were represented as features of drug
name and reaction description. All the names of drugs
and reactions are converted from string to the numbers
as shown in Figure 1(c). For example, one drug name is
represented as a drug concept ID 1327356 with 100
dimension separated numbers.

In Step 3, a logistic regression classifier was used to vali-
date the above embedding values. To compare the quality
of embeddings generated from MSG, CM-TF-IDF, another
traditional language representation model, was also tested.
We chose to assess the performance of the classifier in com-
paring the area under the curve (AUROC) of AERS reports
and DrugBank DDI with a cross-validation approach.

Finally, the descriptions of DDIs in five severe adverse
event classes were enriched into the current adverse event
results.

2.1. Data Collection and Preprocess. We collected AERS
reports from the FDA’s website between 2004 and 2014. In
addition, SIDER was used as the gold standard for positive
reference samples [16]. DDI data and drug toxicity data were
extracted from the DrugBank database [17].

Although it is a free and publicly available resource, the
FDA AERS data still presents multiple hurdles in consolidat-
ing all relevant data. To avoid producing unreliable and irre-
producible results, widely accepted data preprocessing
methods were referred to and put into practice. Thanks to
the efforts of large communities such as the Observational
Health Data Sciences and Informatics (OHDSI) [14], we
can focus more on model building than on lots of time-
wasted efforts such as cleaning and standardizing the AERS
reports. For details of preprocessing FDA AERS reports, we
referred to Banda et al.’s research [15]. First, AERS reports
in Extensible Markup Language (XML) format were
extracted into seven individual tables; these tables were
loaded onto PostgreSQL. Second, a demo table was created
for missing value imputation and case deduplication. Missing
value imputation was performed on four demographic fields
(age, sex, country, and event date). As a case may exist in the
legacy AERS dataset or in the new FAERS dataset, different
unique row keys were managed in a case deduplication step.
Finally, regular expression was taken as the main method for
mapping drug and reaction concept into the OHDSI stan-
dard vocabulary concept identifier (consisting of RxNorm
CUIs and MedDRA standard codes).

After the preprocessing of AERS reports, in total,
4,493,179 reports are achieved, within which 713,441 reports
listed exactly two drugs. To ensure reasonable estimates and
statistical significance, at least ten AERS reports are required
to support one given drug concept [18]. We selected ten as
the threshold to filter out drug concepts in AERS reports.
As a result, 675 drug concepts are filtered out and existed in
DrugBank DDI dataset drug concepts either. These 675
drugs are included in Reference Drug Lists (RDL).

2.2. Modified Skip-Gram (MSG) Model. The original skip-
gram algorithm was modified for drug name and reaction
description feature extraction from FDA AERS reports and
DrugBank DDIs. Based on distributional hypothesis theory
[9], a word can be characterized into an embedding value
by contexts, which are the surrounding words around its
position in the sentence. These embeddings encode the
semantic meanings of the target word into a low-
dimensional vector. In this research, all the drugs with reac-
tion words are encoded into a low-dimensional vector. Our
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modified skip-gram model was trained by the hierarchical
softmax procedure presented in Mikolov et al.’s research
[10]. The objective of the skip-gram model is to maximize
the log probability:

〠
w,cð Þ∈D

〠
wj∈c

logP w ∣wj

� �
: ð1Þ

In Equation (1), c is the limited set of drugs and reactions
in one AERS report. When w denotes the drug, wj denotes
the reaction in the report and vice versa. In the equation

above, Pðw ∣wjÞ can be detailed as follows:

P w ∣wj

� �
=

exp e′ wð ÞTe wj

� �� �

∑w′∈Vexp e′ w′
� �T

e wj

� �� � : ð2Þ

In Equation (2), e′ðwÞ is the embedding of drug w (reac-
tion either), w′ is one of the words in the vocabulary V con-
sisting of drug name and reaction descriptions.

The key difference between the original skip-gram and
modified skip-gram is the way we define “context.” In the

Legacy AERS data

Current AERS data
DrugBank drug-drug interactions

Droperidol Bromocriptine The therapeutic efficacy of 
Droperidol can be decreased when used in combination with Bromocriptine.

Fluoxetine Halothane The metabolism of Halothane 
can be decreased when combined with Fluoxetine.

Celiprolol Glyburide Celiprolol may increase the 
hypoglycemic activities of Glyburide .

Dexketoprofen Dantrolene The risk or severity of adverse 
effects can be increased when Dexketoprofen is combined with Dantrolene.

Amitriptyline Tramadol Amitriptyline may increase the 
neuroexcitatory activities of Tramadol .

