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Traditionally, for diagnosing patellar dislocation, clinicians make manual geometric measurements on computerized tomography
(CT) images taken in the knee area, which is often complex and error-prone. .erefore, we develop a prototype CAD system for
automatic measurement and diagnosis. We firstly segment the patella and the femur regions on the CT images and then measure
two geometric quantities, patellar tilt angle (PTA), and patellar lateral shift (PLS) automatically on the segmentation results, which
are finally used to assist in diagnoses. .e proposed quantities are proved valid and the proposed algorithms are proved effective
by experiments.

1. Introduction

Patellar dislocation occurs when the patella slips out from
the patellar surface of the femur. It is a common knee injury
that may happen when people, especially teenagers and
athletes, do vigorous physical exercises, e.g., playing bas-
ketball and football. To help the diagnosis, computerized
tomography (CT) images are often taken at the knee area.
On the knee CT images, clinicians usually make manual
measurements and make diagnosis according to the mea-
sured results. .e manual measurement is often complex,
tedious, and error-prone. .erefore, a fully automatic ap-
proach by computers is highly wanted.

Computed tomography has been widely used to diag-
nose knee joint pathologies. Correspondingly, knee CT
images have been automatically or semiautomatically pro-
cessed and analyzed (e.g., [1–5]) for computer-aided diag-
nosis. Subburaj et al. [1] proposed a computer graphics-
based method to automatically localize and label anatomical
landmarks on the 3D bone model reconstructed from knee

CT images of a patient. Krcah et al. [2] proposed to segment
the femur in 3D CTvolumes based on graph cuts and a bone
boundary enhancement filter. Jang et al. [3] compared and
validated various segmentation algorithms to segment the
knee CT images and construct a corresponding 3D model.
Wu et al. [4] proposed to segment multiple bones around the
knee joint with severe pathologies to help patient-specific
orthopedic knee surgery planning. Mezlini et al. [5] pro-
posed to measure the knee joint space based on semiau-
tomatic CT image segmentation for the monitoring of
osteoarthritis progression. However, to the best of our
knowledge, no efforts have been published specifically for
automatic measurement on knee CT images for the purpose
of patellar dislocation diagnosis.

.e major contributions of our work reside in the fol-
lowing aspects. Firstly, we propose two quantities, patellar
tilt angle (PTA) and patellar lateral shift (PLS), to measure
on the knee CT images. Secondly, in order to make the
automatic measurement, we propose computing algorithms
to segment the patella and femur regions in the CT images
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and measure the proposed quantities on the segmented
regions. Finally, we make experiments to verify the validity
and effectiveness of the measured results for the computer-
aided diagnosis (CAD). Note that a preliminary version of
our work has been published in reference [6]. Extending the
preliminary work [6], we utilize the correlation between
adjacent CT images by bone region prediction for bone
region segmentation and make more complete experimental
validation in terms of accuracy of measurement and ap-
plicability for CAD in this work.

2. Scheme Overview

.e proposed scheme takes a specific portion of knee CT
images as input and conducts a complete and automatic
process of bone regions segmentation and geometric
measurement.

2.1. Input Images. .e source CT images for a patient are
acquired by scanning the middle part of his or her leg. While
being scanned, the patient may move his or her leg naturally
through a range of knee angles, resulting in multiple se-
quences of CT images sampled at a preset temporal fre-
quency. For each image sequence acquired at a time
instance, we only use a portion that corresponds to cross
sections through the femur and the patella. As an example,
the anatomical structure of the middle part of a leg is shown
in Figure 1(a) with the femur, patella, and tibia labelled. As
shown in Figure 1(a), the portion of CT images that we use
corresponds to the cross sections between the two planes as
marked with blue parallelograms. Examples of the CT im-
ages in this portion are shown in Figure 1(b), and the ideal
segmentation result for a CT image is shown in Figure 1(c)
where the femur and the patella regions are neatly seg-
mented and the narrow gap between them corresponds to
the sutura.

We presume that the input CT images are ordered such
that images of higher scanning positions on the leg go earlier
in the sequence.

2.2. Working Process. We use Figure 2 to illustrate the au-
tomatic segmentation and measurement process. For an
input CT image sequence as shown in Figure 2(a), we first
segment the femur and the patella regions on each image to
get the result as shown in Figure 2(b). Based on the profiles
of the segmented regions, we use least squares fitting to find
the central planes of the femur and the patella, respectively,
as shown in Figure 2(c). Finally, we quantify the geometric
relationship between the two central planes by PTA and PLS,
which provide the basis for patellar dislocation diagnosis.

3. Segmentation of Femur and Patella Regions

Segmenting two solid bone regions corresponding to the
femur and the patella, respectively, in each knee CT image is
a key step in our scheme. It is a challenging task due to the
following characteristics of knee CT images (as illustrated by
Figure 3): (1) a single CT image usually contains responses of

bones and other tissues (e.g., soft tissues) simultaneously and
is contaminated with noises; (2) the patella and the femur
regions may be very close to each another (e.g., only a couple
of pixels apart or even locally fused) in many CT images; and
(3) different parts (e.g., cortical bone tissue, spongy bone
tissue, bone marrow, and bone cavity) inside a bone usually
have different radiological densities, leading to highly var-
iant gray levels of pixels in one bone region.

