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An electrocardiogram (ECG) records the electrical activity of the heart; it contains rich pathological information on cardiovascular
diseases, such as arrhythmia. However, it is difficult to visually analyze ECG signals due to their complexity and nonlinearity. The
wavelet scattering transform can generate translation-invariant and deformation-stable representations of ECG signals through
cascades of wavelet convolutions with nonlinear modulus and averaging operators. We proposed a novel approach using
wavelet scattering transform to automatically classify four categories of arrhythmia ECG heartbeats, namely, nonectopic (N),
supraventricular ectopic (S), ventricular ectopic (V), and fusion (F) beats. In this study, the wavelet scattering transform
extracted 8 time windows from each ECG heartbeat. Two dimensionality reduction methods, principal component analysis
(PCA) and time window selection, were applied on the 8 time windows. These processed features were fed to the neural
network (NN), probabilistic neural network (PNN), and k-nearest neighbour (KNN) classifiers for classification. The 4th time
window in combination with KNN (k = 4) has achieved the optimal performance with an averaged accuracy, positive predictive
value, sensitivity, and specificity of 99.3%, 99.6%, 99.5%, and 98.8%, respectively, using tenfold cross-validation. Thus, our
proposed model is capable of highly accurate arrhythmia classification and will provide assistance to physicians in ECG
interpretation.

1. Introduction

Cardiovascular diseases (CVDs) are the main causes of death
globally. An estimated 17.9 million people died from CVDs
in 2016, representing 31% of all global deaths [1]. There are
many factors that lead to CVDs, including smoking and
tobacco use, physical inactivity, poor dietary habit, over-
weight and obesity, etc. [2]. One broad group of complication
of CVDs is arrhythmia, which expresses the electrical dis-
function of the heart.

An arrhythmia refers to the abnormal rate or rhythm of
heartbeat. During an arrhythmia, the heart can beat too fast,
too slowly, or with an irregular rhythm [3]. An electrocardio-
gram (ECG) monitors the electrical activity of the heart, and
cardiac arrhythmias can be detected through any change in
the morphological pattern over a recorded ECG waveform.
There are many arrhythmia categories, and each contains
different pathological information. Figure 1 shows the pat-
terns of ECG signals for different arrhythmia categories. It

is of vital importance to accurately classify ECG signals into
those categories in time. For cardiologists, relying on large
amount of expertise and experience in their field, they visu-
ally observe the ECG waveform and obtain diagnostic results.
However, this visual assessment may lead to subjective inter-
pretations due to the presence of noise and minute morpho-
logical parameter values in ECG signals [4]. Moreover, it is
also time-consuming and exhausting for cardiologists to
interpret ECG signals, which may delay the best treatment
opportunity for patients.

To address these drawbacks, various computer-aided
diagnosis (CAD) systems have been developed recently.
The CAD systems can be used as an adjunct tool for physi-
cians in their interpretation of ECG signals to improve the
accuracy and diagnostic speed. It plays an important role in
the management of CVDs [5]. Table 1 summarizes some
selected state-of-the-art studies of CAD systems. Most of
them focused on conventional machine learning approaches.
Feature extraction and classification are essential steps for
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these methods. The features extracted, including parametric
and visual pattern features [6–8], from ECG signals and the
classifiers designed for classification directly influence the
performance of arrhythmia detection. Although some of
these studies have achieved great classification performances,
they might have two main drawbacks: firstly, they require a
well-designed feature extractor and the features need to be
manually optimized before feeding into classifiers; secondly,
they usually suffer from overfitting. Moreover, few of these
methods provided the confusion matrix recommended by
the ANSI/AAMI EC57:1998 standard [9]. Hence, it is diffi-
cult to compare their classification performances on different
arrhythmia categories in detail.

Since 2016, the methods based on deep learning
approaches such as convolution neural network (CNN)
have been proposed to identify abnormal ECG heartbeats
including arrhythmias. Both of the feature extraction and
classification are embedded together in the model. These
methods have the ability to extract self-learn features [10].
However, they might have three main drawbacks: lack of
strong theoretical support, requiring large amount of train-
ing data to achieve good performance, and consuming huge
computational costs to train the model. Due to these draw-
backs, one has to take a large number of numerical experi-
ments to empirically conduct hyperparameter optimization
as well as set up the optimal architecture, and the features
extracted may be unexplainable in practical applications.
Further, the performances of these methods remain to be
improved.

