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Identifying the key genes of autism is of great significance for understanding its pathogenesis and improving the clinical level of
medicine. In this paper, we use the structural parameters (average degree) of gene correlation networks to identify genes related to
autism and study its pathogenesis. Based on the gene expression profiles of 82 autistic patients (the experimental group, E) and 64
healthy persons (the control group, C) in NCBI database, spearman correlation networks are established, and their average
degrees under different thresholds are analyzed. It is found that average degrees of C and E are basically separable at the full
thresholds. This indicates that there is a clear difference between the network structures of C and E, and it also suggests that this
difference is related to the mechanism of disease. By annotating and enrichment analysis of the first 20 genes (MD-Gs) with
significant difference in the average degree, we find that they are significantly related to gland development, cardiovascular
development, and embryogenesis of nervous system, which support the results in Alter et al.’s original research. In addition, FIGF
and CSF3 may play an important role in the mechanism of autism.

1. Introduction

Autism in children is a neurodevelopmental disorder
characterized by different degrees of social interaction and
communication disorders, narrow interests, repetitive ste-
reotypes, and perceptual abnormalities. For quite a long
time, autism was considered a rare disease with a prevalence
of 2/10,000 to 4/10,000 [1]. In recent years, the global
prevalence of autism has gradually increased. For example,
in 2009, the prevalence was 1.57% in Britain and 1.64% in
Japan and 2.64% in Korea in 2011. Biennial disease reports in
the United States showed an upward trend, with 1.47% in
2014 [2]. Since 2000, surveys of autism prevalence in various
provinces and municipalities in China have shown that the
prevalence of autism ranges from 0.10% to 0.75% [3,4]. Some
international organizations estimated that the global prev-
alence of autism was 1% [5]. Autism has undoubtedly be-
come a serious global public health problem.

According to the current research, the hypothesis of the
pathogenesis of autism mainly included immune

dysfunction and synaptic dysfunction [6]. Hua et al. [7]
believed that hundreds of pathogenic genes, susceptibility
genes, and microRNAs were associated with autism, which
clearly indicated that autism was a complex hereditary
disease, and genetic variation/heritability was one of the
main pathogenic factors. There are abundant evidences that
genetic diseases are caused by complex interactions between
multiple genes and some environmental risk factors [8,9].
Studies by Sarachana et al. [10] suggested that disorders in
the expression of microRNAs may lead to autism. Kaushik
et al. [11] pointed out that very low concentrations of
psychoactive drugs altered the expression of key synaptic
proteins in vitro, which may lead to neurological diseases
such as autism by damaging neuronal development. Kawada
et al. [12] showed that ER stress could induce abnormal
maturation of cerebral cortical neurons in male ICR mouse
embryos. Therefore, ER stress may be involved in the
pathogenesis of autism. Lai et al. [13] pointed out that vi-
tamin A (VA) is an essential nutrient for brain development.
Because RAR signals inhibit the expression of CD38 in the
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hypothalamus of offspring, vitamin A deficiency during
pregnancy may be one of the factors contributing to autism.
Arioka et al. [14] pointed out that the repetition of the
15q11.2-q13.1 region was associated with mental disorders
such as developmental retardation and autism. Most of the
above results are from the perspective of single gene analysis
of the cause of autism, but Hua et al. [7] believed that autism
was a complex genetic disease, involving a large number of
genes. The expression of multiple pathogenic genes should
not be isolated, so in order to discover the pathogenic
mechanism of autism, it is necessary not only to study single
genes but also to study these pathogenic genes as a system.