.e generic problem of image segmentation has been
researched for decades. For a survey of the early-days al-
gorithms, we refer to references [7, 8]. Later on, with the
development of medical imaging technology, intensive and
specific efforts have been made to segment various types of
medical images. .e existent medical image segmentation
algorithms can be classified as threshold-based methods [2],
region-based methods [9–11], edge-based methods [12],
active-contour-model-based methods [13–22], hybrid
methods [23–26], and others [27–32].

Among the various methods, the active-contour-model-
based ones appear more advantageous to us. Relatively
speaking, they handle structures with high topological
complexity well and achieve subpixel accuracy and ro-
bustness against noise. In addition, they incorporate easily
with other segmentation techniques and facilitate intuitive
interaction [33, 34]. In particular, we choose the Chan–Vese
(C-V) region-based active contour models [17] for our knee
CT image segmentation, as it is in general less sensitive to
initialization and noise than many other methods [13–19] of
its category. Further, according to our experiments (see
Section 5), it yields better segmentation results than the
other selected active-contour-model-based methods
[18, 21, 22], when used with our proposed framework.

.e existent image or medical image segmentation al-
gorithms usually assume that the pixels inside a meaningful
region have highly uniform levels of intensity. In addition,
the contrast between meaningful and nonmeaningful re-
gions and the noise level in an image also influence the
segmentation results. .ese algorithms cannot be directly
applied for our purpose due to the highly challenging
characteristics of the knee CT images, as described earlier in
the text. .erefore, we propose to improve the quality of the
knee CT images first, by increasing the uniformity of pixel
intensities, enhancing the contrast, and suppressing the
noises, before making the final segmentation. Specifically, we
process the CT images in an input sequence one by one in
spatial order. For each CT image, we enhance its contrast to
increase (decrease) the gray levels of the bone tissue (soft
tissue and noise) pixels, predict the bone and sutura regions
in it and modify its pixel values accordingly, utilizing the
segmentation result of the previously processed CT image, if
any, and employ the C-V region-based active contour
method to make the final segmentation on the modified
image. Details of these steps are given in the following
sections.

3.1. Contrast Enhancement. .e common global contrast
enhancement method based on histogram manipulation
does not work well for our case. .e reason is that the pixels’
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gray levels concentrate around very low and very high values
(see Figure 4), leaving little room for contrast enhancement.
Instead, we propose a contrast enhancement method based
on local characteristics around each pixel. Observing that
higher (lower) gray levels correspond to bone tissues (soft

tissues and probably noise), we increase (decrease) the gray
level of a pixel with brighter (darker) neighborhood.

Specifically, we perform a nonlinear scaling of each
pixel’s gray level according to its neighboring pixels’ gray
levels [6]. For a pixel, p0, we denote its gray level as g0 and

(a) (c)

(b)
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Tibia

Patella

Femur

Patella

Sutura between femur and patella

Figure 1: Examples of input CT images and segmentation result. We use as input the CT images of the cross sections cutting through the
femur and the patella, as delimited by two blue parallelograms in (a). Examples of the input CT images are shown in (b), and an ideal
segmentation result on a CT image is shown in (c).
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Figure 2: Illustration of the working process: (a) input CT images, (b) patella and femur region segmentation, and (c) central plane fitting
and geometric measurement.

(a) (b) (c)

Figure 3: Challenging characteristics of knee CT images, as illustrated by the examples in (a), (b), and (c). .e red rectangles mark the
responses of soft tissues and noises and the yellow rectangles mark intensity inhomogeneity while the blue rectangle marks the narrow
sutura region between the femur and the patella.
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the gray levels of all the other pixels in p0’s 3 × 3 neigh-
borhood as gi (i ∈ 1, 2, . . . , 8). Assuming that the maximum
gray level is 255, we update g0 to g0′ according to

g0′ � g0 × e
α− 0.45

,

α �


8
i�0gi



255 × 9
.

(1)

We find by experiments that the above process, when
iterated for two or three passes, yields good results.

We show the effect of contrast enhancement on an
example CT image in Figure 5, where the original image and
the contrast-enhanced image are shown in Figures 5(a) and
5(b), respectively, and the enlarged views of the corre-
sponding sutura areas are shown in Figures 5(c) and 5(d),
respectively. Comparing Figures 5(a) and 5(b), we see that
the bone pixels are emphasized while the soft tissue and
noise pixels are suppressed in general. Comparing
Figures 5(c) and 5(d), however, we find that the intensity of
some pixels in the sutura region is unwantedly increased at
the same time, reducing the gap between two bone regions
and adding to the difficulty of bone regions segmentation.
.is issue is addressed by the proposed bone regions pre-
diction technique, as described in the following section.

