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We propose a new method for fast organ classification and segmentation of abdominal magnetic resonance (MR) images. Magnetic
resonance imaging (MRI) is a new type of high-tech imaging examination fashion in recent years. Recognition of specific target areas
(organs) based on MR images is one of the key issues in computer-aided diagnosis of medical images. Artificial neural network
technology has made significant progress in image processing based on the multimodal MR attributes of each pixel in MR images.
However, with the generation of large-scale data, there are few studies on the rapid processing of large-scale MRI data. To address
this deficiency, we present a fast radial basis function artificial neural network (Fast-RBF) algorithm. The importance of our efforts
is as follows: (1) The proposed algorithm achieves fast processing of large-scale image data by introducing the ε-insensitive loss
function, the structural risk term, and the core-set principle. We apply this algorithm to the identification of specific target areas in
MR images. (2) For each abdominal MRI case, we use four MR sequences (fat, water, in-phase (IP), and opposed-phase (OP)) and
the position coordinates (x, y) of each pixel as the input of the algorithm. We use three classifiers to identify the liver and kidneys
in the MR images. Experiments show that the proposed method achieves a higher precision in the recognition of specific regions of
medical images and has better adaptability in the case of large-scale datasets than the traditional RBF algorithm.

1. Introduction

Magnetic resonance imaging (MRI) is a new type of high-
tech imaging examination fashion in recent years. It has the
advantages of no ionizing radiation, no bone artifacts, and
multidirectional and multiparameter imaging [1]. Therefore,
the generation of an end-to-end intelligent disease diagnosis
system based on MRI is an inevitable direction for the devel-
opment of intelligent medicine. To achieve the goal of effec-
tive intelligent medical treatment, this paper studies the
classification of abdominal organs based on MRI.

There are many techniques for medical image processing
[2–5]. Gordillo et al. [6] divided the existing MR image pro-

cessing technologies into the following three categories: The
first type is threshold-based methods, which classify the
segmentation objects (such as pixels) of the MR image
by comparing them with different thresholds [7–9]. The
second type is region-based methods, which divide several
mutually exclusive regions according to preset rules and
then categorize pixels with the same attributes into the same
region [10, 11]. The third type is pixel-based classification
methods, which mainly classify the objects according to the
MR multimodal attributes of each pixel. According to
whether the training set is labeled or not, they can be subdi-
vided into unsupervised, semisupervised, and supervised
methods [12–14].
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Of the third type of methods, an artificial neural network as
a supervised learning model is applied to the field of medical
imaging [15]. It is suitable for image processing without prior
distribution assumptions; its application can be divided into
three categories: The first type is to apply artificial neural net-
works directly toMR image processing. Lucht et al. [16] applied
a neural network to the dynamic segmentation of MR breast
images. Egmont-Petersen et al. [17] used neural networks and
multiscale pharmacokinetic features to segment bone tumors
in MR perfusion images. Zhang et al. [18] proposed a visual
encoding model based on deep neural networks and transfer
learning for brain activity measured by functional magnetic res-
onance imaging. The second type is to use a convolutional neu-
ral network or its improved algorithm to segment MR images
[19–22]. Khalilia et al. [20] used convolutional neural networks
to automatically perform brain tissue segmentation in fetal
MRI. Wang et al. [21] used dynamic pixelwise weighting-
based fully convolutional neural networks for left ventricle seg-
mentation in short-axis MRI. The third type is to use hybrid
neural networks to segment MR images. Glass et al. [23] used
a hybrid artificial neural network to segment the inversion
recovery image of a normal human brain. Alejo et al. [24] used
a hybrid artificial neural network to design an accurate
computer-aided method capable of performing region segmen-
tation. Reddick et al. [25] used a hybrid neural network to
propose a fully automatic method for segmentation and classi-
fication of multispectral MR images.

Based on the review of the above literature, great progress
has been made in the use of artificial neural networks for
medical image segmentation. However, with the higher reso-
lution requirements of MR images and the increasing size of
the dataset, research on fast artificial neural network training
for large medical image datasets is still lacking. In response to
this phenomenon, this paper proposes the Fast-RBF algo-
rithm, which has fast processing capabilities for large data-
sets. We applied this method to MRI-based abdominal
organ classification and segmentation. The results showed
that this method achieved significant results. The main con-
tributions of this paper are as follows:

(1) The Fast-RBF algorithm with a large-sample-
processing capability is proposed by introducing the
ε-insensitive loss function and structural risk term
and using the core-set principle [26]. This method
not only retains the strong nonlinear fitting ability
and simple learning rules of RBF artificial neural net-
works but can also process a large dataset quickly,
which improves the processing speed and efficiency.