With the development of genomics and high throughput
technology, massive biological data are generated, such as
protein structure and interaction data, genome expression
profile data, gene expression regulation data, and metabolic
data. Obviously, these data are the basis of systematic study
of biology. Nanni et al. [15] made a statement that large
genome-wide association studies (GWAS), Copy Number
Variation (CNV) testing, and genome sequencing yielded
many nonoverlapping genes, a fact that underlines the
complex genetic heterogeneity of autism [16] and reflects the
architecture of intracellular networks, in which several
possible combinations of genetic variations are likely to lead
to a common pathological phenotype [17,18]. So, network-
based analysis will be helpful to study the pathogenesis of
autism. Nanni et al. [15] pointed out that one of the chal-
lenges that network-based analyses face is the identification
of the so-called disease modules, that is, gene networks
associated with diseases [17]. Hu et al. [19] reported that
stratifying the sample by cluster analyses revealed quanti-
tative differences in gene expression which appear to cor-
relate with severity of autism phenotype as well as gene
expression profiles for each subtype which associate a “bi-
ological phenotype” (i.e., gene expression profile) to the
respective functional/behavioral phenotype. The biological
phenotypes reveal differences in some of the biological
functions affecting individuals with autism, such as circadian
rhythm dysregulation in the severe (L) phenotype, sug-
gesting possible therapeutic interventions specific to this
subgroup. On the other hand, overlapping genes among the
phenotypes indicate dysregulation of genes controlling both
neurological and metabolic functions that may lie at the core
of autism [19]. Li et al. [20] integrated previously and newly
generated data and developed a systems framework in-
volving the interactome, gene expression, and genome se-
quencing to identify a protein interaction module with
members strongly enriched for autism candidate genes.
Hormozdiari et al. [21] developed a computational method,
termed MAGI (merging affected genes into integrated
networks), that simultaneously integrates protein-protein
interactions and RNA-Seq expression profiles during brain
development to discover “modules” enriched for de novo
mutations in probands. They applied this method to recent
exome sequencing of 1116 patients with autism and intel-
lectual disability, discovering two distinct modules. The first
module consists of 80 genes associated with Wnt, Notch,
SWI/SNF, and NCOR complexes. The second module
consists of 24 genes associated with synaptic function,
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including long-term potentiation and calcium signaling with
higher levels of postnatal expression. Currently, the inte-
grative analysis of multiple omics has emerged as an ap-
proach to provide a more comprehensive view of a disease.
Nanni et al. [15] carried out a network-based meta-analysis
of the genes reported as associated with autism by studies
that involved genomics, epigenomics, and transcriptomics.

The structure of a network determines the function of the
network system. Therefore, the study of the structure of
networks plays an important role in understanding the
function of biological networks. For the purpose of disease
mechanism research, structural differences can be found
through the structural comparison of disease and normal gene
networks, which is likely to be an important cause of disease
occurrence and development. A direct comparative analysis
method of network structure is through the comparison of
network structure parameters. Graph theory in mathematics
has defined many network statistics, such as average degree,
average kernel number, average path length, average point
(edge) betweenness, module degree, and clustering coefli-
cient. These statistics, also known as the structural parameters
of the network, describe the structural characteristics of the
network from an important point of view.

This paper constructs spearman correlation networks
based on gene expression profile data in normal and autistic
states, trying to reveal the structural differences between
normal and autistic gene expression profile data sets by using
network structure parameters. When the structural differ-
ence is significantly described, genes with maximally
structural difference (MD-Gs) which contribute to this
structural difference can be identified. Obviously, this
structural difference is an important manifestation of the
mechanism of organism transforming from normal to
disease, and the MD-Gs causing structural difference are
more likely to be the more direct cause of disease formation.
Further analysis of biological functions of MD-Gs will help
to explain the functional mechanism of disease occurrence.

2. Methods

2.1. Identifying of Autism-Related Genes. Nanni et al. [15]
pointed out that while the analysis of epigenomics and
transcriptomics from brain-derived samples can provide
important insights into the potential mechanisms of disease
etiology, there are relevant limitations with these types of
studies (e.g., the quality of autopsy-derived tissue, sample
size, influence of life experience, and cause of death) [22].
These barriers have been overcome by analyzing blood
samples, and recent blood-based works have shown the
usefulness of this alternative approach to gather insights into
autism [23-25].