3.2. Prediction of Bone Regions. Narrow and vague gap be-
tween bone regions and inhomogeneous pixel intensity
within bone regions are limiting factors for accurate bone
region segmentation. In order to address these issues, we
propose a bone region prediction process that further im-
proves the CT image quality to facilitate accurate segmen-
tation, as detailed below.

On any input CT image sequence used in our experi-
ments, we observe two facts: firstly, the femur and the patella
regions are relatively small and wide apart and contain highly
homogeneous pixel intensity in the initial CT images of the
sequence; secondly, the shape and the position of a bone’s
profile vary only slightly between two adjacent CT images in
the sequence. .e former implies that we may apply a
prevalent image segmentation algorithm on the first CTimage
(after contrast enhancement) in the sequence to obtain a good
result, while the latter implies that a good segmentation result

on a CT image may be utilized to predict the bone and sutura
regions in the next image to be segmented.

Assume that we are currently processing the (n + 1)-th
(n≥ 0) original CT image, In+1

ori , in the sequence. After the
contrast enhancement, we obtain In+1

enh . If n � 0, we simply
use In+1

enh as the modified image, In+1
mod, which is to be seg-

mented. Otherwise, we already have the segmentation result
for the n-th image, which is a binary image, In

seg, with “255”-
pixels for the bone regions and “0”-pixels for the back-
ground. Using In

seg, we improve the quality of In+1
ori by a

proposed process of bone regions prediction to obtain In+1
mod,

as detailed below.
Firstly, based on In

seg, we predict in In+1
ori the sutura region,

Q1, and the local bone region, Q2, around the sutura, en-
abling us to treat these local regions with special care in the
following steps. Specifically, in In

seg, we morphologically
dilate the femur region, Fn, and the patella region, Pn, to Fn

d

and Pn
d, respectively, by a disk with a radius of rbig pixels.

Empirically, we take rbig ∈ [8, 12]. Locations in Q � Fn
d ∩ P

n
d

which correspond to nonbone pixels (“0”-pixels) in In
seg form

the predicted sutura region, Q1, and Q2 � Q − Q1 gives the
predicted local bone region around the sutura in In+1

ori . An
example of the local regions prediction is shown in
Figure 6(a) with Q1 and Q2 colored in yellow and blue,
respectively.

Secondly, we selectively revert pixels in In+1
enh which fall

inside Q by In+1
enh(x, y) � In+1

ori (x, y), (x, y) ∈ Q. .is is based
on the observation that the contrast enhancement tends to
narrow the gap between the two bone regions (see
Figures 5(c) and 5(d)), adding to the difficulty of bone re-
gions segmentation.

.irdly, in order to increase the bone regions’ density
homogeneity, we combine In+1

enh with In
seg to obtain In+1

mod
according to

I
n+1
mod(x, y) �

αIn
seg(x, y) + βIn+1

enh(x, y), In+1
enh(x, y)< tha,

In+1
enh(x, y), otherwise,

⎧⎨

⎩

(2)

where α, β, and tha are parameters to control the degree of
fusion. We empirically use α � 0.4, β � 0.6, and
tha � 0.5 × 255. In extreme cases, if tha � 0, In+1

mod � In+1
enh and

if tha � 256, In+1
mod � αIn

seg + βIn+1
enh .
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Figure 4: (a) A knee CTimage and (b) the histogram of (a)..e histogram shows that the pixels’ gray levels concentrate around very low and
very high values.
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Fourthly, we reduce the intensities of the predicted local
region, Q, around the sutura in In+1

mod, making a clearer
separation of the two bone regions. .is is achieved by
selectively updating pixels in In+1

mod according to

I
n+1
mod(x, y) �

μ1In+1
mod(x, y), (x, y) ∈ Q1 ∧ In+1

ori (x, y)< thb,

μ2In+1
mod(x, y), (x, y) ∈ Q2 ∧ In+1

ori (x, y)< thb,

⎧⎨

⎩

(3)

where thb is a threshold set to the mean gray level of all our
test CT images, and we empirically use μ1 � 0 and μ2 � 0.5.
By equation (3), we weaken pixels in Q whose original in-
tensities are below a threshold. If a pixel’s original intensity is
above the threshold, however, it is probably a bone pixel and
we leave it untouched. Note that we weaken pixels in two
subregions, Q1 and Q2, since the predicted sutura region, Q1,
is usually not completely precise and we choose to weaken
selected pixels in a wider local area, i.e., Q1 + Q2.

Lastly, based on In
seg, we predict in In+1

mod a thin layer, B, of
pixels between the two bone regions when they get close to
each other and set these pixels to “0” for further separation of
the bone regions. Specifically, in In

seg, we morphologically

dilate Fn and Pn by a disk with a radius of rsmall pixels to F′nd
and P′nd , respectively, and obtain B � F′nd ∩ P

′n
d . Empirically,

we take rsmall ∈ [4, 6]. An example is shown in Figure 6(b)
with B colored in red. Depending on the shapes of and the
distance between the two bones regions, there may be none,
one, or multiple connected components in B.