The wavelet transform is an efficient tool for analyzing
nonstationary ECG signals due to its time-frequency localiza-
tion properties [11–13]. However, it is not invariant to trans-
lation. Recently, Mallat proposed a novel signal-processing
method, the wavelet scattering transform, by cascading the
wavelet transform with a nonlinear modulus and averaging
operators [14]. The wavelet scattering transform can provide
time and frequency resolutions, which is invariant to transla-
tion, stable to deformations, and preserves high frequency
information for classification [15]. Moreover, Mallat charac-
terized three properties that deep learning architectures pos-

sess for extracting useful features from data [16]: multiscale
contractions, linearization of hierarchical symmetries, and
sparse representation. The wavelet scattering transform also
possesses these properties and, hence, has both advantages
of conventional and deep learning approaches. It has
achieved state-of-the-art performances in the tasks of art
authentication, musical genre classification, audio recogni-
tion, and handwriting classification [17–20].

Motivated by the excellent property of wavelet scattering
transform, we aim to explore the performance of the wavelet
scattering transform in extracting the features from ECG sig-
nals for automated classification of arrhythmias. Specifically,
we get data from the MIT-BIH Arrhythmia Database and
classify the arrhythmias into four classes; more details are
shown in Section 2. Then, we use wavelet scattering trans-
form combined with some dimension reduction methods to
extract features. Several existing classifiers, k-nearest neigh-
bour (KNN), neural network (NN), and probabilistic neural
network (PNN), are used to test the performances of the
wavelet scattering transform on arrhythmia identification.
In the end, our results are compared to some existing
approaches listed in Table 1.

The paper is organized as follows: Section 2 introduces
the database and data preprocessing methods. Section 3 pre-
sents the wavelet scattering transform as well as its properties
and introduces the classifiers used in this study. Section 4
shows the detailed architecture and numerical experimental
results, which are discussed in Section 5. We conclude the
paper in Section 6.

2. Materials Used

In this section, we will briefly introduce the database that we
used for ECG classification and describe our data preprocess-
ing and augmentation methods.

2.1. MIT-BIH Database. We used the MIT-BIH Arrhythmia
Database [21] to train and test our method. This database is
widely used for ECG classification and is publicly available.
The MIT-BIH database contains 48 half-hour excerpts of
two-channel ambulatory ECG recordings, obtained from 47
subjects studied by the BIH Arrhythmia Laboratory between
1975 and 1979 [22]. The recordings were digitized at 360
samples per second per channel with 11-bit resolution over
a 10mV range. These records were first annotated by at least
two cardiologists independently. After reaching an agree-
ment for all annotations, the agreed annotations were
marked in a computer-readable format. The annotation for
every beat on ECG includes the position of R-peak and the
type of arrhythmia it belongs to. The database includes 15
types of arrhythmias such as ventricular premature, atrial
premature, and atrial flutter. Figure 2 shows a fragment of
record 100. As shown in Figure 2, each record contains two
leads, say, two channels of the ECG signal.

2.2. Data Preprocessing. According to the ANSI/AAMI
EC57:1998 standard [9], the 15 types of arrhythmia beats
can be classified into five categories including nonectopic
(N) beats, supraventricular ectopic (S) beats, ventricular
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Figure 1: ECG signals for different arrhythmia categories.
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Table 1: Selected automated ECG classification methods on the MIT-BIH Arrhythmia Database.

Author Year Method Class Performance

Conventional machine learning approaches

Inan et al. [35] 2006 Feature extraction: classifier
WT and timing interval

Neural network
3 ACC: 95.16%

Sayadi et al. [36] 2010 Feature extraction: classifier
Innovation sequence of EKF