With that in mind, this study is based on the data of
GSE25507 in NCBI on gene expression profiles of autistic
patients and normal people. Gene expression microarrays
covering greater than 47,000 unique RNA transcripts were
done on RNA from peripheral blood lymphocytes (PBL) of
children with autism (n = 82, E) and controls (n = 64, C). The
data was pretreated with MAS5 and RMA. Each sample
contains 23520 genes.
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In fact, there may not be many genes closely related to
autism, and the genes with different expression between C
and E may be related to autism. Statistical analysis methods
of hypothesis test can be used to screen the different genes
between C and E. Let X and Y be samples of gene A in group
I and group II, respectively. Through a series of hypothesis
tests, we can judge whether there are differences in the
expression of A between group I and group II. The outline of
our method is as follows: we can first judge whether the
distribution of X and Yis the same. The nonparametric test is
better than the parametric test when there is no information
about the population distribution. When the population
distribution is known, it will become the disadvantage of
nonparametric test without any prior knowledge. At this
time, a nonparametric test method is not as accurate as that
obtained by parametric test methods. Therefore, we first use
KS test of two samples to preliminarily judge the consistency
of distribution. If the distribution is not consistent, we think
there is a difference between group I and group II; otherwise,
we use KS test of single sample to check for normality. If
both X and Y are normal, then X and Y are tested using F test
to determine whether variance is homogeneous. If it is
homogeneous with variance, t-test of two independent
samples will be tested; otherwise, Welch’s t-test of two in-
dependent samples will be used. If X and Y do not have
normality, because the distribution of two-sample KS test is
consistent, it is considered that they are consistent with the
distribution shape, so the Mann-Whitney test can be further
used. The cut-oft thresholds of the FDR for the KS test of two
samples, KS test of single sample, F test, and t-test (Welch’s
t-test, Mann-Whitney test) are 0.0005, 0.001, 0.001, and
0.001, respectively. 244 genes (called autism-related genes)
expressed differently between C and E are screened as the
research objects.

2.2.  Constructing Spearman  Correlation — Networks.
Spearman’s rank correlation coefficient is a measure of the
degree of dependence between two variables. It is used to
measure the strength of the relationship between variables.
The range of Spearman correlation coeflicient is [-1, 1]. The
greater the absolute value of Spearman correlation coeffi-
cient, the stronger the dependence between the two vari-
ables; on the contrary, the smaller the dependence.

Let I be a set of gene expression profiles. For any two
genes A, B €I, the Spearman correlation coefficient between
them is recorded: SCC(A, B). Given the threshold «
(0<a<1), the Spearman correlation network under the
threshold is constructed. The method is that each gene A €1
represents a node; if the absolute value of Spearman cor-
relation coefficients of any two genes A, Be€[ is such that |
SCC(A, B)| = a there is a connection between nodes A and B;
otherwise there is no connection. In this way, a Spearman
correlation network of gene expression profiles under a
threshold is established.

2.3. The Maximally Structural Difference Genes. Current
studies suggest that autism may be caused by many genetic
factors. There are so many genes related to autism, which all

play a role in the mechanism of autism. In the analysis of
network structure parameters, the genes that contribute a lot
to parameter difference are considered as key genes. As the
number of key genes is related to the complexity of gene
annotation analysis, and our aim is to check whether the
analysis method using network structure parameters is ef-
fective to study disease mechanisms, 244 genes are se-
quenced according to the degree difference between C and E
under the full threshold and then the top 20 genes are se-
lected for analysis. These 20 genes are called the maximally
structural difference genes (MD-Gs). The function of a gene
is determined by the interaction between genes. This means
that the degrees of genes in networks reflect the functional
difference. The larger the degree difference is, the greater the
variation of the gene quantity associated with the gene in the
network is and the more the function of the gene increases or
decreases in the network. It is better to measure using the
absolute value of the degree difference between C and E
rather than relative changes of the degree, (|E — C|/C), as the
relative change of the degree depends on C. The selection
method is as follows: firstly, the degree of each node in the
correlation network between C and E under 0.1-0.9
thresholds is calculated, respectively; secondly, the absolute
value of the degree difference between C and E is calculated
for 244 autism-related genes under each threshold, and then
the average of the absolute values of the degree difference of
each gene between C and E is ranked from large to small.

2.4. Enrichment Analysis of MD-Gs. The express analysis tool
of Metascape (http://metascape.org) [26] is used to analyze
the metabolic pathways and processes of MD-Gs. For each
given gene list, pathway and process enrichment analysis has
been carried out with the following ontology sources: KEGG
Pathway, GO Biological Processes, Reactome Gene Sets,
Canonical Pathways, and CORUM. All genes in the genome
have been used as the enrichment background. Terms with a
p value <0.01, a minimum count of 3, and an enrichment
factor >1.5 (the enrichment factor is the ratio between the
observed counts and the counts expected by chance) are
collected and grouped into clusters based on their mem-
bership similarities. More specifically, p values are calculated
based on the accumulative hypergeometric distribution [27],
and g-values are calculated using the Benjamini-Hochberg
procedure to account for multiple testings [28]. Kappa
scores [29] are used as the similarity metric when per-
forming hierarchical clustering on the enriched terms, and
subtrees with a similarity of >0.3 are considered a cluster.
The most statistically significant term within a cluster is
chosen to represent the cluster.