3.3. C-V Region-Based Active Contour Segmentation.
After In+1

ori (n≥ 0) is modified to In+1
mod, we employ the C-V

models to segment In+1
mod. .e C-V model was originally

proposed by Chan and Vese [17] and is based on the fol-
lowing energy model:

F
CV

c1, c2, C(  � λ1
Cin

I(x) − c1



2dx + λ2

Cout

· I(x) − c2



2dx + μ · Length(C) + ]

· Area(inside(C)),

(4)

where λ1, λ2, µ, and ] are constants, Cin and Cout represent
the regions inside and outside contour C, respectively, and c1
and c2 correspond to the average pixel intensity in Cin and

(a) (b) (c) (d)

Figure 5: Effect of the contrast enhancement. (a) Original CT image, (b) contrast-enhanced image, and (c, d) the enlarged view of the
corresponding sutura areas in (a) and (b), respectively.

rbig = 12

(a)

rsmall = 5

(b)

rbig = 12, rsmall = 5

(c)

Figure 6: Predictions of various local regions around the sutura using a sample segmentation image. As shown in (a), the predicted sutura
region (Q1) and local bone region around (Q2) are colored in yellow and blue, respectively. As shown in (b), the predicted thin pixel layer (B)
between the bone regions is colored in red. An overlaid visualization of all these predicted local regions is given in (c). We use rbig � 12 and
rsmall � 5 when constructing these local regions.
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Cout, respectively. .e solution of optimal contour C is
reached by minimizing the energy function FCV(c1, c2, C),
resulting in an optimal segmentation of the image I.

As an example, we show an original CT image in
Figure 7(a), the image modified by the contrast enhance-
ment in Figure 7(b), and the image modified further by the
bone regions prediction in Figure 7(c). We observe in
Figure 7(c) that the bone region prediction leads to im-
proved intensity homogeneity of the bone regions, sup-
pressed soft tissue intensities, and well cleared sutura
between the bone regions. Applying C-V models on the
three images, we obtain the corresponding segmentation
results as shown in Figures 7(d), 7(e), and 7(f ), respectively.
Comparing these three figures, we observe that the proposed
contrast enhancement and bone regions prediction tech-
niques lead to significantly improved segmentation results.

4. Automatic Measurement

In a segmented CT image, we expect to have two major
regions with right shapes, corresponding to the femur and
the patella, respectively. In rare cases, it may happen that
more or less than two regions are segmented on a CT image
or/and the shapes of segmented bone regions change tre-
mendously between CT images, mostly due to low CT image
quality. .ese cases can be easily detected based on the
number of and the geometric properties (e.g., position and
area) of the segmented regions. We simply discard these
outlier cases and do not use them for measurement.

.e CT images are acquired on parallel cross sections of
the knee region, as shown in Figure 1. As such, we locate a
few key points on each CT image on the boundaries of the
femur region and the patella region, respectively, and then
compute the central planes for the femur and the patella
bones by optimally fitting those key points on the CT images.

4.1. Selection of Key Points. For the femur region in each CT
image, we select three points as the key points: the two
central valley points along the boundary and the middle of
the leftmost and the rightmost points. For the patella region
in each CTimage, we select three points as the key points: the
two central peak points along the boundary and the middle
of the leftmost and the rightmost points. .ese key points
can be easily identified through boundary tracking and
inflection point detection. .is key point selection scheme is
illustrated in Figure 8(a).

4.2. Plane Fitting. .e central plane of the femur (patella)
bone is determined by optimally fitting a plane to the key
points of the femur regions (patella regions) on the stack of
CT images. In general, denoting the points as pi(xi, yi, zi)

(i � 1, 2, . . . , K) and the plane equation as z � ax + by + c,
the plane that optimally fits those points can be obtained by

argmina,b,c 

K

i�1
zi − axi − byi − c( 

2
, (5)

which can be solved with the least squares method.

4.3. PTA and PLSMeasurement. We measure the patella tilt
angle, θ, between the femur and the patella’s central planes,
as illustrated in Figure 8(b). It is measured by the angle
between the normals of the two bone’s central planes.

Further, we measure the patella lateral shift,D, between a
pair of parallel approximate central planes of the femur and
the patella, as illustrated in Figure 8(c). For this purpose, we
fit a pair of parallel planes to the femur regions’ and the
patella regions’ key points, respectively, and measure the
distance, D, between the planes. Assuming that the equa-
tions of the two parallel planes are z � ax + by + c1 and
z � ax + by + c2, given the femur regions’ key points as
pi(xi, yi, zi) (i � 1, 2, . . . , K) and the patella regions’ key
points as pi

′(xi
′, yi
′, zi
′) (i � 1, 2, . . . , K), the parallel plane

fitting is done by

argmina,b,c1,c2


K

i�1
zi − axi − byi − c1( 

2
+ zi
′ − axi
′ − byi
′ − c2( 

2
,

(6)

using the least squares method.