Bayesian filtering
2

ACC: 99.10%

SEN: 98.77%

SPEC: 97.47%

Martis et al. [32] 2012 Feature extraction: classifier
PCA

SVM with RBF kernel
5

ACC: 98.11%

SEN: 99.90%

SPEC: 99.10%

Prasad et al. [37] 2013 Feature extraction: classifier
HOS+ICA

KNN
3

ACC: 97.65%

SEN: 98.75%

SPEC: 99.53%

Martis et al. [38] 2013 Feature extraction: classifier
Cumulant+ICA

KNN
3

ACC: 99.5%

SEN: 100%

SPEC: 99.22%

Martis et al. [7] 2013 Feature extraction: classifier
HOS+PCA
LS-SVM

3

ACC: 93.48%

SEN: 99.27%

SPEC: 98.31%

Martis et al. [39] 2013 Feature extraction: classifier
Cumulant+PCA

LS-SVM
5

ACC: 94.52%

SEN: 98.61%

SPEC: 98.41%

Martis et al. [32] 2012 Feature extraction: classifier
DCT+PCA

SVM with RBF kernel
5

ACC: 99.52%

SEN: 98.69%

SPEC: 99.91%

Martis et al. [40] 2014 Feature extraction: classifier
ICA+DCT

KNN
3

ACC: 99.45%

SEN: 99.61%

SPEC: 100%

Kaya and Pehlivan [41] 2015 Feature extraction: classifier
Genetic algorithms

KNN
5

ACC: 99.69%

SEN: 99.46%

SPEC: 99.91%

Kaya and Pehlivan [8] 2015 Feature extraction: classifier
Time series+PCA

KNN
5

ACC: 99.63%

SEN: 99.29%

SPEC: 99.89%

Li and Zhou [33] 2016 Feature extraction: classifier
WPE+RR

RF
5 ACC: 94.61%

Mondjar-Guerra et al. [42] 2018 Feature extraction: classifier
Wavelets+LBP+HOS+several

amplitude values
RF

5

ACC: 94.5%

SEN: 66.4%

SPEC: 70.3%

Yang and Wei [6] 2020 Feature extraction: classifier
Combined parameter and visual

pattern features of ECG morphology
KNN

5 ACC: 97.70%

This work 2020 Feature extraction: classifier
WSN+the 4th time window

PNN
4

ACC: 99.3%

SEN: 99.5%

SPEC: 98.8%

Deep learning approaches

Martis et al. [40] 2014 9-layer deep convolution neural network 5

ACC: 93.47%

SEN: 96.01%

SPEC: 91.64%

ACC: accuracy; SEN: sensitivity; SPEC: specificity;WT: wavelet transform; EKF: extended Kalman filter; DCT: discrete cosine transform; DWT: discrete wavelet
transform; HOS: higher order statistics; IC: independent component; ICA: independent component analysis; RR: RR intervals; WPE: wavelet packet entropy;
LBP: local binary patterns; RF: random forest; LS-SVM: least square-support vector machine.
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ectopic (V) beats, fusion (F) beats, and unknown (Q) beats.
Table 2 shows the subdivisions of these categories.

Complying with the ANSI/AAMI EC57:1998 recom-
mended practice [9], we excluded 4 records which are from
patients with pacemakers, because records containing paced
beats do not retain sufficient signal quality. For the remaining
records, only modified-lead II signals were used. Then, we
detected the R-peak in each record to segment heartbeats.
The R-peak detection algorithm is not the focus of our study,
as many excellent algorithms have been proposed in litera-
tures [11, 23]. Moreover, we directly used the raw data and
no denoising technique was applied. Further details are avail-
able in [9].

A total of 100507 heartbeats were segmented from the 44
records. Each beat is 250 samples long, centered around the
R-peak, containing 99 samples before the R-peak and 150
samples after the R-peak. Then, they were sorted into five cat-
egories according to their annotations. Table 3 shows the
number of heartbeats in each category. Similar to [6, 24,
25], the class Q was discarded since it is marginally repre-
sented (0.012%) in the database. Figure 1 shows some seg-
ments in the considered four categories.

2.3. Data Augmentation. There are huge imbalances between
the number of heartbeats in classes N, S, V, and F, which will
lead to inferior classification performance [10, 26]. Following
the data augmentationmethod in [26], we augmented the data
by adding Gauss white noise with zero mean and 0.05 vari-
ance. Specifically, as class N has enough heartbeats, we ran-
domly chose 90000 heartbeats from it and did not add noise.
The number of beats in the remaining classes was increased
to 90000 separately to match that in class N. Consequently,
the augmented database includes 360000 heartbeats.

3. Methodology

In this section, we will present our methods for ECG classifica-
tion. In Section 3.1, we describe the wavelet scattering trans-
form that we used to learn the feature representation of ECG
signals. We then introduce the used classifiers in Section 3.2.

