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Epilepsy is marked by seizures stemming from abnormal electrical activity in the brain, causing involuntary movement or
behavior. Many scientists have been working hard to explore the cause of epilepsy and seek the prevention and treatment. In
the field of machine learning, epileptic diagnosis based on EEG signal has been a very hot research topic; many methods
have been proposed, and considerable progress has been achieved. However, resorting the epileptic diagnosis techniques based
on EEG to the reality applications still faces many challenges. Low signal-to-noise ratio (SNR) is one of the most important
methodological challenges for EEG data collection and analysis. This paper discusses an automated diagnostic method for
epileptic detection using a Fréchet Mean embedded in the Grassmann manifold analysis. Fréchet mean-based Grassmann
discriminant analysis (FMGDA) algorithm to implement the EEG data dimensionality reduction and clustering task. The
method is resorted to reduce Grassmann data from high-dimensional data to a relative lower-dimensional data and maximize
between-class distance and minimize within-class distance simultaneously. Every EEG feature is mapped into the Grassmann
manifold space first and then resort the Fréchet mean to represent the clustering center to carry out the clustering work. We
designed a detailed experimental scheme to test the performance of our proposed algorithm; the test is assessed on several
benchmark datasets. Experimental results have delivered that our approach leads to a significant improvement over state-of-
the-art Grassmann manifold methods.

1. Introduction

Epilepsy is a critical neurological disease that is caused by tem-
porary abnormal discharges of the brain electrical activity,
leading to uncontrollable movements and tremulous [1]. Peo-
ple with epilepsy are two or three times more likely to die early
than the normal person [2]. It was estimated that approxi-
mately 1% people in the world suffer from epilepsy, and
elderly patients are the majority [3]. Hence, epilepsy detection
is of great significance in clinical therapy of epileptic patients.

Electroencephalogram (EEG) is most commonly used in
epilepsy detection manner, since it contains valuable physio-
logical information about the brain; it is also a valuable clin-
ical tool for epilepsy evaluation and treatment [4]. Many
automated diagnostic systems for epilepsy have been devel-
oped based on different technologies. In the area of artificial
intelligence, many researchers have been focusing on the

research of EEG data dimensionality reduction and discrim-
inant feature extracting from the raw EEG data as well as
exploring high-performance clustering model to implement
the epilepsy detection task.

Many feature extraction methods have been developed
for the epilepsy detection including time-domain [5, 6],
frequency-domain [7–12], time-frequency analysis [13],
energy distribution in the time-frequency plane [14], wavelet
features [15], and chaotic features such as entropies [6, 16].
There are still many classification methods that have been
proposed to solve the epilepsy detection problems in recent
years. Dehuri et al. proposed to use DE-RBFN method to
implement the epilepsy detection task; EEG signals are
decomposed with wavelet transform into different subbands,
and statistical information is extracted from the wavelet coef-
ficients to supply as the input to ensemble of DE-RBFNs [1].
Li et al. proposed to use the discrete wavelet transform

Hindawi
Computational and Mathematical Methods in Medicine
Volume 2020, Article ID 2598140, 14 pages
https://doi.org/10.1155/2020/2598140

https://orcid.org/0000-0003-4425-7169
https://orcid.org/0000-0003-2216-7576
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/2598140


(DWT) in combination with EA method to extract signifi-
cant features from raw EEG signals, and an effective network
model called NNE is designed specifically to the task of epi-
lepsy detection [2]. Jiang et al. propose to use multiple feature
extraction method to obtain the multiview feature from the
raw EEG, and the classical Takagi-Sugeno-Kang fuzzy system
is used to implement the classification task [17]. Zhang et al.
extracted the entropy as the feature and combine the SVM
classifier to estimate the epileptic cases based on the EEG
signal [18].

However, the aforementioned algorithms for epilepsy
detection based on EEG data are all concerned in terms of
Euclidean alike distance. In order to extend the study of
EEG signal to non-Euclidean space and solve these problems
existing in the EEG applications that the traditional Euclid-
ean algorithms cannot solve, in this paper, we will cast the
EEG processing problem into the Grassmann manifold to
implement the epilepsy detection task.