5. Results and Discussion

In the experiments, we conduct automatic segmentation and
measurement on our dataset of knee CT images using the
proposed scheme and validate the results of both the seg-
mentation and the measurement.

5.1. Dataset. Our dataset is composed of fifteen patients’
knee CT images that were acquired using the Toshiba
Aquilion ONE CT scanner in the affiliated hospital of
Shandong University of TCM. Among the fifteen patients,
ten are female and five are male. While being scanned, each
patient was asked to move her/his legs freely from 0° to about
90°, and 22 CT image sequences were sampled at 22 time
instances, one at each, during the scanning process. Each CT
image sequence includes 320 images, 70 of which corre-
sponding to the upper part of the leg (ref. Figure 1(a)) are
used as the input to our system. .e CT scanner is set up
such that the thickness of each slice and the interval between
two adjacent slices are both 0.5mm, the default window
width is 30HU, the window level is 320HU, and every CT
image has a resolution of 512 × 512.

5.2. Validation of Bone Region Segmentation. In this section,
we validate the bone region segmentation results both vi-
sually and quantitatively. In order to validate our choice of
the C-V models [17], we compare with the following
benchmark methods for image segmentation: the bias-
corrected fuzzy c-means method (BCFCM) proposed by
Mohamed et al. [35], the updated region-based active
contour method using region-scalable fitting (RSF) energy
function proposed by Li et al. [18], the level set method with
bias field (LSEBFE) proposed by Li et al. [21], and the active
contours driven by local image fitting energy (LIF) proposed
by Zhang et al. [22]. For each image segmentation method,
we run it both without and with our proposed framework,
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meaning that we run it both directly on the original CT
images and on the CT images after modification with the
approach proposed in Sections 3.1 and 3.2.

BCFCM modifies the objective function of the standard
fuzzy c-means (FCM) algorithm to compensate for intensity
inhomogeneities and allows the labeling of a pixel (voxel) to

In+1
ori

(a)

In+1
enh

(b)

In+1
mod

(c)

In+1
ori

(d)

In+1
enh

(e)

In+1
mod

(f )

Figure 7: Effects of the contrast enhancement and the bone regions prediction on segmentation. An original CT image is shown in (a). It is
modified by the contrast enhancement and further by the bone regions prediction, leading to the images in (b) and (c), respectively.
Segmentation results on (a), (b), and (c) are shown in (d), (e), and (f), respectively, by the C-V models.

P′I

P′2
P′0

P′1

P2

P0
PI P1

Pr

P′r

Key points

(a)

θ

PTA
z

x

y

(b)

PLS

Dx
z

y

(c)

Figure 8: Key points, PTA, and PLS. As shown in (a), each bone has three key points selected: two central valley or peak points along the
boundary and the middle of the leftmost and the rightmost boundary points (colored in purple). Key points of the two bone regions are
colored in red and green, respectively. .e definition of patella tilt angle (PTA) is illustrated in (b), which is the angle, θ, between the femur
and the patella’s central planes which are colored in yellow and blue, respectively. .e definition of patella lateral shift (PLS) is illustrated in
(c), which is the distance, D, between the parallel approximate central planes of the femur and the patella.
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be influenced by the labels in its immediate neighborhood,
which leads to better segmentation results than the standard
FCM. RSF is a modified region-based active model using
local intensity information at a controllable scale, which can
preserve local details better and have higher robustness to
intensity inhomogeneity. Note that BCFCM and RSF have
been widely used in medical image segmentation. LSEBFE is
a region-based level set method with bias field. It derives a
local intensity clustering property of the image intensities
and defines a local clustering criterion function, which are
integrated with respect to the neighborhood center to give a
global criterion of image segmentation. .is criterion de-
fines an energy in terms of the level set functions and a bias
field that accounts for the intensity inhomogeneity of the
image. It is more robust to initialization, faster, and more
accurate than the well-known piecewise smooth model. LIF
is a region-based active contour model that embeds the
image local information. It uses Gaussian filtering for var-
iational level set to regularize the level set function. It can not
only ensure the smoothness of the level set function but also
eliminate the requirement of reinitialization. Both LSEBFE
and LIF are proposed to segment images with intensity
inhomogeneities.

5.2.1. Visual Validation. In this section, we present the
segmentation results of C-V, BCFCM, RSF, LSEBFE, and
LIF on two representative challenging CT images, as shown
in Figure 9. In the first image (in Figure 9(a)), the two bone
regions are very close to each other while in the second
image (in Figure 9(m)), there is more significant noise and
weaker bone boundary response. Besides, both images have a
high level of intensity inhomogeneity. In Figure 9, the first
column shows the original CT images and the ground truth
of their segmentations provided by experienced clinicians
(i.e., Jiushan Yang, ShaoshanWang, and Ruiqi Zou), and the
following columns show the segmentation results by the five
image segmentation methods, respectively. Further, the
segmentation results in the first and the third rows are
obtained with our framework (i.e., CT image modification
followed by image segmentation) while those in the second
and the fourth rows are obtained without our framework
(i.e., they are obtained by direct image segmentation).