3.1. Wavelet Scattering Transform. A wavelet scattering
transform builds translation invariant, stable, and informa-
tive signal representations. It is stable to deformations and
preserves class discriminability, which makes it particularly
effective for classification. We refer to [17–20] for its excel-
lent practical performance for classification.

We will follow the notations in [19]. Let f ðtÞ be the
signal under analysis. The low-pass filter ϕ and the wave-
let function ψ are designed to build filters which cover
the whole frequencies contained in the signal. Let ϕJðtÞ
be the low-pass filter that provides locally translation
invariant descriptions of f at a predefined scale T . We
denote by Λk the family of wavelet indices having an
octave frequency resolution Qk. The multiscale high-pass
filter banks fψjk

g
jk∈Λk

can be constructed by dilating the

wavelet ψ.
A wavelet scattering transform is implemented with a

deep convolution network that iterates over traditional wave-
let transform, nonlinear modulus, and averaging operators.
The convolution S0 f ðtÞ = f⋆ϕJðtÞ generates a locally transla-
tion invariant feature of f , but also results in the loss of high-
frequency information. These lost high frequencies can be
recovered by a wavelet modulus transform

W1j j f = S0 f tð Þ, f⋆ψj1
tð Þ

�
�
�

�
�
�

n o

j1∈Λ1
: ð1Þ

The first-order scattering coefficients are obtained by
averaging the wavelet modulus coefficients with ϕJ :

S1 f tð Þ = f⋆ψj1

�
�
�

�
�
�⋆ϕJ tð Þ

n o

j1∈Λ1
: ð2Þ

To recover the information lost by averaging, noting
that S1 f ðtÞ can be seen as the low-frequency component
of j f⋆ψj1

j, we can extract complementary high-frequency

coefficients by

W2j j f⋆ψj1

�
�
�

�
�
� = S1 f tð Þ, f⋆ψj1
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�
�
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�
�⋆ψj2

tð Þ
�
�
�
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�
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n o

j2∈Λ2
: ð3Þ

It further defines the second-order scattering coefficients

S2 f tð Þ = f⋆ψj1

�
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�

�
�
�⋆ψj2

�
�
�

�
�
�⋆ϕJ tð Þ

n o

ji∈Λi

,  i = 1, 2: ð4Þ

Iterating the above process defines wavelet modulus con-
volutions

Umf tð Þ = ∣f⋆ψj1
∣⋆⋯

�
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�⋆ψjm
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ji∈Λi

, i = 1, 2,⋯,m: ð5Þ

Averaging Umf ðtÞ with ϕJ gives them-th-order scattering
coefficients

Smf tð Þ = ∣f⋆ψj1
∣⋆⋯
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Figure 2: A fragment of record 100.
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This scattering process is illustrated in Figure 3. The final
scattering matrix

Sf tð Þ = Smf tð Þf g0≤m≤l, ð7Þ

aggregates scattering coefficients of all orders to describe the
features of input signal, where l is the maximal decomposi-
tion order.

The network is invariant to translations up to the invari-
ance scale, which can be potentially large, due to the average
operation determined by the low-pass filter ϕJ . As a prop-
erty inherited from wavelet transform, the features Sf ðtÞ
are stable to local deformations. The scattering decomposi-
tion can capture subtle changes in amplitude and duration
of ECG signals, which are hard to measure but reflect the
condition of the heart. Therefore, we use the wavelet scatter-
ing network to produce robust representations of ECG
heartbeats that minimize differences within one arrhythmia
category while maintaining enough discriminability between
different categories.

Though the structure of the wavelet scattering network is
similar to CNN, they have twomain differences: the filters are
not learned but set in advance and the features are not only
the output of the last convolution layer but also the combina-
tion of all those layers. It has been shown that the energy of
scattering coefficients decreases rapidly as the layer level
increases, with almost 99% of the energy contained in the
first two layers [18, 19]. Therefore, we used a two-order scat-
tering network to extract the features of ECG signals. This
also reduces the computational complexity significantly.

3.2. Classifier. We next briefly introduce the used classifiers
that combine features to predict the class membership of

the ECG signal. We choose classifiers according to two cri-
teria. First, the classifier must be widely used in existing liter-
atures, such as NN, KNN, PNN, and support vector machine
(SVM). Second, it must be capable of efficiently processing
high dimension and large size training data. NN, KNN, and
PNN satisfy both of the requirements, while SVM is ruled
out for the low computational efficiency. Thus, we use NN,
KNN, and PNN for classification in this work.