Grassmann manifold have been a popular method in
recent years for its strong capability in extracting discrimina-
tive information for image sets and videos, where the datasets
are vectors instead of the normal used real value vectors. For
instance, in the study of computer visions, except the tradi-
tional well-structured data, such as image data as well as
video data, there exist some manifold-valued data. The
movement of scattered key points in the video can be
described by subspaces, i.e., the points on the so-called Grass-
mann manifold and the covariance feature descriptors of
images are SPD manifold-valued data [19–21]. Thus, the
clustering problem is completely different from those which
instances are clustered into clusters according to their space
stucture in the euclidean spaces. However, in the Grassmann
manifold space, the objects to be clustered themselves are
subspaces (of the same dimension), i.e., the points on the
abstract Grassmann manifold [22] which is completely dif-
ferent from the traditional Euclidean space with data vector
form. A Grassmann manifold Gðp,DÞ is the space of all p
-dimensional linear subspaces of RDð0 ≤ p ≤DÞ. For p = 0,
the Grassmann manifold becomes the Euclidean space itself.
As Grassmann manifold is abstract, there are a number of
ways to realize it, such as full column rank matrix represen-
tation method [19], orthogonal representation [23], symmet-
ric idempotent matrix representation [24], and Stiefel
manifold representation method [23]. Through those
methods, some existing algorithms which are developed in
the Euclidean space can be extended to the Grassmann man-
ifold. Hamm and Lee [25] employed the projection metric to
encode the Grassmannian points by Grassmannian kernels
and developed Grassmann discriminant analysis on the ker-
nel space. Further, Hamm and Lee [26] theoretically studied
the relationship between projection kernel and the KL dis-
tance. Harandi et al. [27] proposed a graph embedding-
based discriminant analysis approach on Grassmannian
manifold which aims to simultaneously maximize discrimi-
nant power and preserve the geometrical structure of the
manifold. Huang et al. [28] employed the projection metric
to learn discriminant transformation on the Grassmann
manifold. Wang et al. [21] extended classical LPP from the
Euclidean space to Grassmann manifold. We adopt the Stie-

fel manifold representation strategy for the learning task in
the Grassmann manifold space and proposed a Fréchet
mean-based Grassmann discriminant analysis (FMGDA)
algorithm for image sets recognition which has been pre-
sented in [29]. Comparing with the previously proposed
Grassmann manifold algorithms, our proposed Fréchet
mean algorithm has two important innovations: firstly, we
solve the feature extraction problems by minimizing the
within-class mean and maximizing the between-class mean
simultaneously for Grassmannian points. Secondly, our pro-
posed method generalized the classic LDA to non-Euclidean
Grassmann manifolds, and our optimization problem can be
characterized by the trace ratio problem.

EEG signal is an effective tool to study the firing mecha-
nism of cortical neurons; however, due to intrinsic nature of
lower SNR ratio, applications based on EEG signal are
severely limited. To solve these problems that cannot be
solved in the ordinary Euclidean space, we proposed to
map the EEG features to the Grassmann manifold to find
some clues to solve those problems and enhance the epilepsy
diagnosis accuracy simultaneously. Most of the previously
used algorithms for epilepsy detection are carried out in the
Euclidean space, in order to extend the scope of EEG research
and provide more ideas to solve the problems of epilepsy
detection based on EEG signal; we proposed to implement
the epilepsy detection task in the Grassmann manifold to
do some exploratory research work.

Inspired by the already existing video classification
research work in the Grassmann manifold space, we trans-
form the ordinary epilepsy detection task into an image clas-
sification task, where the energy distribution in the time-
frequency plane of EEG signal epochs is viewed as an image;
thus, the epilepsy detection based on the EEG can be realized
by implementing an image classification task. We adopt the
FMGDA method to implement the epilepsy detection task.
The spectrum features of each epoch EEG time series are
extracted by short-time Fourier transform (STFT) first and
get a spectrum matrix. The matrix is then used to construct
a dataset vector, just as the video frames. The FMGDA algo-
rithm finally carries out to classify each dataset.