Comparing the segmentation results with and without
our framework in Figure 9, we observe that for any of the
image segmentation methods, our proposed framework
promotes the performance by a large margin, leading to
more neatly and accurately segmented femur and patella
regions. .is also demonstrates the robustness of the pro-
posed framework to soft tissues responses, intensity inho-
mogeneities, and noises in the CT images. Comparing the
segmentation results of all the five image segmentation
methods with our framework, we observe that the C-V
method is the most advantageous in terms of accuracy and
smoothness of segmented bone boundaries, confirming our
choice of the C-V method in the proposed scheme.

5.2.2. Quantitative Validation. For the quantitative valida-
tion, we randomly choose the automatic segmentation results

on 30 CT images from each leg of each patient’s dataset and
also manually mark the bone regions segmentation on each
chosen CT image which is used as the ground-truth reference.
Similar to Yao et al. [36], we use threemetrics, i.e., overlap rate
(OLR), false-positive rate (FPR), and Dice similarity coeffi-
cient (Dice), to quantitatively validate the segmentation ac-
curacy. On a CT image, if we denote the automatic and the
ground-truth segmentations of a bone region as Ra and Rg,
respectively, these metrics are defined as
OLR � |Ra ∩  Rg|/|Rg| × 100%, FPR � |Ra− Rg|/|Ra| × 100%,
andDice � 2 × |Ra ∩ Rg|/|Ra| + |Rg|. In addition, wemeasure
the separation rate, SR, of the patella and the femur regions in
the segmentation result. If they are completely separated, we
set SR � 100%; otherwise, SR � 0%.

In Table 1, we show the mean and standard deviation
statistics of OLR, FPR, and Dice and the mean statistics of SR
for all the five image segmentation methods (C-V, BCFCM,
RSF, LSEBFE, and LIF) with and without our framework
(i.e., CT image modification followed by binary image
segmentation) on all the 30 × 2 × 15 test CT images. Here,
OLR, FPR, and Dice metrics are computed by treating the
patella and the femur regions as one united bone region in
each CT image.

From Table 1, we observe that (1) for any of the five
methods, its mean OLR, mean Dice, and mean SR values are
all increased and its mean FPR value is decreased when our
framework is used, showing the effectiveness of our pro-
posed CT image modification technique; (2) for any of the
five methods, its mean SR value with our framework reaches
100%, showing the effectiveness of our proposed bone re-
gions prediction technique in separating the two bone re-
gions; and (3) when used with our framework, the C-V
method yields the largest mean Dice, a SR value of 100%, the
second largest mean OLR, and the third smallest mean FPR
value and appears superior to the other methods considering
all metrics overall.

In Table 2, we show the overlap rate and false-positive
rate statistics for the femur and the patella regions on both
legs of all the patients. For each bone region on each leg of
each patient, we compute the two rates on all the 30 chosen
CT images, average the rates over the 30 samples, and list the
average in Table 2 where OLRF (OLRP) and FPRF (FPRP)
mean the overlap rate and the false-positive rate of the femur
(patella) region, respectively. Further, we compute the mean
and the standard deviation on each of the OLRF, OLRP,
FPRF, and FPRP statistics of each leg and place them at the
bottom two rows in Table 2.

From Table 2, we observe that (1) for either leg and either
bone region, the mean overlap rate is close to 95% and the
mean false positive rate is close to 2%, showing the high
accuracy of our bone regions segmentation scheme; (2) the
standard deviations of the various rate statistics are all below
or slightly above 3%, showing the stability and robustness of
our bone regions segmentation scheme; and (3) rates of the
same type on both legs are quite comparable, again con-
firming the stability and robustness of our bone regions
segmentation scheme.

We show the Dice statistics for the femur and the patella
regions on both legs of all the patients in Table 3. For each
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Figure 9: Segmentation results by different image segmentation methods on two representative challenging CT images. .e first column
shows the original CTimages and the ground truth of their segmentations, and the following columns show the segmentation results by C-V,
BCFCM, RSF, LSEBFE, and LIF, respectively. .e segmentation results in the first and the third rows are obtained with our proposed
framework while those in the second and the fourth rows are obtained without our framework.

Table 1: Mean (MEAN) and standard deviation (SDEV) statistics of overlap rate (OLR), false-positive rate (FPR), and Dice similarity
coefficient (Dice) and mean statistics of separation rate (SR) for different image segmentation methods (C-V, BCFCM, RSF, LSEBFE, and
LIF) with and without our framework on all the 30 × 2 × 15 test CT images.