3. Results

In the network, the degree of a node can be used to indicate
its importance. The greater the degree of a node is, the more
important the node is in the network [30]. The average
degree of a Spearman correlation network is calculated
under different thresholds (« €{0.1, 0.2, ..., 0.9}) for C and
E, as shown in Table 1.
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TaBLE 1: The average degree.

Thresholds 0.1 0.2 0.3 0.5 0.6 0.7 0.8 0.9

C 173.82 113.57 69.93 38.79 17.09 5.28 1.09 0.26 0.03

E 170.7 110.09 65.55 33.61 13.79 411 0.86 0.07 0.02

It can be seen from Table 1 that the average degree of
Spearman correlation network in C is higher than that in E
under the full threshold (0.1-0.9). According to the con-
clusion of the numerical experiment, the probability that the
average degrees of random networks are separable among
the threshold (0.1-0.9) is about 20%, and so the confidence
in the fact that the average degrees of Spearman correlation
networks of C and E are separable among the threshold
(0.1-0.9) is about 80%. This indicates that the correlation
networks of genes between C and E have some structural
differences. This may be due to the different degree of nodes
between C and E. The difference in the degree of some genes
between C and E indicates that the association of these genes
with other nodes in the network changes leads to the dif-
ference of network structure between C and E. The structure
determines the function. These genes that lead to structural
differences are likely to be closely related to autism.

MD-Gs are shown in Table 2.

The top six clusters of functions related to MD-Gs are
shown in Table 3.

4, Discussion

4.1. Annotation Analysis of Single MD-G. Referring to the
literature, OMIM, KEGG, and NCBI databases, the func-
tions of OGFRP1 and Loc284788 are not clear in Table 2;
annotations of the other 18 genes are detailed in the Sup-
plementary Materials (Appendix 1).

Data shows that MED13, MED12, CDKS, and Cycn C
(CycC) are the main entrances to carcinogenic and devel-
opmental signal/gene expression [31]. Mutations in MED13
cause autism [9].

ARHGDIG is also known as RhoGDI3. RhoGDI3 may
induce the downregulation of RhoG and RhoB [32]. Neu-
rotrophic factors are involved in neurodevelopment, neu-
ronal survival, and synaptogenesis and are considered to be
important substances affecting autism [33]. ARHGIG is
involved in hsa04722 (neurotrophic factor signaling path-
way), so ARHGIG may affect autism through neurotrophic
factor signaling pathway.

It was found that NDRG4—-/— mice were born at the
expected Mendelian rate and looked normal and fertile.
However, NDRG4—-/- mice had deficiencies in spatial
learning and memory and showed increased sensitivity to
ischemic stress after middle cerebral artery occlusion.
Consistent with these findings, the expression of neuro-
protective factor BDNF in NDRG4—-/— mice decreased [34].
Reference [35] demonstrated for the first time that NDRG4
may be a potential tumor suppressor gene and prognostic
marker for gastric cancer. Chen et al. [36] explained the risk
of gastric cancer caused by hypermethylation of NDRG4
promoter. Qu et al. [37] illustrated the potential role of
NDRG4 in intestinal development, nervous system, and

immune system. Sarachana et al. [10] revealed that there is a
link between autism and gastrointestinal diseases, and there
is also a link between genes involved in gastrointestinal
diseases and the occurrence of autism. Therefore, NDRG4
may affect the development of nervous system on the one
hand and gastrointestinal function on the other hand, which
is closely related to the generation of autism.

POU3F2 is located downstream of SIM1 and controls the
expression of oxytocin in the preoptic area of hypothalamic
neuroendocrine [38]. This gene encodes a member of POU-
III neurotranscription factor and plays an important role in
brain development. Lin et al. [39] demonstrated that
POUS3EF2 plays a role in neuronal differentiation. Hashizume
et al. [40] showed that POU3EF2 is related to cognitive
function and adult hippocampal neurogenesis. Belinson
et al. [41] demonstrated that transcriptional disorders of
POU3F2/BRN-2 in the embryonic brain can lead to autism.