Morphine Hydroxyzine Hydroxyzine may increase the 
central nervous system depressant (CNS depressant ) activities of Morphine.

Diphenoxylate Fluphenazine The risk or severity of adverse 
effects can be increased when Fluphenazine is combined with Diphenoxylate.

Phenylbutazone Diflunisal The risk or severity of adverse 
effects can be increased when Phenylbutazone is combined with Diflunisal.
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0.365448555005 ⬝⬝⬝⬝⬝⬝

Figure 1: The scheme of DDI extraction based on the MSG algorithm.
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original skip-gram, the context is 2n words around the cur-
rent target word. The 2n words are composed of n words
forward—the current target word—and n words backward.
In default, n is set in five. According to the particularity
orders of words in drug-drug interaction reports, the context
of each drug name word is every reaction description word
appearing in the sentences of each AERS report in our mod-
ified skip-gram. When it comes to reaction description
words, the context words c are changed into every drug
name word in the corresponding sentences. As shown in
Figure 2, the contexts of Drug1 are Reaction1, Reaction2,
and Reaction3.

2.3. Cooccurrence Matrix Based on Term Frequency-Inverse
Document Frequency (CM-TF-IDF). Term frequency-
inverse document frequency (TF-IDF) is well known as a sta-
tistical method for evaluating the importance of one word in
the corpus [19]. The importance of the word is increased in
direct proportion to how many times it appears in the file
and at the same time is declined in inverse proportion to
how many times it appears in the whole corpus. In Equation
(3), ni,j is the time word ti appearing in the file dj and ∑knk,j
is the sum of frequencies of all words appearing in the file dj.
jDj denotes the total number of documents, and jfj : ti ∈ djgj
is the number of documents which contain the word ti in
the corpus.

tfidf i,j =
ni,j

∑knk,j
× log Dj j

j : tiϵdj

� 	

 

 : ð3Þ

As shown in Figure 3, we constructed a drug name/-
reaction description report cooccurrence matrix based on
TF-IDF for feature vectorization of drugs and reactions.
For example, if Drugi was recorded in Report2, the ele-
ment in the matrix is the tfidf of Drugi; otherwise, the ele-
ment is zero.

2.4. Logistic Regression. According to the MSG algorithm,
drug encoded its reaction information into a low-
dimensional vector after the MSG training. CM-TF-IDF also
generated drug and reaction vectors from the cooccurrence
matrix. These low-dimensional vectors are rendered as fea-
tures for identifying whether or not the drug pairs are associ-
ated with the adverse event class. As logistic regression has
been widely used in pharmacovigilance and achieved good
performance, it was applied in our research [4–6].

Referring to distinct severe adverse event classes
presented by Tatonetti et al. [4], five clinically significant
adverse event classes are taken into consideration for binary
classification and DDI enrichment: Renal Impairment
(REI), Hepatotoxic (HTT), Abnormal Blood Pressure (ABP),
Cardiotoxicity (CDT), and Neurotoxic (NET). The logistic
regression model requires positive and negative labels which
indicate whether or not the pair of drugs is associated with
the adverse event class. Because there is no well-recognized
gold standard for drug-drug interaction, we crosssearched
three datasets (DrugBank_Toxicity, DrugBank_DDI, and

SIDER) and compiled three strategies as follows to define
the positive reference samples, see Figure 4.

In the first strategy, if at least one of the drugs in one
pair existed in SIDER’s specific drug lists where drugs are
associated with the adverse event, we labeled this pair of
drugs as positive.

In the second strategy, if at least one of the drugs in one
pair manifests as an adverse event-associated toxicity in
DrugBank_Toxicity, we labeled this drug pair as positive.

In the third strategy, according to DrugBank_DDI, if the
pair is known to interact which results in the adverse event,
the pair is labeled as positive.

3. Evaluation and Experiment Results

To assess the performance of the scheme based on MSG, we
compared vectors generated from MSG with CM-TF-IDF.
The receiver operating characteristic (ROC) is used for the
evaluation of binary classifiers [20]. To obtain robust esti-
mates, we performed 10-fold cross-validation; the whole
dataset was divided into ten cross-validation splits. During
each cross-validation step, a set of nine cross-validation splits
was used for model training while the tenth sample set was
applied as the test set.

No matter how the embedding was generated, all embed-
ding models are constructed based on the distributional
hypothesis. That is to say, if two words have similar context,
their value of embeddings is close in the low-dimensional
space. Furthermore, the value of drug pair embeddings is the-
oretically close with its interactions in the low-dimensional
space. As a result, we extended this idea to the enrichment
of DDIs in DrugBank. Cosine between drug pair embed-
dings and reaction embeddings was calculated as the refer-
ence for ranking.