With our framework? Methods
Performance metric

OLR FPR Dice SR

Yes

C-V 95.09± 3.24 2.04± 2.70 0.965± 0.022 100.00
BCFCM 99.12± 2.48 6.32± 5.63 0.962± 0.035 100.00
RSF 93.69± 4.34 1.79± 2.33 0.958± 0.025 100.00

LSEBFE 94.60± 3.96 1.85± 2.09 0.963± 0.023 100.00
LIF 94.12± 3.83 9.43± 10.74 0.919± 0.063 100.00

No

C-V 95.04± 3.90 3.24± 3.43 0.958± 0.026 25.33
BCFCM 81.88± 10.01 6.47± 12.03 0.862± 0.081 54.67
RSF 69.66± 9.43 3.05± 3.81 0.807± 0.069 68.67

LSEBFE 82.64± 7.55 2.76± 4.19 0.892± 0.055 55.33
LIF 73.79± 7.13 11.18± 9.53 0.802± 0.062 68.67

Numeric entries for OLR, FPR, and Dice in the table are in the form of MEAN± SDEV.
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bone region on each leg of each patient, we compute the Dice
on all the 30 chosen CT images, average them over the 30
samples, and list the average Dice in Table 3.

From Table 3, we see that all the Dice statistics are above
or slightly below 0.96 and the standard deviations of the Dice
coefficient are close to 0.02, further confirming the high
accuracy, stability, and robustness of our bone region seg-
mentation scheme.

5.3. Validation of PTA and PLS Measurement

5.3.1. Measured Angles and Distances. In this validation, we
pick up the CT image sequences taken at four random time

instances, T1, T2, T3, and T4, for four randomly picked
patients’ left or right legs. For the CT image sequence at each
time instance, we use our system to automatically measure
the angle (i.e., the PTA), θ, and the distance (i.e., the PLS),D,
between the two bones’ central planes. Note that when
θ> 15∘, we do not measure D. For the purpose of com-
parison, we ask several radiologists to measure the same
parameters on the CT images manually. We use the unit of
degree for angle measurement and the unit of millimeter for
distance measurement. Note that for the automatic mea-
surement, we have converted the unit of pixel to the unit of
millimeter, knowing that one pixel corresponds to 0.95
millimeters in the photographing. .e corresponding sta-
tistics is given in Table 4, fromwhich we see that there is very

Table 2: Statistics of overlap rate (%) and false-positive rates (%) for the femur and the patella regions on both legs of the 15 patients.

Patient number
Left leg Right leg

OLRF FPRF OLRP FPRP OLRF FPRF OLRP FPRP

1 96.68 2.33 97.61 1.85 98.02 4.14 98.55 6.00
2 94.22 0.23 95.38 2.92 88.89 3.83 92.24 13.31
3 96.13 0.08 95.91 2.61 97.79 1.13 95.67 1.43
4 97.40 1.51 88.14 0.37 97.31 0.63 92.92 0.09
5 95.83 0.65 95.74 5.10 94.18 0.56 96.40 11.25
6 98.72 0.96 93.17 0.57 98.39 0.96 94.12 0.24
7 96.60 8.68 90.49 1.47 96.71 6.45 90.19 1.11
8 86.15 0.99 97.88 4.55 96.94 0.63 96.32 3.77
9 95.06 0.16 91.62 1.29 96.35 0.99 95.69 2.21
10 95.45 1.79 92.47 2.82 81.84 3.85 93.39 1.36
11 96.73 2.72 94.61 3.51 91.15 2.38 91.58 8.15
12 95.92 0.76 92.70 0.16 94.53 0.76 93.32 2.86
13 97.16 1.39 95.09 0.66 94.28 3.11 96.24 4.10
14 95.63 0.32 94.51 1.35 96.36 1.03 95.98 1.40
15 97.19 1.03 90.62 0.12 97.57 2.62 88.10 0.00
MEAN 95.66 1.57 93.73 1.96 94.69 2.21 94.05 3.82
SDEV 2.91 3.15 2.66 2.09 4.53 2.89 2.67 5.18
OLR� overlap rate, FPR� false-positive rate, F� femur, P� patella, and SDEV� standard deviation.

Table 3: Statistics of Dice similarity coefficient for the femur and the patella regions on both legs of the 15 patients.

Patient number
Left leg Right leg

DiceF DiceP DiceF DiceP

1 0.9716 0.9788 0.9692 0.9614
2 0.9691 0.9616 0.9235 0.8857
3 0.9798 0.9660 0.9833 0.9708
4 0.9794 0.9349 0.9833 0.9628
5 0.9756 0.9531 0.9674 0.9220
6 0.9888 0.9619 0.9871 0.9686
7 0.9358 0.9432 0.9490 0.9422
8 0.9211 0.9662 0.9813 0.9628
9 0.9739 0.9493 0.9766 0.9672
10 0.9680 0.9477 0.8839 0.9594
11 0.9699 0.9552 0.9425 0.9161
12 0.9754 0.9613 0.9682 0.9519
13 0.9787 0.9717 0.9550 0.9601
14 0.9761 0.9652 0.9764 0.9727
15 0.9807 0.9501 0.9742 0.9362
MEAN 0.9696 0.9577 0.9614 0.9493
SDEV 0.0204 0.0166 0.0288 0.0309
Dice�Dice similarity coefficient, F� femur, P� patella, and SDEV� standard deviation.
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little difference between the automatically and the manually
measured angle numbers. Similarly, the automatically and
the manually measured distances also closely match each
other.