3.2.1. Neural Network. The feedforward NN is the most
widely used artificial neural network for classification [27,
28]. We set the architecture as follows. There are 75 neurons
in the input layer, corresponding to the 75 dimensions of the
feature vector extracted by wavelet scattering transform. Six
hidden layers contain 70, 60, 45, 30, 20, and 10 neurons,
respectively, and the first five hidden layers are activated by
the ReLU function: f ðxÞ =max ð0, xÞ. The output layer has
4 neurons, each of which represents an arrhythmia category
and is activated by the Softmax function:

g zð Þi =
exp zi

∑4
j=1expzj

, i = 1,⋯, 4: ð8Þ

We used the cross-entropy cost function [10] and
employed error backpropagation algorithm to solve the
weights. The Adam algorithm [29] was used to adaptively
update the learning rate. We set the iteration number to 50
which is enough for training the network.

The above architecture was set up through trial and error.
We have tried several combinations of different numbers of
hidden layers, different activation functions, different num-
bers of neurons in each layer, different numbers of sample
sizes in minibatch, and different epochs of parameter update,
etc. Considering the computational cost and classification
accuracy comprehensively, the network we present achieves
the optimal performance compared to other tested architec-
tures. Once the neural network was trained, all the testing
data were fed into the network to measure its classification
performance.

3.2.2. Probabilistic Neural Network. The PNN [30] is widely
used in classification and pattern recognition problems. In
the PNN algorithm, the class probability of a new input data
is estimated and the Bayesian rule is then employed to allo-
cate the class with the highest posterior probability to new

Table 2: MIT-BIH Arrhythmia Database beats classified as per ANSI/AAMI EC57:1998 standard [9].

N S V F Q

Normal Atrial premature
Premature ventricular

contraction
Fusion of ventricular

and normal
Paced

Left bundle branch Aberrant atrial Fusion of paced and normal

Right bundle branch block
Nodal (junctional)

premature
Ventricular escape Unclassifiable

Atrial escape
Supraventricular

premature

Nodal (junctional) escape

Table 3: The breakdown of five arrhythmia categories.

Class Number of ECG heartbeats

N 90023

S 2758

V 6914

F 800

Q 12

Total 100507
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input data. The operations in a PNN are organized into a
feedforward network with four layers: input layer, pattern
layer, summation layer, and output layer. The input layer
has the same number of neurons as the dimension of feature
vector. Each neuron represents a predictor variable and feeds
the values to each of the neurons in the pattern layer. The
pattern layer contains one neuron for each sample in the
training data. Each hidden neuron computes the Euclidean
distance of the test sample from the neuron’s center point.
The summation layer has the same number of neurons as
that of the categories of the input data. The weight coming
out of a hidden neuron is fed only to the pattern neuron that
corresponds to the hidden neuron’s category. The output
layer compares the weighted votes for each target category
accumulated in the summation layer and uses the largest vote
to predict the target category. PNN is more accurate than the
multilayer neural network. It can approach the Bayesian
optimal classification as long as the training data is enough.
In this study, four layers in the trained PNN contain 75,
324000, 4, and 1 neurons, respectively.

3.2.3. k-Nearest Neighbours. The KNN is a nonparametric
method widely used for classification. The input consists of
the k closest training samples in the feature space. An unla-
beled data is classified by assigning the label which is most
frequent among the k training samples nearest to that query
data. The commonly used distance metric for KNN is the
Euclidean distance. As for the selection of k values, we use
the brute-force method. Specifically, k = 1, 2, 3, 4, 5 have been
tested and k = 4 is the most appropriate value for the classifi-
cation. Thus, we only present the results of k = 4 in Section 4.

4. Experimental Results

In this section, we will discuss the features extracted by scat-
tering transform and our classification process. Specifically,
two methods will be introduced for dimensionality reduction
based on the pattern of features.

The wavelet scattering transform, PNN, and KNN classi-
fiers were implemented byMATLAB 2018b. We used Python
3.7 to implement the NN classifier.