SHANK mutations account for ~1% of patients with
autism and were detected in the whole spectrum of autism
with a gradient of severity in cognitive impairment: muta-
tions in SHANKI were rare (0.04%) and present in males
with normal IQ and autism; mutations in SHANK?2 were
present in 0.17% of patients with autism and mild intel-
lectual disability; mutations in SHANK3 were present in
0.69% of patients with autism and up to 2.12% of the cases
with moderate to profound intellectual disability [42].
Mutations in SHANK3 or changes in protein levels are
associated with neurodevelopmental disorders, such as
Phelan-McDermid syndrome, autism, and schizophrenia
[43]. Campbell and Sheng [44] identified USP8/UBPY as a
deubiquitinase that regulates the ubiquitination and protein
levels of Shank3 and Shankl. Therefore, USP8 and SHANK3
synergistically affect the development of autism.

Depending on the function of brain regions, the can-
didate genes for autism affect synaptic transmission through
three pathways: nerve regeneration, cell adhesion, and ion
channel activity [6]. FIGF, also known as VEGEFD, has
hsa0451: focal adhesion and hsa04151: PI3K-Akt signaling
pathway. PI3K transfers a phosphoric acid group to site 3.
The products formed have important effects on cell function.
For example, PIP2 converts to PI-3,4,5-triphosphate, which
can regulate cell adhesion, growth, and survival. This sug-
gests that FIGF may influence the mechanism of autism
through cell adhesion pathway. In addition, FIGF has
hsa04014 (Ras signaling pathway), hsa04015 (Rap1 signaling
pathway), hsa04151 (PI3K-Akt signaling pathway), and
hsa04010 (MAPK signaling pathway). In mammals, an
hsa04010 signal transduction pathway (ERK1/2 signal
transduction pathway) regulates cell growth and differen-
tiation, and it cooperates with hsa04014 and hsa04015 to
influence the development of nervous system. Rap belongs
to the Ras family and contains Rapl and Rap2 subclasses.
Rap control signaling pathways in cells are closely related to
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TaBLE 2: MD-Gs.
No Genes Description Expression
1 HYI Hydroxypyruvate isomerase E>C
2 PPPIR37 Protein phosphatase 1 regulatory subunit 37 E>C
3 HOXD9 Homeobox D9 E>C
4 EXTL1 Exostosin like glycosyltransferase 1 E>C
5 MED13 Mediator complex subunit 13 C>E
6 C7orf63 Cilia and flagella associated protein 69 E>C
7 ARHGDIG Rho GDP dissociation inhibitor gamma E>C
8 JUP/KRT17 Junction plakoglobin/type I keratin, acidic E>C
9 NPY4R Neuropeptide Y receptor Y4-2 E>C
10 NDRG4 NDRG family member 4 E>C
11 POU3F2 POU class 3 homeobox 2 E>C
12 LOC284788 Uncharacterized LOC284788 E>C
13 USP8 Ubiquitin specific peptidase 8 C>E
14 OGFRP1 Opioid growth factor receptor pseudogene 1 E>C
15 FIGF Vascular endothelial growth factor D E>C
16 ZBP1 Insulin like growth factor 2 mRNA binding protein 1 C>E
17 PML Promyelocytic leukemia C>E
18 CSF3 Colony stimulating factor 3 E>C
19 FSD1 Fibronectin type III and SPRY domain containing 1 E>C
20 MESP1 Mesoderm posterior bHLH transcription factor 1 E>C

The column of “Expression” shows the comparison of the average expression profiles of key structural genes between C and E.

TaBLE 3: Top 6 clusters with their representative enriched terms (one per cluster).