Although the drug and reaction embeddings were gen-
erated after the MSG training, there are no explicit drug
pair embeddings. As shown in Equation (3), we empirically
constructed drug pair embeddings by addition. For details
about variables in Equation (3), eDrug1 = ða1, a2,⋯, anÞ and
eDrug2 = ðb1, b2,⋯, bnÞ. ai and bi are the values of each n
dimension of drug embedding. Cosine between drug
pair embedding and reaction embedding was calculated

D Drug
R Reaction

Report N D1

D1

D2

D2

R1

R1

R2

R2

R3

R3

Figure 2: Dynamic scope of the window of the modified skip-gram
model.
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according to Equation (4). In Equation (4), eReaction =
ðr1, r2,⋯, rnÞ. ri is the value of each n dimension of reaction
embedding.

e Drug1,Drug2ð Þ = a1 + b1, a2 + b2,⋯, an + bnð Þ,
ð4Þ

cos e Drug1,Drug2ð Þ, eReaction
� �

= ∑n
1 ai + bið Þ × ri½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
1 ai + bið Þ2

q
×

ffiffiffiffiffiffiffiffiffiffiffi
∑n

1ri2
p :

ð5Þ
In summary, we sorted cosine of candidate reactions and

drug pairs. Finally, top 20 candidate reactions were used to
enrich descriptions of DDIs in DrugBank.

In total, 713,441 reports listed only two drugs in FDA
AERS reports and 561,180 DDIs in the DrugBank database.
We only included the record where drug pairs are listed in
RDL. It is worth noting that deduplication of DDIs in Drug-
Bank is also important. As shown in Figures 3(a) and 3(b),
there are two DDIs from DrugBank. These two DDIs actually
represent the same knowledge, so only one of them was kept
for our research. As a result, 218,866 AERS reports and
46,203 DrugBank DDIs were included in our analysis. As
shown in Figure 3(c), 218,866 AERS reports were exported
from PostgreSQL into plain text format for MSG training.
On the left side of the symbol “|” are drug concept ID and
right side of the symbol “|” are reaction concept ID. Four cru-
cial parameters of the MSG model are shown in Table 1.
“Min count for drugs or reactions” was set to 10 as described
in Section 3. “Starting alpha” and “Dimensionality of word

Drug1

Drug2

Drugi

Report1

Reactionn-2

Reactionn-1

Report2 Report3 Report4 Reportm-1 Reportm

0
k

D
× log

All reports in DrugBank_DDI or AERS

Reactionn

Drugs
and

reactions

Ci,2 =

ni,2

nk,2 {j : Drugi ∈ dj}
, if Drugi ∈ Report2

, otherwise

Figure 3: Drug/reaction report cooccurrence matrix based on tfidf.

a.

b.

c .1112807 705103 | 35607483 36718418 35205025 35809079 36718287
1151789 1151789 | 36516812 36516959
722424 43526424 | 35708128 35708093
715233 735843 | 36718111 36718112 35708100 36416706 35707557
1112807 704943 | 35607483 35205025 35809083 36718301
1112807 1115008 | 35104074 35707849 35707871 

d. “<Mitomycin>, <Cyclophosphamide>, <Cyclophosphamide> may increase the cardiotoxic
activities of <Mitomycin>.” 

e .

⁎Words involved in <> are drug names 

“<Interferon Alfa-2a (Recombinant)>, <Interferon Alfa-2a (Recombinant)> may cause serious
adverse effects such as anemia; autoimmune diseases, including vasculitis, arthritis, hemolytic
anemia, and erythematosus syndrome; cardiotoxicity; hepatotoxicity; hyperthyroidism or
hypothyroidism; transient ischemic attacks; leukopenia; neurotoxicity; peripheral neuropathy;
and thrombocytopenia.”

“<Lepirudin>⁎,<Adapalene>, <Adapalene> may increase the anticoagulantactivities of
<Lepirudin>” 
“<Adapalene>, <Lepirudin>, <Adapalene> may increase the anticoagulantactivities of
<Lepirudin>” 

Figure 4: Examples of DDIs in DrugBank and report in DrugBank_Toxicity.
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embeddings” were set to default as 0.025 and 100, separately.
“Gradient calculation” was set to Hierarchical softmax for
performance improvement.