4.1. Feature Extraction. We used the Gabor wavelets to per-
form wavelet decomposition. The corresponding low-pass
filter ϕ is a Gaussian function. We set the invariance scale
to 0.5 second. The constructed wavelet scattering network

includes two layers. We set Q1 = 8 and Q2 = 1 wavelets per
octave at the first and second layers, respectively. We had
tried other different settings for the invariance scale and
wavelet octave resolution, but this architecture preserves
the signal information best for classification. Figure 4 shows
the used Gabor wavelets and its low-pass filter ϕJðtÞ. Note
that the coarsest-scale wavelet does not exceed the invari-
ance scale determined by the time support of the low-pass
filter ϕJðtÞ.

The output of the wavelet scattering network forms a ten-
sor with the size of 75 × 8 × 36000. Each slice of the tensor is
the scattering coefficients of one ECG heartbeat. The scatter-
ing coefficients are critically downsampled in time based on
the bandwidth of the low-pass filter, which results in 8 time
windows for each of the 75 scattering paths. To obtain a data
structure compatible with the used classifiers, we reshaped
the tensor into a 2880000 × 75 matrix where each column
and row corresponds to a scattering path and a time window,
respectively. We obtained 2880000 rows because there are 8
time windows for each of the 360000 signals in the database.
Figure 5 shows the scattering coefficients of the 8 time win-
dows for one ECG heartbeat.

4.2. Classification with NN. The NN classifier is capable of
classification task for big data, so we used it to preliminarily
test the classification performances of 8 time windows. For
each heartbeat, we created labels to match the number of
time windows. The decision for each time window was aggre-
gated by majority vote to generate a label for the input ECG
heartbeat.

We employed a 10-fold cross-validation [31]. Firstly, the
360000 ECG heartbeats were divided into 10 equal parts.
Then, 90% of them were used to train the network, and the
remaining 10% were used for testing. This process was
repeated 10 times, and the overall performance was the aver-
aged value over the 10 folds.

The AAMI has provided the standards and recom-
mended practices for reporting performance results of auto-
mated arrhythmia detection algorithms [9]. We followed
those practices so that the methods in this paper can be com-
pared with those in Table 1. The positive predictive value
(PPV), sensitivity (SEN), and specificity (SPEC) were used
to measure the classification performances of our methods.
Table 4 presents the confusion matrix across 10 folds.
Table 5 presents the accuracy of each time window.
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Figure 3: The tree view of wavelet scattering network.
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4.3. PCA and Time Window Selection. As shown in Figure 5,
the 8 time windows are significantly correlated with each
other. Table 5 illustrates that the 3th, 4th, and 5th time win-
dows have better discrimination than the others. We can also
see from Figure 5 that these three time windows have larger
amplitude and more fluctuations, which means they contain
more and clearer details of ECG heartbeat, especially the 4th

time window. In order to get better performance and reduce
computational cost, we used two methods to reduce the
redundancy of the 8 time windows.

(i) Principal component analysis (PCA): PCA projects
features in the directions of the highest variance to
reduce the dimensionality of features [32]. The first
few principal components can represent the most
variability in features. The contribution rate of a
principal component is the percentage of the total
variability it represents. In this study, there are 8 time
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Table 4: The confusion matrix for 8 time windows combined with
the NN across 10 folds.

Original
Predicted

N S V F
PPV
(%)

SEN
(%)

SPEC
(%)

N 88681 369 737 213 90.9 98.5 96.7

S 4106 82994 2006 894 93.9 92.2 98.0

V 2669 2132 83701 1498 91.7 93.0 97.2

F 2124 2872 4843 80161 96.9 89.1 96.5

Table 5: The accuracy of each time window classified by the NN.

Time window 1 2 3 4 5 6 7 8

ACC (%) 88.9 90.3 92.2 92.8 92.2 91.2 89.8 87.3
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windows for each node in the scattering network.
However, the 8 time windows have collinearity to
some extent, which may lead to low classification
performance. In order to remove the collinearity
and generate more concise features, we used PCA
to extract principal components of the 8 time win-
dows for each node. The averaged contribution rate
of the first and second principal components is
approximately 84% and 15%, respectively. Hence,
for each ECG heartbeat, we took the first principal
component of 8 time windows as the new feature,
which is a 75-dimensional vector with each dimen-
sion corresponding to a node.