We summarize our contributions as follows:

(i) The energy distribution in the time-frequency plane
of EEG signal can be used as the image for EEG
classification

(ii) EEG classification problem can be transformed to an
image clustering problem in the Grassmann mani-
fold space

(iii) The Fréchret mean of EEG energy distribution in the
time-frequency plane can be used to characterize the
clustering center in the Grassmann manifold space

The paper is organized as follows: firstly, we review the
traditional linear discriminant analysis method in Section 2.
In Section 3, we introduce our Fréchet mean-based Grass-
mann discriminant analysis (FMGDA) method. In Section
4, we evaluate our proposed algorithms’ performance on
the epilepsy detection. In Section 5, we conclude our work.
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2. Fréchet Mean-Based Grassmann
Discriminant Analysis

In this section, we will introduce our Fréchet mean-based
Grassmann discriminant analysis (FMGDA) algorithm which
was proposed in [29]. We will use our FMGDA algorithm to
implement the epilepsy detection task in the subsequent section.

2.1. Linear Discriminant Analysis. Linear discriminant analy-
sis has been proposed for several years and gained consider-
able attentions for its superiority on the dimensionality
reduction, feature extraction, and the classification research.

Given n samples x1, x2, x3,⋯, xn from c classes. LDA is
to find a linear transformation which can maximize the
between-class distance and minimize the within-class dis-
tance simultaneously in the transformed subspace. In other
words, the linear mapping a can be obtained by solving
the following optimization problem.

â = argmax a
TSba

aTSwa
, ð1Þ

where

Sb = 〠
c

k=1
nk μ kð Þ − μ
� �

μ kð Þ − μ
� �T

,
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c

k=1
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Here, μðkÞ denotes the mean vector of the kth class,
and μ denotes the centroid of all the sample instances.

xðkÞi is the ith instance from the kth class, and nk denotes
the instance number of the kth class. Matrices Sb and Sw
are often called the between-class scatter matrix and
within-class scatter matrix, respectively.

Substituting the sample instances into the formula, with
some simple algebra manipulations, we can obtain the
between-class scatter matrix and within-class scatter matrix
as follows:
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where the notation δEð·, · Þ denotes the Euclidean distance
between two regular data vectors. The solution of (1) is the
generalized eigenvectors corresponding to the largest eigen-
values of the following:

Sba = λSta: ð4Þ

Thus, mapping vector a can be obtained by adopting
the eigen-decomposition method on the matrix S−1t Sb, if
St is nonsingular. There are at most c‐1 eigenvectors cor-
responding to nonzero values, since the rank of Sb is
bounded from above by c‐1. Thus, the reduced dimension
by LDA is at most c‐1.

2.2. Grassmann Manifold. In this section, we provide a brief
summary of the basic Riemannian geometry of Grassmann
manifold. More details can be found in [23, 30, 31]. A Grass-
mann manifold Gðp,DÞ is the space of all p-dimensional lin-
ear subspaces of ℝDð0 ≤ p ≤DÞ. When p = 0, the Grassmann
manifold becomes the Euclidean space itself. When p = 1, the
Grassmann manifold consists of all the lines passing through
the origin in ℝd . As Grassmann manifold is abstract, there
are a number of ways to realize it for numerical learning
purpose.

Assuming thatℝd×p
∗ be the space of all d × pmatrix of full

column rank, GLðpÞ denote the general group of nonsingular
matrices of order p and OðpÞ the group of all the ptimesp
orthogonal matrices.

(i) Representation by full column rank matrices [19]

G p, dð Þ ≅ℝd×p
∗ /GL pð Þ ð5Þ

(ii) The orthogonal representation [23]:

G p, dð Þ ≅ O dð Þ/O pð Þ × O d − pð Þ ð6Þ

(iii) Sysmmetric idempotent matrix representation [24]:

G p, dð Þ ≅ P ∈ℝd×d : PT = P, P2 = P, rank Pð Þ = p
n o

:

ð7Þ

(iv) The Stiefel manifold representation [25];

G p, dð Þ ≅ ST p, dð Þ/O pð Þ ð8Þ

where ST ðp, dÞ = fX ∈ℝd×p : XTX = Ipg:

In our proposed FMGDA, we adopt the Stiefel manifold
representation strategy to complete our Grassmann manifold-
based algorithm. A point X on the Grassmann manifold G

ðp,DÞ is a subspace spanned by the orthonormal columns
of a D × pmatrixX such that XTX = Ip, where Ip is the iden-
tity matrix of size p × p:

Grassmann manifold has a nice property that it can be
embedded into a space consisting of symmetric positive
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semidefinite matrices. More precisely, let X ∈ Gðp,DÞ, we can
define the following projection embedding

Π : G p,Dð Þ⟶ Sym+ Dð Þ,Π Xð Þ = XXT , ð9Þ

where Sym+ðDÞ denotes the space of D ×D symmetric posi-
tive semidefinite matrices. Since Sym+ðDÞ can be understood
as a Euclidean space, a natural metric for Sym+ðDÞ is the Fro-
benius norm. As such, we can define the following projection
metric [25]:

δP X1, X2ð Þ = 1ffiffiffi
2

p Π X1ð Þ −Π X2ð Þk k2F , ð10Þ

where X1 and X2 are two Grassmann points and ΠðXiÞ =
XiX

T
i , i = 1, 2. As pointed in [32], the projection metric

δPð·, · Þ is able to approximate the true Grassmannian geo-
desic distance and become one of the most popular metrics for
analyzing Grassmann manifold features [25, 27, 33].

3. FMGDA

In this section, we propose FMGDA, a supervised sub-
space learning for Grassmann manifold that maps a
high-dimensional Grassmann point to a lower-dimensional
Grassmann manifold.

Suppose we have a data set ðX , YÞ, where X = fXigni=1,
Xi ∈ Gðp,DÞ is a Grassmann point, Y = ½y1, y2,⋯,yn� is the
class indicator matrix. yiðjÞ = 1 if Xi belongs to the jth class
and 0 otherwise. Our purpose is to learn the parameter A ∈
RD×d of a mapping in the form f : Xi ∈ Gðp,DÞ⟶Gðp, dÞ,
which is defined as:

f Xi, Að Þ = ATXi: ð11Þ

With this mapping f , the original high-dimensional
Grassmann manifold can be transformed into a lower-
dimensional Grassmann manifold. However, ATXi is not a
valid Grassmann point since the parameter A is not an
orthogonal matrix. To solve this problem, we temporarily
employ the orthonormal components of ATXi defined by
ATXi′ to represent an orthonormal basis matrix, the trans-
formed projection matrix. We now rewrite f ðXi, AÞ = ATXi′
to make f ðXi, AÞ a valid Grassmann point. The approach to
get ATXi′will be thoroughly discussed in Section 4.

Let XðkÞ = ½XðkÞ
1 , XðkÞ

2 ,⋯,XðkÞ
nk
� be a set of Grassmann

points from the kth class. Recalling the definition of LDA,
we require the mean to capture the discriminant information.
However, traditional Euclidean mean is not a valid Grass-
mann point. Therefore, special care must be taken into
account to compute the subspace mean for Grassmann man-
ifold. Fortunately, subspace mean on the Grassmann mani-
fold has been studied in [34–36]. In particular, the Fréchet
mean is commonly used to characterize the subspace mean
of Grassmann manifold.

Definition 1. The Fréchet mean M∗ for a set of points
fXigni=1, Xi ∈ Gðp,DÞ is the local minimizer of the cost
function

M∗ = arg min
M

〠
n

i=1
δP Xi,Mð Þ: ð12Þ

The above definition shows that the subspace mean
depends heavily on the metric. If we assume all points
come from Euclidean space and choose the Euclidean met-
ric, the Fréchet mean has a closed form solution which is
nothing but the traditional mean. Unfortunately, there is
usually no closed solution for M∗ with Riemannian metric,
and the first-order gradient descent method [22] is com-
monly employed to find the solution. For Grassmann data
points endowed with the projection metric, we have an
analytic solution for the Fréchet mean which is character-
ized in the following lemma.

Lemma 2. The Fréchet mean M∗ for a set of points fXigni=1,
Xi ∈ Gðp,DÞ is the p largest eigenvectors of ∑n

i=1XiXi
T .