Log 10 Log 10

No GO Description Count % (P) @ Genes

P1 GO:0048732 Gland development 4 20 340 0.00 HOXD9,1\I/3[I£/ISI;1POU3F2,
P2 GO:0051301 Cell division 4 20 -2.88 0.00 FIGF, USP8, FSD1, POU3F2
P3 GOS?)(()):I 1 Regulation of Wnt signaling pathway 3 15 =279 0.00 JUP, USP8, MESP1

P4  GO:0048562 Embryonic organ morphogenesis 3 15 -2.78 0.00 HOXD9, MESP1, NDRG4
P5 GO:0001568 Blood vessel development 4 20 -2.5 0.00 FIGF, JUP, PML, MESP1
P6  GO:0051090 Regulation of DNA binding transcription factor 315 229 0.00 CSF3, JUP, CMED13

activity

“Count” is the number of genes in the user-provided lists with membership in the given ontology term. “%” is the percentage of all of the user-provided genes
that are found in the given ontology term (only input genes with at least one ontology term annotation are included in the calculation). “Log10 (P)” is the p
value in log base 10. “Logl0 (q)” is the multitest adjusted p value in log base 10. The category of clusters in Table 3 is GO Biological Processes.

the formation of cell polarity, cell proliferation, differenti-
ation and carcinogenesis, cell adhesion, and movement and
further affect some important physiological functions at the
level of tissues and organs, such as the establishment of nerve
polarity, synaptic growth, synaptic plasticity, and neuron
migration [45]. The Raf/ERK overexpression cell model
established by Yin [6] has decreased migration ability,
disturbance of excitatory synapse formation, and maturation
of dendritic spines, suggesting that the upregulation of Raf/
ERK expression may affect the development of neurons and
lead to nervous system imbalance. In addition, studies have
found that deletion of chromosome 16 is associated with
autism, and the MAPK3 gene encoding ERKI protein is
located on chromosome 16 [1]. Erk2 deficiency in 22q11.2
was also associated with the onset of autism [46,47]. The
MAPK gene is located in the 22q1.3 DGS region, which is
deleted in many patients, leading to a series of heart, skin,
and nervous system abnormalities [46-49]. Metabolic
pathway hsa04151 (PI3K-Akt signaling pathway) widely

exists in various nerve cells. It is an important pathway for
membrane receptor signal transduction into cells. It has cell
biological functions such as regulating cell proliferation,
differentiation, metabolism, and antiapoptosis. Abnormal
expression of PI3K-Akt signaling pathway can lead to
symptomatic autism [50,51]. Ras, PI3K, and Rapl are in-
volved in the MAPK signaling pathway (https://www.
biomart.cn/news/10/119965.htm). This suggests that signal
transduction pathways hsa04014, hsa04015, and hsa04151
are interrelated through hsa04010. However, how they in-
teract to produce autism remains unclear.

According to studies, the hypothesis of the pathogenesis
of autism mainly includes immune dysfunction and synaptic
dysfunction [6]. The metabolic function of CSF3 is related to
immunity or infectious diseases, and hsa04657 (IL-17 sig-
naling pathway) is related to IL-17. Choi et al. [52] pointed
out that immune cells activated in maternal inflammation
produce an effector molecule (IL-17), interfering with fetal
brain development, leading to autism, and blocking this
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signal can restore normal behavior and brain structure.
Abnormal expression of hsa04151 signaling pathway can
lead to autism [50,51]. This suggests that CSF3 may influence
the mechanism of autism through the immune system.

From the single gene annotation analysis, it can be seen
that the abnormalities of MED13 [9], POU3F2 [41], and
USP8 [44] have been confirmed to induce autism. FIGF
regulates the signal transduction pathways hsa04014,
hsa04015, hsa04151, and hsa04010. If there is a problem in
one of them, it may cause the development disorder of
nervous system and then lead to the occurrence of autism.
However, the mechanism of how they interact to produce
autism needs further study. This suggests that FIGF plays an
important role in the mechanism of autism. CSF3 is involved
in hsa04060, hsa04151, hsa04630, hsa04640, and hsa04657.
The abnormalities of hsa04657 [52] and hsa04151 [50,51]
have been confirmed to induce autism. This suggests that
CSF3 is related to autism through the immune system. On
the one hand, NDRG4 may affect the development of
nervous system; on the other hand, it may affect the gas-
trointestinal function, which is closely related to the oc-
currence of autism.

Gene annotation shows that NDRG4, JUP, and PML are
all related to gastrointestinal function. Enrichment analysis
shows that vascular development and embryogenesis are
significant. These conclusions support the viewpoint of Alter
et al. [53]; that is, global levels of gene expression regulation
may impact systems other than the brain.