As mentioned in Section 3, five logistic regression models
required five sets of samples which consist of positive and
negative labels. The detailed distribution of positive samples
in three datasets (DrugBank_DDI, DrugBank_Toxicity, and
SIDER) is listed in Table 2. In column DrugBank_Toxicity
and SIDER, the number is the positive samples of drugs. In
column DrugBank_DDI, the number is the positive samples
of drug pairs. For example, as shown in Figure 3(d), the DDIs
have the keyword “cardiotoxic”. As a result, the drug pair
<Mitomycin, Cyclophosphamide> was one of the 544 posi-
tive samples (Table 2) in Cardiotoxicity (CDT) adverse event
class. In DrugBank_Toxicity dataset, as shown in Figure 3(e),
the report of drug <Interferon Alfa-2a (Recombinant)> has
the keyword “cardiotoxicity”; we included the drug pair as a
positive sample in Cardiotoxicity (CDT) adverse event class
if the drug pair has drug <Interferon Alfa-2a (Recombi-
nant)>. In the SIDER dataset, we marked the drug pair as a
positive sample in Cardiotoxicity (CDT) adverse event class
if the drug pair has the drug listed in 448 manually checked
drugs (Table 2).

3.1. Validation of Logistic Regression Models Based on MSG
and CM-TF-IDF. We trained and validated logistic regres-
sion models for Renal Impairment (REI), Hepatotoxic
(HTT), Abnormal Blood Pressure (ABP), Cardiotoxicity
(CDT), and Neurotoxic (NET). When it comes to the vectors
generated from MSG, each one of the five clinical significant
adverse event classes has two logistic regression models based
on AERS reports and the DrugBank DDI dataset individu-
ally. When it comes to the vectors generated from CM-TF-
IDF, ten logistic regression models are also trained like
MSG. In order to avoid dimension disaster of CM-TF-IDF,
principal component analysis (PCA) was used for feature
dimensionality reduction of CM-TF-IDF. The ROC curve
of five adverse event classes based on MSG and CM-TF-
IDF is shown in Figures 5 and 6; AUROC of five adverse
event classes is shown in Figure 7. As shown in Figure 7, five
logistic regression models based on AERS reports achieved a
higher value of AUROC than five logistic regression models
based on DrugBank DDIs. All AUROC based on MSG in
Figure 7 are higher than those based on CM-TF-IDF, which
means that our modified skip-gram model can extract fea-
tures from AERS reports and DrugBank DDI dataset more
effectively than the traditional statistical method CM-TF-
IDF. At the same time, logistic regression has a good perfor-
mance of classification in these five adverse event classes as
we expected.

3.2. Enrichment of DDIs in DrugBank. We calculated the
cosine of 1,650 DrugBank DDIs for description enrichment
and taken MedDRA for verification of description enrich-
ment in five adverse event classes: Renal Impairment (REI),
Hepatotoxic (HTT), Abnormal Blood Pressure (ABP), Cardi-
otoxicity (CDT), and Neurotoxic (NET).

As we know, there are five levels in the MedDRA hierar-
chy, arranged from specific to general: {System Organ Class
(SOC)}, {High level Group Terms (HLGT)}, {High Level
Terms (HLT)}, {Preferred Term (PT)}, and {Lowest Level
Term (LLT)} [19]. In order to verify the enrichment of DDIs
in DrugBank, twenty-seven {System Organ Class (SOC)} are
taken into our consideration. Taken Neurotoxic (NET) as
example, when we verified the enrichment of DDIs in Neuro-
toxic (NET), {Nervous system disorders} in {System Organ
Class (SOC)} is set as gold standard for the right reactions
in Neurotoxic (NET). If at least one of the reactions in top
20 of the drug pair is under the {Nervous system disorders}
category, then we define the description enrichment of the
drug pair in Neurotoxic (NET) is valid. For example, the
enrichment of drug pair <Digoxin, Epirubicin> in Cardio-
toxicity (CDT) class is shown in Table 3. Six bold font reac-
tions are verified under the {Cardiac disorders} in System
Organ Class (SOC), so the description enrichment of drug
pair <Digoxin, Epirubicin> is valid. Table 4 shows the details
of DDI enrichment of five classes. In total, 1,456 description
enrichments are verified valid, and the average accuracy is
0.882424, which means the description of DDIs in DrugBank
is enriched efficiently by using MSG model.