(ii) Time window selection: as described in Section 4.3,
majority vote was used to predict the label for each
testing ECG heartbeat. However, as shown in
Table 5, the performance can be affected by those
time windows with low accuracy. Moreover, the
pathological information of ECG signals mainly
concentrates around the R-peak, which has a very
short duration. The discrimination between different
arrhythmia categories may be involved in one partic-
ular time window. This motivates us to test the per-
formance of each time window separately using
different classifiers and find the time windows that
generate the best classification results.

The NN classifier is capable of using any number of time
windows as features. While limited by their computational
ability, the PNN and KNN classifiers are suitable for the case
of using one time window as features. To test the PCA
method, we fed the first principal component of 8 time
windows into the NN, PNN, and KNN classifiers, respec-
tively. The confusion matrices across 10 folds are shown in
Table 6. To test the time window selection method, we con-
ducted two experiments. Firstly, we fed the 8 time windows
into the NN, PNN, and KNN classifiers separately and found
that the 4th time window generates the best performance.
The confusion matrices are shown in Table 7. Secondly, we
tried different time window combinations and classified
them by the NN classifier and found that the combination
of the 3th, 4th, and 5th time windows performs better than
the others. Table 8 presents the confusion matrix.

5. Discussion

In this section, we will discuss the classification results pre-
sented in Section 4.3 and compare our methods with those
state-of-the-art studies.

NN: among all methods using the NN classifier, the one
using the 4th time window as feature provides the maximum
averaged ACC of 98.1% and averaged PPV, SEN, and SPEC
of 99.3%, 98.2%, and 97.8%, respectively. Comparing
Tables 4, 7, and 8, we can confirm that removing some time
windows improves the classification performance. This indi-
cates that there is some redundancy among the 8 time win-
dows and the differences between the four categories (N, S,
V, and F) are mainly reflected in the 3th, 4th, and 5th time

windows. The performance of the 4th time window is close
to that of the combination of the 3th, 4th, and 5th time win-
dows. However, the training time of the latter is three times
that of the single 4th time window. Moreover, the perfor-
mance of the first principal component of 8 time windows
is unsatisfactory, which is much worse than that of the 4th
time window.

PNN: comparing Tables 6 and 7, the 4th time window
and the first principal component provide almost the same
results in combination with the PNN (spread = 0:01) classi-
fier. The former is slightly better, yielding an averaged
ACC, PPV, SEN, and SPEC of 99.0%, 98.7%, 99.9%, and
96.0%, respectively. We set the spread value by the brute-
force method. The PNN classifiers with a spread value of
0.005, 0.01, 0.02, 0.03, 0.04, 0.1, and 1 have been tested, and
the one with the spread value of 0.01 produces the best
results. Table 7 shows that the SEN of supraventricular
ectopic beats (SVEB) and ventricular ectopic beats (VEB)
are 99.8% and 99.9%, respectively; it means that almost all
the SVEB and VEB have been correctly detected. Therefore,
the PNN classifier has excellent performance in classifying
the SVEB and VEB, which should be paid more attention
in clinical diagnosis.

KNN: the best performance of this work is achieved by
KNN with k = 4 and using the 4th time window as the fea-
ture. The averaged ACC, PPV, SEN, and SPEC are 99.3%,
99.6%, 99.5%, and 98.8%, respectively, and are much better
than those of the PCA features. However, this result only
measures the performance in classifying normal (N) and
abnormal (S, V, and F) ECG heartbeats. From Table 7,
we can find that the PNN classifier performs better in clas-
sifying different arrhythmia categories, especially the VEB
and SVEB.

Table 1 summarizes recent advances in automated clas-
sification of ECG beats using the MIT-BIH Arrhythmia
Database. Only four of them have the same arrhythmia cat-
egories as this work, which are N, S, V, F, and Q. Martis
et al. [32] used PCA on discrete cosine transform (DCT)
coefficients computed from the segmented beats of ECG.
The dimensionality-reduced features in combination with
the KNN classifier yield the highest averaged ACC, SEN,
and SPEC of 99.52%, 98.69%, and 99.91%, respectively.
However, the confusion matrix was not provided in [32].
Li and Zhou [33] used wavelet packet entropy (WPE) and
random forests (RF) to classify ECG signals into 5 catego-
ries; they obtained an ACC of 94.61%. Acharya et al. [26]
used a 9-layer convolution neural network and achieved an
averaged ACC, SEN, and SPEC of 93.47%, 96.01%, and
91.64%, respectively. Yang and Wei [6] combine parametric
and visual pattern features and use KNN for classification.
They obtain an overall ACC of 97.70%. The accuracies of
V and S are not satisfying and reduce the overall accuracy
significantly.