(2) For each abdominal MRI case, we use four MR
sequences (fat, water, IP, andOP) and the position coor-
dinates (x, y) of each pixel as the input of the algorithm.
We use three classifiers to identify the liver, kidneys, and
other tissues. The proposed algorithm has better adapt-
ability and runs faster in large dataset scenarios than the
traditional RBF neural network algorithm.

The remainder of this paper is divided into four parts:
Section 2 introduces RBF neural networks and the relation-

ship between RBF neural networks and linear models; Sec-
tion 3 introduces the Fast-RBF neural network with its
large-sample-processing ability; Section 4 verifies the validity
of the proposed algorithm on medical image processing; and
Section 5 summarizes the full text.

2. Related Work

2.1. RBF Neural Network. RBF neural networks consist of
an input layer, an implicit layer, and an output layer, as
shown in Figure 1. Among them, xi ∈ Rd ,y ∈ R, the number
of hidden layer nodes is M, and the nonlinear mapping f :
Rd ⟶ R is performed by the RBF neural network.

In an RBF neural network, the input layer receives the
training samples; the hidden layer node performs a nonlinear
transformation through the radial basis function that maps
the input space to a new space. If the radial basis function
is defined as a Gaussian function, let ci ∈ Rd denote the center
of the Gaussian function and let δi represent the kernel width
of the Gaussian function. This function can be expressed as

φ x − cik kð Þ = exp −
x − cik k2
δi

� �
: ð1Þ

The nodes of the output layer implement a linear
weighted combination in this new space. Let wi be the con-
nection weight of the hidden layer and the output layer and
φð•Þ be the radial basis function; then, the mapping function
of Rd ⟶ R is

y = f xð Þ = 〠
M

i=1
wiφ x − cik kð Þ: ð2Þ

2.2. RBF Neural Network and Linear Model. According to the
introduction above, the RBF neural network has 3 parame-
ters: the center vector of the radial basis function ci =
½ci1, ci2,⋯cid�T, the kernel width δi, and the weight of the out-
put layerwi. Among them, ci and δi can be determined by the
fuzzy C-means (FCM) clustering algorithm [27], and wi is
obtained by the gradient descent learning algorithm. Let μji,
which is obtained by the FCM clustering algorithm, denote
the fuzzy membership of sample x j for the ith class, n repre-
sent the size of the training sample, andM indicate the num-
ber of hidden layer nodes; then, the center of the radial basis
function cik and the kernel width δi can be expressed by
equations (3) and (4):
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Figure 1: The model of an RBF neural network.
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cik =
∑n

j=1μjixjk
∑n

j=1μji

, ð3Þ

δi =
∑n

j=1μji x j − ci
�� ��2

∑n
j=1μji

: ð4Þ

Let ~xi = φðkx − cikÞ, i = 1, 2,⋯,M.

~x = ~x1, ~x2,⋯, ~xM½ �T: ð5Þ

The center ci and the kernel width δi of the radial basis
function are obtained by equations (3) and (4), the input
sample is mapped to the new space f : Rd ⟶ RM , and the
conversion from the input layer to the hidden layer is a non-
linear mapping.

Let p = ½w1,w2,⋯wM�T; then, the neural network func-
tion can be expressed as

y = pT~x: ð6Þ

It can be seen from equation (6) that when the radial
basis function hidden layer is estimated, the output of the
network can be converted into a linear model.

3. Fast-RBF Algorithm

3.1. Fast-RBF Principle. First, the ε-insensitive loss function
corresponding to the RBF linear model is introduced. To
minimize the value of the ε-insensitive loss function, ε is
solved as the constraint term of the optimization problem.
Then, the structural risk term and the Gaussian kernel are
introduced to construct the RBF neural network optimiza-
tion model with large-sample processing. The specific steps
are as follows.

Step 1. From equations (3) and (4), the values of ci and δi are
obtained; then, from equation (5), the model input ~x is
obtained.

Step 2. Introducing the ε-insensitive loss function.

First, the definition of the ε-insensitive loss function is
given:

Definition 1. The ε-insensitive loss function is defined as [28]

Lε x, y, fð Þ = y − f xð Þj jε =max 0, y − f xð Þj jε
� �

, ð7Þ

where x ∈ Rd ,y ∈ R.

For the linear model of equation (6), its corresponding ε
-insensitive loss function can be expressed as

〠
n

i=1
yoi − yij jε = 〠

n

i=1
max 0, yoi − yij j − εð Þ = 〠

n

i=1
max 0, pT~xi − yi

�� �� − ε
� �

,

ð8Þ

where yoi represents the neural network output value and yi
represents the real output value.