4.2. Enrichment Analysis

4.2.1. P1. HOXD9 has GO:0048935 (peripheral nervous
system neuron development) and GO:0048934 (peripheral
nervous system neuron differentiation). PML has GO:
0006977, that is, DNA damage response and signal trans-
duction by p53 class mediator resulting in cell cycle arrest.
POU3EF2 has GO:0021985 (neurohypophysis development)
and MESP1 has GO:0042664 (negative regulation of en-
dodermal cell fate specification). It can be seen that P1 is
related to the development of nervous system glands, which
indicates that the research on the development of nervous
system glands is helpful to study the pathogenesis of autism.

4.2.2. P2. FSD1 has GO:0060236 (regulation of mitotic
spindle organization) and GO:0031122 (cytoplasmic mi-
crotubule organization); POU3F2 has G0O:0021979 (hypo-
thalamus cell differentiation); FIGF has GO:0060754
(positive regulation of mast cell chemotaxis), GO:0060753
(regulation of mast cell chemotaxis), and GO0:0050930
(induction of positive chemotaxis); USP8 has GO:0071549
(cellular response to dexamethasone stimulus) and GO:
0099170 (postsynaptic modulation of chemical synaptic
transmission). Mast cells are related to immunity. Dexa-
methasone is related to endocrine system. It has anti-in-
flammatory, antiendotoxin, immunosuppressive, antishock,
and enhanced stress response. This suggests that the in-
flammation caused by mast cells in the blood affects the
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differentiation of hypothalamic cells through the endocrine
system and then is related to autism.

4.2.3. P3. JUP has GO:0086073 (bundle of His cell-Purkinje
myocyte adhesion involved in cell communication), GO:
0098911 (regulation of ventricular cardiac muscle cell action
potential), and GO:0086069 (bundle of His cell to Purkinje
myocyte communication); MESP1 has GO:0090082 (posi-
tive regulation of heart induction by negative regulation of
canonical Wnt signaling pathway) and GO:0090081 (regu-
lation of heart induction by regulation of canonical Wnt
signaling pathway). This suggests that the positive regulation
of Wnt signaling pathway on the induction of cardiac cells,
especially Purkinje cells, is significantly related to the
mechanism of autism.

4.2.4. P4. HOXD9 has GO:0035115 (embryonic forelimb
morphogenesis); MESP1 has GO:0042664 (negative regu-
lation of endodermal cell fate specification); NDRG4 has
GO:0010642 (negative regulation of platelet-derived growth
factor receptor signaling pathway). PDGF is an important
mitogenic agent, which can stimulate the division and
proliferation of vascular smooth muscle cells, fibroblasts,
glial cells, and other cells and regulate the individual de-
velopment and cell differentiation. This suggests that fetal
dysplasia may induce autism.

4.2.5. P5. FIGF has GO:0060754, GO:0060753, and GO:
0050930, which are all related to the regulation of mast cell
chemotaxis. JUP has GO:0086073, GO:0098911, and GO:
0086069, which are related to Purkinje myocytes in car-
diomyocytes. PML has GO:1902187 (negative regulation of
virtual release from host cell), GO:0006977 (DNA damage
response, signal transmission by p53 class mediator results
in cell cycle arrest), and GO:0050713 (negative regulation of
interleukin-1 beta secret), which are related to immunity.
MESP1 has GO:0090082 and GO:0090081, which are the
regulation of Wnt signaling pathway on cardiac induction.
This suggests that the effect of inflammation on vascular
development contains information on the pathogenesis of
autism.

4.2.6. P6. CSF3 has GO:0014068 (positive regulation of
phosphatidylinositol 3-kinase signaling). Abnormal ex-
pression of hsa04151 signaling pathway may lead to
symptomatic autism (Bill and Geschwind [50] and Hu [19]).
This suggests that hsa04151 may induce autism symptoms
through P6. MED13 has GO:0070328 (triglyceride ho-
meostasis), GO:0055090 (acylglycerol homeostasis), and
GO:0042632 (cholesterol homeostasis). MED13 is related to
development [31], and its mutation can cause autism [9].
This indicates that MED13 affects development through P6
and then induces autism.