LetMðkÞ be the class Fréchet mean of the kth samples XðkÞ

and M be the total Fréchet mean of X . Similar to LDA, the
within-class distance and between-class distance in the trans-
formed low-dimensional Grassmann manifold are defined as

dw Að Þ = 〠
K

k=1
〠
nk

i=1
nkδP f X kð Þ

i , A
� �

, f M kð Þ, A
� �� �

,

db Að Þ = 〠
K

k=1
nkδP f M kð Þ, A

� �
, f M, Að Þ

� �
,

ð13Þ

where f ðXðkÞ
i , AÞ = ATXi′, f ðM, AÞ = ATM ′, and f ðMðkÞ,AÞ

= ATM ′ðkÞ. Note that ATM ′ and ATM ′ðkÞ are the orthonor-
mal components of ATM and ATMðkÞ, respectively. By
the definition of δPð·, · Þ, we can explicitly write dwðAÞ
and dbðAÞ as follows:

dw Að Þ = 〠
K

k=1
〠
nk

i=1
nk ATXi′ kð ÞXi′ kð ÞTA − ATM ′ kð ÞM ′ kð ÞTA
���

���
2

F
,

db Að Þ = 〠
K

k=1
nk ATM ′ kð ÞM ′ kð ÞTA − ATM ′M ′TA
���

���
2

F
:

ð14Þ

It should be pointed out that ATM ′ðkÞ does not exactly
express the Fréchet mean of XðkÞ in the lower dimensional
manifold, but expresses it only approximately. Following
the idea of LDA, we now arrive at the objective of
FMGDA

max
A

db Að Þ
dw Að Þ , ð15Þ
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which aims to maximize the between-class distance and
minimize the within-class distance simultaneously.

4. Iterative Optimization

The optimization problem (15) includes four variables A, Xi
′ðkÞ,M ′ and M ′ðkÞ which is hard to find a closed solution.
In the following, we propose an iterative solution for one of
the four variables at a time by fixing the other and repeating
for a certain number of iterations.

We follow the work in [21, 28] to obtain the orthonormal
components of ATXi′ðkÞ, ATM ′, and ATM ′ðkÞ. Specifically, let
ATXðkÞ

i =Qxi
Rxi

be the QR decomposition, where Qxi
∈ Rd×p

is an orthogonal matrix and Rxi
∈ Rp×p is a nonsingular

upper-triangular matrix. It is easy to show that Qxi
= ATXi′

ðkÞ, where Xi′ðkÞ = XðkÞ
i R−1

xi
. Note that Qxi

and ATXðkÞ
i repre-

sent the same subspace and Qxi
is orthonormal. Similar nor-

malization procedure can be applied to get the other two
variables M ′ and M ′ðkÞ.

Let BðkÞ =M ′ðkÞM ′ðkÞT −M ′M ′T , we have

db Að Þ = 〠
K

k=1
nk ATM ′ kð ÞM ′ kð ÞTA − ATM ′M ′TA
���

���
2

F
,

= 〠
K

k=1
nk ATB kð ÞA
���

���
2

F
,

= 〠
K

k=1
nktr ATB kð ÞAATB kð ÞA

� �
:

ð16Þ

Similarly, let Qik = Xi′ðkÞXi′ðkÞ
T −M ′ðkÞM ′ðkÞT , we have

dw Að Þ = ATXi′ kð ÞXi′ kð ÞTA − ATM ′ kð ÞM ′ kð ÞTA
���

���
2

F
,

= 〠
K

k=1
〠
nk

i=1
nk ATQikA
�� ��2

F
,

= 〠
K

k=1
〠
nk

i=1
nktr ATQikAA

TQikA
� �

:

ð17Þ

We now define a new objective gtðAÞ in the tth iteration
by using the last step Aðt−1Þ as follows

gt Að Þ =
tr AT~B

t−1ð Þ
A

� �

tr AT ~Q
t−1ð Þ

A
� � , ð18Þ

where

~B
t−1ð Þ = 〠

K

k=1
nkB

kð ÞA t−1ð ÞA t−1ð ÞTB kð Þ,

~Q
t−1ð Þ = 〠

K

k=1
〠
nk

i=1
nkQikA

t−1ð ÞA t−1ð ÞTQik:

ð19Þ

Clearly, the solution of tth iteration can be stated as

max
A

tr AT~B
t−1ð Þ

A
� �

tr AT ~Q
t−1ð Þ

A
� � , ð20Þ

which is a trace ratio optimization problem has been exten-
sively studied in [37–39]. In this paper, we use the algorithm
proposed in [37] to solve the optimization problem (20). The
whole procedure of FMGDA is summarized in Algorithm 1.