4. Discussion

In order to verify and demonstrate the advantage of our pre-
sented new scheme, we repeated the whole experiments using
the cooccurrence matrix based on tfidf model to generate
drug and adverse feature vectors. From the results of ten
logistic regression models (as shown in Figure 7 the results
show that five logistic regression models based on AERS
reports all achieved higher value of AUROC than five logistic
regression models based on DrugBank DDIs. In FDA AERS
datasets, the vectors generated by the MSG can give better
performance in feature extraction than by the tfidf-based
cooccurrence matrix model. The main reasons behind the
above results are as follows: (1) the cooccurrence matrix
based on tfidf model can cause dimensionality disaster when

Table 1: Parameters of the modified skip-gram model.

Dimensionality
of word

embeddings

Starting
alpha

Min count
for drugs or
reactions

Gradient
calculation

Parameters 100 0.025 10
Hierarchical
softmax

Table 2: Positive reference samples of five event classes.

Event class
DrugBank_

DDI
DrugBank_
Toxicity

SIDER

Renal Impairment
(REI)

117 47 270

Hepatotoxic (HTT) 11 29 265

Abnormal Blood
Pressure (ABP)

757 132 275

Cardiotoxicity (CDT) 544 51 448

Neurotoxic (NET) 221 158 298
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Figure 5: ROC of ten logistic regression models based on MSG.
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Figure 6: ROC of ten logistic regression models based on CM-TF-IDF.
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the data size is large; some features are bound to be lost when
using the principal component analysis (PCA). The MSG
model defines the dimension of the space vector at initializa-
tion, which avoids the work of secondary feature engineering
and avoids the loss of feature information. (2) The MSG
model constructs a Huffman tree based on word frequency
during initialization, and the activation function of each node
is softmax, which greatly shortens the time for updating

weights and vectors in the whole learning process. Because
of these reasons, the MSG model can be applied to large-
scale datasets compared with the traditional tfidf-based cooc-
currence matrix and also can quickly perform feature learn-
ing. At the same time, we also found that the MSG model
can perform well for the noisy dataset. When MSG model
is applied in DrugBank data, all the noisy data are not specif-
ically cleaned after the alignment of drug and adverse reac-
tion strings. However, from the five AUROC values (as
shown in Figure 7 DrugB_MSG), the average AUROC values
of the five major adverse reaction groups are around 0.8,
which shows that the MSG model can also effectively gener-
ate feature vectors from the noise dataset.

5. Conclusions

In this work, we proposed an efficient method of feature vec-
tor extraction and calculation from FDA AERS and Drug-
Bank texts based on the modified skip-gram model. Feature
vectors are taken to expand drug-drug interaction datasets
of the DrugBank database. All the accuracy values are higher
than 80% (as shown in Table 4) and show that these new
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Figure 7: AUROC of twenty logistic regression models.

Table 3: Enrichment of drug pair <Digoxin, Epirubicin> in
DrugBank.

No. Reaction Cosine

1 Mediastinal haematoma 0.739511629

2 Pulmonary toxicity 0.731175786

3 Cardioactive drug level increased 0.726436888

4 Cardiac failure 0.725295361

5 Long QT syndrome congenital 0.720507838

6 Tumour embolism 0.711951369

7 Ventricular asystole 0.711652301

8 Cardiac function test abnormal 0.710890609

9 Metastasis 0.71071688

10 Rhabdomyosarcoma 0.709203308

11 Ewing’s sarcoma 0.706786142

12 Aorto-oesophageal fistula 0.706059463

13 Stress ulcer 0.703392027

14 Pneumonia pseudomonal 0.699428808

15 Renal cortical necrosis 0.699053548

16 Emphysematous pyelonephritis 0.698257906

17 Atrial fibrillation 0.697287074

18 Hospice care 0.695568984

19 Malignant glioma 0.695259318

20 Disease progression 0.694726752

Table 4: Details of drug pair DDI enrichment in DrugBank.

Event class
Number
of DDIs

Number of valid
enrichments

Accuracy

Renal Impairment
(REI)

117 99 0.846154

Hepatotoxic (HTT) 11 9 0.818182

Abnormal Blood
Pressure (ABP)

757 660 0.871863

Cardiotoxicity (CDT) 544 494 0.908088

Neurotoxic (NET) 221 194 0.877828

Total 1650 1456 0.882424
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features are valuable in five severe adverse event classes. The
contribution of clinicians may accelerate the process of MSG
model application in the clinical field.

In the future, on the one hand, we will continue to opti-
mize the accuracy of the word vector and try to integrate
the attention mechanism into the language representation
algorithm, and on the other hand, we are going to apply the
detection of adverse drug reactions to the actual electronic
medical record medication prescription system, so as to
promptly remind doctors and patients when using drugs.
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