Table 9 summarizes the performances achieved by our
methods. We can conclude from Tables 9 and 1 that the per-
formance of this work is better than those state-of-the-art
studies which classify ECG heartbeats into 5 categories (N,
S, V, F, and Q). This demonstrates that wavelet scattering
transform performs well in extracting the features of ECG
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heartbeats that minimize intraclass differences and maintain
interclass discriminability. Moreover, the scattering coeffi-
cients in particular time windows contain more representa-
tive information for different categories than those in the
other time windows. The dimensionality reduction of the
8 time windows eliminates the redundancy of features,
which not only improves the classification performance

but also reduces the computational cost. In this study, our
results show that the scattering coefficients of the 4th time
window contain sufficient information for the classification
of arrhythmias.

6. Conclusion

In this study, we discussed the automated ECG classification
using the nonlinear features extracted by wavelet scattering
transform from ECG beats. Combined with proper classi-
fiers, this study demonstrates that the wavelet scattering coef-
ficients can be well utilized for classification and yield highly
accurate classification results. Our results showed that the
scattering coefficients of the 4th time window combined with
the KNN classifier achieve the best performance. The aver-
aged ACC, PPV, SEN, and SPEC are 99.3%, 99.6%, 99.5%,
and 98.8%, respectively. In our future work, we will attempt
to combine all time windows by a proper method and then
feed them into a sparse classifier to improve the classification

Table 6: The confusion matrices for the first principal component combined with the NN, PNN, and KNN across 10 folds.

Original
Predicted

N S V F PPV (%) SEN (%) SPEC (%)

NN

N 83508 2621 2799 1072 92.4 92.8 97.5

S 3144 84182 1946 728 94.0 93.5 98.0

V 1434 996 86100 1460 91.7 95.7 97.1

F 2270 1803 3069 82858 96.2 92.1 97.4

PNN

N 86738 1225 1459 578 97.8 96.4 99.3

S 1646 88085 214 55 98.6 97.9 99.5

V 50 13 89797 140 98.1 99.8 99.4

F 228 27 21 89724 99.1 99.7 99.9

KNN

N 87816 690 1091 403 96.5 97.6 98.8

S 2418 86520 627 435 98.9 96.1 99.7

V 156 62 89612 170 98.0 99.6 99.3

F 572 186 112 89130 98.9 99.0 99.7

Table 7: The confusion matrices for the 4th time window combined with the NN, PNN, and KNN across 10 folds.

Original
Predicted

N S V F PPV (%) SEN (%) SPEC (%)

NN

N 88146 811 789 254 93.8 97.9 97.8

S 3181 85641 901 277 94.9 95.2 98.3

V 1553 1323 85084 2040 94.4 94.5 98.1

F 1108 2439 3343 83110 97.0 92.3 97.5

PNN

N 86415 2540 615 430 99.8 96.0 99.9

S 171 89828 0 1 97.2 99.8 99.0

V 1 71 89879 49 99.3 99.9 99.8

F 0 1701 1645 86654 96.0 96.3 98.8

KNN

N 88915 644 281 160 98.5 98.8 99.5

S 893 87177 1155 775 92.7 96.9 97.4

V 496 4545 82247 2712 96.4 91.4 98.9

F 0 3 0 89997 99.5 100 100

Table 8: The confusion matrix for the 3th, 4th, and 5th time
windows combined with the NN across 10 folds.

Original
Predicted

N S V F
PPV
(%)

SEN
(%)

SPEC
(%)

N 88156 560 1042 242 95.3 98.0 98.4

S 2662 86180 721 437 96.3 95.8 98.8

V 909 933 86431 1727 94.6 96.0 98.2

F 794 1836 3163 84207 97.2 93.6 97.9
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performance and reduce the computational cost. Moreover,
all the work presented in Table 1 are patient independent,
that is, ECG beats are collected from a patient pool and
experiments are conducted without considering the autocor-
relation of ECG beats from the same patient. Nascimento
et al. [34] propose an innovation in the configuration of the
structural cooccurrence matrix. It is also of great interest to
expand the wavelet scattering transform to the patient-
dependent classification of arrhythmias using ECG signals.
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