5.3.2. Diagnosis by Measured Results. We further test the
accuracy and reliability of using the automatically mea-
sured results for diagnosis. According to orthopedists, the
angle, θ, between the femur and the patella bones’ central
planes provides the most important basis for patellar
dislocation diagnosis. .us, patellar dislocation may be
straightforwardly diagnosed by comparing the measured
angle against threshold values. Specifically, as an initial test,
we set our system to automatically diagnose normal if
θ≤ 10∘, patellar subluxation if 10∘ < θ< 30∘, and patellar
dislocation if θ≥ 30∘.

For this test, we have the dataset of 30 legs from 15
patients. For each leg, we use all the 22 CT image se-
quences and the average results of the 22 image sequences
to make the diagnosis. Among the 30 samples, 11 samples
(36.7%) are diagnosed as normal, 16 samples (53.3%) as
patellar subluxation, and 3 samples (10%) as patellar
dislocation, based on the automatically measured angles
and the above-described diagnosis rule. On the same set of
data, our orthopedists made diagnosis as well through
manual measurement and clinic analysis and diagnosed
10 samples (33.3%) as normal, 17 samples (56.7%) as
patellar subluxation, and 3 samples (10%) as patellar
dislocation. Comparing the automatic and the manual
diagnosis results, we find that the error rates of the au-
tomatic diagnosis on normal, patellar subluxation, and
patellar dislocation are 9.1%, 7.1%, and 0%, respectively.
Further, we visualize the distribution of the automatically
measured angles with respect to the orthopedists’ manual
diagnosis results in Figure 10. We see from Figure 10 that
all the cases with θ≥ 30∘ are diagnosed by the orthopedists

as patellar dislocation, and the majority of the cases with
θ≤ 10∘ and 10∘ < θ < 30∘ are diagnosed by the orthopedists
as normal and patellar subluxation, respectively. .ere is
fuzziness only for a small portion of cases with θ closely
around 10∘.

As a refined test, we further investigate the effec-
tiveness of using distance as an auxiliary means for the
patellar dislocation diagnosis. We only focus on the
samples with 5∘ < θ< 15∘, as there is fuzziness for samples
with θ around 10∘ in our initial test. For these samples, the
distances between the two bones’ central planes are au-
tomatically measured and their distribution with respect
to the orthopedists’ diagnosis results are plotted in
Figure 11. From Figure 11, we see that a distance
threshold of 4.5mm will accurately separate the cases of
normal and patellar subluxation, thus eliminating the
errors of diagnosis in our initial test where only angles are
used.

Table 4: Geometric measurement results on four patients’ left or right legs at four time instances (T1, T2, T3, and T4).

Patient number Type Method T1 T2 T3 T4

2l

Angle Automatic 2.1 4.4 1.6 2.0
Manual 2.0 4.5 1.5 2.0

Distance Automatic 0.6 0.7 0.7 0.3
Manual 0.5 0.7 0.6 0.3

5r

Angle Automatic 6.9 4.5 8.1 8.8
Manual 6.5 4.3 7.8 8.9

Distance Automatic 2.3 2.4 3.3 3.7
Manual 2.4 2.2 3.2 3.5

10l

Angle Automatic 18.2 17.3 19.5 18.2
Manual 18.4 17.5 19.2 18.2

Distance Automatic 7.9 8.3 7.5 8.0
Manual 7.7 8.0 7.7 8.1

14r

Angle Automatic 38.0 39.8 39.4 38.5
Manual 38.5 40.3 39.2 38.9

Distance Automatic — — — —
Manual — — — —

.e units of degree and millimeter are used for angle and distance, respectively.
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Figure 10: Distribution of automatically measured angles with
respect to orthopedists’ diagnosis: 0—normal, 1—patellar sub-
luxation, and 2—patellar dislocation.
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6. Conclusions

In this work, we have developed a system for automatic
segmentation and measurement on knee CT images. Firstly,
on each CT image in an input sequence, we segment the
femur and the bone regions; thereafter, we identify key
points on the bone regions’ boundaries and conduct optimal
fitting to obtain the central planes of the two bones; finally,
angles and distances between the central planes are mea-
sured which can be used to assist doctors in patellar dis-
location diagnosis.

Of the whole process, the biggest challenges exist with
the bone region segmentation, due to the confusion from
soft tissue responses and noises, inhomogeneity of bone
region intensities, and close or even fused bone regions in
the sutura area. To overcome these challenges, novel and
effective methods are proposed to improve the quality of
input CT images by enhancing the contrast of each CT image
and predicting the bone regions in a CT image utilizing the
coherence between adjacent CT images. .e improved CT
images are finally segmented using a region-based active
contour method. .e accuracy and robustness of the au-
tomatic segmentation andmeasurement results are validated
in our experiments.

In the future, we will extend our system to measure more
parameters as needed for the diagnosis. Furthermore, we will
investigate reconstructing a 3D volume of the bones from
the CT images and conduct measurements on this 3D
volume with increased capability and flexibility.
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