For equation (8), the constraints of pT~xi − yi < ε and
yi − pT~xi < ε are not always satisfied, so the relaxation fac-
tors ξi and ξ∗i are introduced, and the following con-
straints can be obtained:

yi − pT~xi < ε + ξi, ξi ≥ 0,

pT~xi − yi < ε + ξ∗i , ξ
∗
i ≥ 0:

(
ð9Þ

The purpose of this algorithm is to minimize the value of
the ε-insensitive loss function represented by equation (8).
The value of the ε-insensitive parameter will directly affect
the accuracy of the modeling. Therefore, the parameter λ is
introduced, and ε is used as the constraint term in the optimi-
zation problem. Combined with equation (9), the optimiza-
tion problem can be expressed equivalently as

min 2λε +
λ

μn
〠
n

i=1
ξi
2 + ξ∗i

2
� 	

, s:t:
yi − pT~xi < ε + ξi,

pT~xi − yi < ε + ξ∗i ,

(

ð10Þ
where the parameter μ is the balance factor and ξi, ξ

∗
i ≥ 0 is

automatically satisfied.

Step 3. Introducing structural risk items and kernel functions.

A support vector machine is an implementation of the
principle of structural risk minimization [28]; the method
proposed in this paper learns the implementation method
of the support vector machine and introduces a regulariza-
tion term to minimize the risk in the algorithm structure.
The kernel method is an important component of a support
vector machine [28], which is used to improve the computa-
tional ability of the linear learner. The method proposed in
this paper also introduces a kernel function. After introduc-
ing the regular term and the kernel function, the optimiza-
tion problem can be expressed by

min
p,ε,ξi ,ξ∗i

pk k2 + 2λε +
λ

μn
〠
n

i=1
ξi
2 + ξ∗i

2
� 	

, s:t:

yi − pTφ ~xið Þ < ε + ξi,

pTφ ~xið Þ − yi < ε + ξ∗i ,

i = 1, 2,⋯, n:

8>><
>>:

ð11Þ

Step 4. Formula derivation.

By introducing the Lagrange multiplier, the Lagrangian
function of equation (11) can be expressed as

L = pk k2 + 2λε +
λ

μn
〠
n

i=1
ξi
2 + ξ∗i

2
� 	

+ 〠
n

i=1
αi yi − pTφ ~xið Þ − ε − ξi
� �

+ 〠
n

i=1
α∗i pTφ ~xið Þ − yi − ε − ξ∗i
� �

:

ð12Þ
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The matrix form of the corresponding dual problem of
equation (12) is

max αT α∗T

 � 2

λ
y

−
2
λ
y

2
664

3
775 − αT α∗T


 �
~K

α

α∗

" #
, s:t: αT α∗T


 �
1 = 1, α, α∗ ≥ 0

8>><
>>: ,

ð13Þ

where α, α∗ are the Lagrange coefficients and ~K is the kernel
function. They are

y =

y1

⋮

yn

2
664

3
775,

α =

α1

⋮

αn

2
664

3
775,

α∗ =

α1
∗

⋮

αn
∗

2
664

3
775,

~K = ~k ~xi, ~x j
� �h i

=
K +

μn
λ
I −K

−K K + μn
λ
I

2
64

3
75,

ð14Þ

where K is the Gaussian kernel function.
The values of the variables obtained by the solution are

p = λ〠
n

i=1
αi − α∗ið Þφ ~xið Þ,

ξi = αiμn,

ξ∗i = α∗i μn:

8>>>><
>>>>:

ð15Þ

In addition, because∑n
i=1ðαi + α∗i Þ = 1, μ =∑n

i=1ðξi + ξ∗i Þ/n.

Step 5. Prediction.

The prediction function is shown in the following equa-
tion:

y = pTφ ~xtestð Þ = λ〠
n

i=1
αi − α∗ið ÞφT ~xið Þφ ~xtestð Þ

= λ〠
n

i=1
αi − α∗ið Þ~K ~xi, ~xtestð Þ:

ð16Þ

If it is used for classification,

y = sign pTφ ~xtestð Þ� �
: ð17Þ

If y > 0, it belongs to the positive class, and if y < 0, it
belongs to the negative class.

It can be seen from this section that the algorithm pro-
posed in this paper is a quadratic programming problem.