5. Experiments

In this section, we will use our FMGDA to carry out the epi-
lepsy detection task based on the EEG data. To evaluate the
performance of our FMGDA, four other Grassmann mani-
fold algorithms are introduced, and the classification accu-
racy comparison results are presented.

Each comparison experiments are run for 5 rounds; 10%,
20%, 40%, 60%, and 80% of all the data are used as the train-
ing data, respectively; each round are repeated for 10 times;
the average accuracy results are reported.

5.1. Experimental Setup. The dataset we used to evaluate
the algorithm are publicly available on the web from the
University of Bonn, Germany (http://www.meb.unibonn.de/
epileptologie/science/physik/eegdata.html).

Input: Grassmann points fXgni=1, Xi ∈Gp,D
Output: The mapping matrix A ∈ RD×d

1: Initialize: Set the parameter Að0Þ

2: Compute the class and total Fréchet mean MðkÞ,M respectively according to Lemma 2.
3: While not converged do

4: Normalized XðkÞ
i ,M,MðkÞ according to QR decomposition

5: Compute BðkÞ and Qik
6: Solve the trace ration problem (20)
7: end while

Algorithm 1: FMGDA algorithm.
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The complete data archive contains five groups of data
(denoted by groups A to E), each group containing 100
single-channel EEG segments of 23.6 duration. The sampling
rate of all data is 173.6Hz. Groups A and B consist of seg-
ments acquired from surface EEG recording performed on
five healthy volunteer subjects using standardized electrode
placement scheme.

Recording was carried out when the subjects were relaxed
in awaken state with eyes open (group A) and eyes closed
(group B), respectively. Group C, group D, and group E are
obtained from volunteer subjects with epilepsy. EEG signals
in group C were recorded from the hippocampal formation
of the opposite hemisphere of brain, while those in group D
were measured during seizure-free intervals. Group E con-
tains EEG signals recorded during seizure activity. In
Table 1, we give a brief description of the five data sets.

In Figure 1, we present the energy distribution in the
time-frequency plane of the data samples from the five group
data. Five rows correspond to five different groups; in each
row, there are five images which are computed by the same
group EEG data. All the images are called energy distribution
in the time-frequency plane. In each image, the vertical axis
denotes the time, the horizontal axis represents the normal-
ized frequency, and the color pixel denotes the energy value.
The warmer color means the high energy value, and the
colder color means the lower energy. The energy distribution
in the time-frequency planes is computed by the short-time
Fourier transform algorithm and the logarithmic operation
then used to extract the logarithmic spectrogram value. All
the images corresponding to the EEG data epochs are ran-
domly chosen from the groups. Having obtained the power
spectral density of EEG data, we then employ the logarithm
to the spectrum power to get the logarithm feature. Finally,
we process these logarithm power spectral density feature
matrices as the same as the image set or video clip data.

We adopt the singular value decomposition (SVD) to get
the basis of the matrix which consists of raw features of EEG
spectrum set. More precisely, let fXigMi=1 be a spectrum set,
where Xi is a spectrum of EEG data with dimensionality m
× n and M is the number of spectrum sets. By vectorizing
all the spectrum and stacking them along the column, we
get a matrix Y = ½vecðX1Þ, vecðX2Þ,⋯,vecðXMÞ� which can
be factorized as Y =UΣVT via SVD. We then choose the first
p columns of U ∈ Gðp,m × nÞ as the Grassmannian point to
represent the image set fXigMi=1.