According to gene enrichment analysis, the functions of
MD-Gs are mainly reflected in six aspects: gland develop-
ment, cell division, Wnt signal pathway regulation, em-
bryogenesis, vascular development, and DNA binding
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FIGURE 1: Expression levels of P1-P6.

transcription factor activity regulation. According to the GO
function analysis of the involved genes, these six aspects can
be summarized as follows: (1) gland development of the
nervous system; (2) inflammation caused by mast cells in the
blood affecting the differentiation of hypothalamic cells
through the endocrine system; (3) Wnt signal pathway
regulating the positive regulation of platelet-derived growth
factor receptor induced by cardiac cells, especially Purkinje
cells; (4) platelet-derived growth factor receptor signaling
pathway regulating embryogenesis; (5) the regulation of
inflammatory immunity on vascular development; and (6)
hsa04151 signaling pathway containing CSF3 and MED13
affecting the mechanism of autism through the regulation of
DNA binding transcription factor activity.

The results of gene annotation and enrichment analysis
support the research of Alter et al. [53] on the relationship
between father’s age, neurodevelopmental disorder, and
immune function. Children with autism have immuno-
logical abnormalities and it has been previously reported
that gene expression differences were found in immune cells
of children with autism [54]. A relationship with paternal
age suggests that factors influencing global levels of gene
expression regulation may be transmitted across the germ
line. Additionally, findings in the blood suggest the possi-
bility for effects of paternal age on immune function. Given
the links between paternal age, neurodevelopomental dis-
orders, and immune function, it seems that paternal age
might also have a more generalized effect on immune
function as it was found to have on neurodevelopment [53].

4.3. Functional Difference Analysis of MD-Gs between C and E.
To further analyze the differences of P1-P6 between C and E,
the expression levels of the function in C and E are calculated
as follows. Firstly, the average expression levels of MD-Gs in
C and E are calculated, respectively. If A}, A,, ..., Ax have
function F, the sum of the average expression levels of A, A,,
... Ay in C is the total expression level of function F in C.
Similarly, the total expression level of function F in E could
be calculated; see Figure 1.

It is found that the maximum of the average expression
difference of gene between C and E is 0.042, the minimum is
2.1632¢-09, the average value is 4.3746e-04, and the variance
is 2.5730e-06. This shows that there is no significant dif-
ference between gene expression profiles of C and E. In
Figure 1, only the difference between C and E in P6 is
5.6204e-04 larger than the average. This suggests that the

expression of P6 in autism is lower than that in healthy
people. In addition, although the difference of expression of
C and E on P1-P5 is lower than the average, it cannot be
denied that the slight difference may contain the pathogenic
mechanism information of autism.

According to the analysis of the difference of gene
function expression, people with autism have lower ex-
pression in the regulation of DNA binding transcription
factor activity than healthy people, which suggests that
autism has defects in the regulation of DNA binding
transcription factor activity.

5. Conclusion

The topological structure of networks plays an important
role in understanding the function of biological networks.
The analysis method of network structure parameters is
used to study the pathogenesis of autism from the genetic
level. Spearman correlation networks are established by
using gene expression profiles of C and E, and their av-
erage degrees are analyzed. It is found that the average
degrees of C and E are separable under the full threshold
with confidence of 80%. This shows that there are obvious
structural differences between the gene networks of C and
E, which leads to functional differences. The first 20 genes
with significant difference in average degree are selected
for enrichment analysis. It is found that they are signif-
icantly related to gland development, cardiovascular de-
velopment, and embryonic organ morphogenesis of the
nervous system. This does not only support the view in
Alter et al’s work [53], that is, altered regulation of
transcription may underlie decreased variance and may
increase risk for autism, but also supports the conclusion
that developmental disorders of the nervous system
[33,55] may cause symptoms of autism. However, the
mechanism of cardiovascular development on autism is
rarely reported. The mechanism of how the development
of nervous system glands, cardiovascular system, and
embryonic organ morphogenesis induces autism needs
further study. In addition, PI3K-Akt signal pathway and
RAS-MAPK signal pathway are clearly related to autism,
and the abnormal expression of gene CSF3 and FIGF may
cause the abnormal expression of these signal pathways.
This provides a theoretical basis for further medical ex-
periments to study the mechanism of autism. These results
show that the network structure parameter analysis
method is an effective method.
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