To validate the performance of our proposed FMGDA,
five other Grassmann manifold algorithms are introduced

into our designed experiments to make comparisons with
our algorithm on the clustering performance. The competi-
tor algorithms used in the designed experiments are listed
as follows:

(i) KNN: k nearest neighbor classifier using projection
metric for classifying Grassmann points without
dimensionality reduction

(ii) PML [28]: projection metric learning on the Grass-
mann manifold which can be seen as extension of
Fisher LDA-like framework on the Grassmann
manifold

(iii) GGDA [27]: graph embedding discriminant analysis
on Grassmannian manifolds

(iv) GLPP [21]: locality preserving projections for Grass-
mann manifold

(v) FMGDA: the proposed algorithm in this paper

We first use PML, GGDA, GLPP, and FMGDA to project
the high-dimensional Grassmann points to a lower-
dimensional manifold, then the KNN with k = 1 is employed
to classify Grassmann points.

5.2. Experiment Results and Discussion. From Figure 1, we
can see the spectrum energy distribution of all the groups
EEG data. Subject A data is different significantly with sub-
ject B data. We can conclude that eyes closed or open have
obviously influence on the EEG data spectrum which can
degrade the algorithm’s performance on the epilepsy detec-
tion. Further, the intrinsic lower signal-to-noise ratio also
results in the spectrum energy value to vary severely.

In the first designed experiment, we implement the five
category classification task. Training data are randomly cho-
sen from the total instances of each group data and the rest
for test. We demonstrate the clustering accuracy results of
the algorithms in the case of different numbers of training
samples and data dimensionality in Table 2. The variable
ratio denotes the percentage of all data we used for the model
training, and the variable dim denotes the reduced dimen-
sionality. From the experimental result, we can see that when
the reduction dimensionality value is between 20 and 35,
FMGDA has the best performance. As the dimensionality
reduces and the performance decreases, the strange phenom-
enon also exists in other competitor algorithms. Classifying
the EEG data into five different categories with only one

Table 1: Dataset description.

Subject Groups Size Dataset description

Healthy
A 100 EEG signals from healthy people with eyes open

B 100 EEG signals from healthy people with eyes closed

Epileptic

C 100
EEG signals obtained in the hippocampal formation of the opposite

hemisphere of the brain during seizure-free intervals

D 100 EEG signals obtained from within the epileptogenic zone during seizure-free intervals

E 100 EEG signals measured during seizure
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channel data, our proposed FMGDA can achieve 70%
accuracy when the setting value of the ratio and the reduc-
tion dimensions are 0.8 and 25, respectively. When the
reduced dimensionality is between 20 and 35, we can get
the considerable performance. The classification perfor-
mance decreases as the dim increases; when the value of
dim is bigger than 30, we guess that it is because too high
dimensionality will introduce too much redundant infor-
mation, thus degrading the algorithm’s performance.

In the second designed experiment, we implement the
binary classification experiment. We classify those healthy
persons who are free in epilepsy with eyes open and
closed. The experiment results are displayed in Table 3.
From Table 3, we can get that when the dim value is equal
to 15, we can get 70% classification accuracy which is sig-
nificantly higher than the random probability. From this
experiment, we can conclude that the state of the eyes
has a very important influence on the classification of
EEG signals.

In the third designed experiment, we compare the classi-
fication performance of our FMGDA with the competitor
algorithms. We compare the five class classification and
binary classification accuracy results, respectively. We firstly
cluster the EEG data into five classes to try to recognize those

healthy persons whose eyes are open and those healthy per-
sons whose eyes are closed, those persons who get the epi-
lepsy in the hippocampal formation of the opposite
hemisphere of the brain during seizure-free intervals, within
the epileptogenic zone during seizure-free intervals and those
persons who are during seizure. Secondly, we perform the
binary clustering task to classify the EEG data into two classes
corresponding to the healthy person with eyes open and the
healthy person with eyes closed.

The comparison results are displayed in Figure 2. Classi-
fication accuracy shows that our FMGDA defeats the second
place algorithm by a small margin. Even in the case of some
parameter settings, the performance of our algorithm is
weaker than that of the KNN or PML algorithms. The binary
classification performance comparisons show that eyes open
or closed have a significant effect on person’s EEG signal, that
is to say the state of the eyes has bad influence on the detec-
tion of epilepsy based on the EEG signal. The five category
classification results demonstrate that none of the algorithms
can get the classification accuracy greater than 75%. We
guess that on the one hand, it is due to the complexity of
the human brain and the low signal-to-noise ratio of the
EEG signal itself, and on the other hand, it shows that our
algorithm needs to be improved.
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Figure 1: The energy distribution in the time-frequency plane feature of all EEG dataset.
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We designed a fourth experiment to compare the perfor-
mance of epilepsy detection based on Grassmann algorithms.
We implement the binary classification task on all of the EEG
data to classify the epilepsy persons from the healthy persons.

We compare the clustering performance of our FMGDA
with the competitor algorithms. The comparison results are
displayed in Figure 3. From the comparison results, we can
get that our proposed FMGDA algorithm shows better

Ratio = 0.1 Ratio = 0.2 Ratio = 0.4 Ratio = 0.6 Ratio = 0.8
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65
Multi classification accuracy on A, B, C, D, and E dataset with parameter varies

FMGDA
GGDA
GLPP

KNN
PML

(a)

Ratio = 0.1 Ratio = 0.2 Ratio = 0.4 Ratio = 0.6 Ratio = 0.8
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Binary classification accuracy on A and B dataset with parameter varies

FMGDA
GGDA
GLPP

KNN
PML

(b)

Figure 2: The classification accuracy on the EEG dataset with the parameter value varies. (a) Multiclass classification results over the all EEG
dataset. (b) The binary classification results over group A and group B datasets.
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performance on most of the experimental parameter setting
case. The KNN and PML algorithms also get good clustering
results and GGDA get the worst results.

In the fifth experiment, we test the algorithms' clustering
performance of binary classification on the healthy and epi-

lepsy data which from the healthy persons with eyes open,
from healthy persons with eyes closed, and from those per-
sons who are during seizure, the classification accuracy is
presented in Figure 4. From the experimental results, we
can learn that KNN algorithm has the best performance over
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Figure 3: The classification accuracy on the EEG dataset with the parameter value varies. (a) Binary classification results over the all EEG
dataset. (b) Multiclass classification results over group C, group D, and group E datasets.
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the epilepsy detection task; our proposed FMGDA is inferior
to KNN algorithm by a slight margin in some experiment
cases but still better than the other three algorithms. The
results also show that based on single-channel EEG data,
patients, during seizures, can be detected with high accuracy
and also those epileptic patients during seizure-free intervals.

6. Conclusion

In this paper, we proposed to use a Fréchet mean-based dis-
criminant analysis method to implement the epilepsy detec-
tion based on the EEG data. Firstly, the short-time Fourier
transform is used to extract the spectrogram feature of EEG
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Binary classification accuracy on A, B, C, and D dataset with parameter varies
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Figure 4: The classification accuracy on the EEG dataset with the parameter value varies. (a) Binary classification results over group A, group
B, group C, and group D EEG dataset. (b) Binary classification results over group A, group B, and group E datasets.
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data to form a 2D power spectrum image. Secondly, we pro-
ject the high-dimensional Grassmann spectrum image to a
low-dimensional Grassmann manifolds. Thirdly, we adopt
the Fréchet mean method to characterize the center of Grass-
mann points. Finally, the classical KNNmethod is adopted to
detect the epilepsy based on the low-dimensional Grassmann
points. Experimental results on benchmark datasets have
demonstrated that our proposed method is useful in the
application of epilepsy detection based on the EEG data
and our proposed algorithm has certain advantages over
the other competitor algorithms. However, there are still
existing problems in our proposed algorithm. Firstly, the per-
formance of our FMGDA on the epilepsy detection based on
the EEG signal does not have great advantages, some state-
of-art algorithms have better performance than our FMGDA.
Secondly, the optimization algorithm involves the single
value decomposition operations, which increase the com-
plexity of our FMGDA; when the data size increases, the
algorithm will be limited. We will focus on the enhance per-
formance as well as reduce the optimization algorithm’s
complexity in our future work.
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