3.2. The Center-Constrained MEB Problem. In 2002, Bădoiu
and Clarkson proposed a minimum enclosing ball (MEB)
(1 + ξ)-approximation algorithm based on the core set in
the literature [26]. The algorithm uses a subset of the input
set, which is called the core set, to solve the optimization
problem. The algorithm can obtain the same good approxi-
mation results as the original input set to improve the effi-
ciency of the algorithm. Tsang et al. [29] suggested that the
MEB problem is related to many kernel problems. Eligible
quadratic programming (QP) problems can be solved
quickly by the core-set algorithm. The following section
briefly introduces the center-constrained minimum enclos-
ing ball (CC-MEB) algorithm. Next, we will introduce the
relationship between the proposed algorithm and CC-MEB
and implement the fast algorithm proposed in this paper.

Given the training sample S = fφðxiÞgmi=1, where xi ∈ Rd

and φ is the kernel mapping associated with a given kernel
K, adding one dimension δi to each φðxiÞ forms a set S =
fðφTðxiÞ, δiÞgmi=1. By setting the coordinate of the last one-
dimensional center point to be 0, that is, the CC-MEB’s coor-
dinate is ½c, 0�, then the optimization problem of finding the
smallest CC-MEB that contains all the samples in the set S is

min
c,R

R2, s:t: φ xið Þ − cð Þ2 + δi
2 ≤ R2

�
, ð18Þ

where i = 1, 2,⋯m.

Let Δ = ½δ12,⋯, δ2m�
T ≥ 0; then, the matrix form of the

corresponding dual problem of equation (18) is

max
β

βT diag Kð Þ + Δð Þ − βTKβ, s:t:β ≥ 0, βT1 = 1
�

, ð19Þ

where the kernel matrix is

Km×m = k xi, x j
� �
 �

= φT xið Þφ x j
� �
 �

: ð20Þ

Using the optimal solution β to obtain the values for the
radius R and center point c,

R =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βT diag Kð Þ + Δð Þ − βTKβ

q

c = 〠
m

i=1
βiφ xið Þ:

8>>><
>>>:

ð21Þ

The formula for the distance from any point to the center
point is

c − φ xlð Þk k2 + δ2l = ck k2 − 2 Kβð Þl + kll + δl
2: ð22Þ

Because βT1 = 1, any real number η is added to equation
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(19), which does not affect the value of β. The original dual
form is changed to

max
β

βT diag Kð Þ + Δ − η1ð Þ − βTKβ, s:t:β ≥ 0, βT1 = 1, Δ ≥ 0
�

:

ð23Þ

Reference [29] pointed out that any QP problem that sat-
isfies equation (23) can be regarded as an CC-MEB problem,
which can be solved by the core-set fast algorithm

3.3. Relationship between Fast-RBF and CC-MEB. Equation
(13) is the QP form of Fast-RBF. Let ~α = αT α∗T


 �T ; then,
Δ = − diag ~K

� �
+ η1 + 2

λ

y

−y

" #
, ð24Þ

where the real number η should be large enough so that Δ ≥ 0.
Thus, equation (13) can be written as follows:

max
~α

~αT diag ~K
� �

+ Δ − η1
� �

− ~αT ~K~α

s:t: ~αT1 = 1:

8<
: ð25Þ

This form is equivalent to the CC-MEB problem from
equation (23), and the problem can be solved using the core-
set fast algorithm [29].

According to formula (25), the center of sphere c can be
calculated as c =∑2∗n

i=1 ~αi~φð~xiÞ. In the formula, when i = 1,
⋯, n, then ~φð~xiÞ = φð~xiÞ; when i = n + 1,⋯, 2n, then ~φð~xiÞ
= −φð~xiÞ, and the derivation is available:

c = 〠
2∗n

i=1
~αi~φ ~xið Þ = 〠

n

i=1
αiφ ~xið Þ + 〠

n

i=1
α∗i −φ ~xið Þð Þ = 〠

n

i=1
αi − α∗ið Þφ ~xið Þ:

ð26Þ

Therefore, the value of p in equation (15) is p = λc.

3.4. The Implementation of Fast-RBF. Algorithm 1 describes
the steps of the Fast-RBF algorithm, and the flow chart is
shown in Figure 2.

4. Experimental Results and Analysis

In this paper, the effectiveness of the proposed method is ver-
ified by comparing it with the traditional RBF algorithm on
MR images. The experiment is divided into two stages: the
parameter optimization stage and the modeling stage. In
the parameter optimization stage, the grid search method is
used to obtain the optimal parameters of each algorithm
based on the training set. In the modeling stage, the training
set is modeled using optimal parameters, and the test set is
used to obtain the performance of each algorithm.

The experiment is verified from the following four
aspects:

(1) Verify that the size of the core set of the Fast-RBF
algorithm is much smaller than the training set’s
scale, which can speed up the modeling time of the
algorithm

(2) Verify that the prediction capability of the Fast-RBF
algorithm is comparable to the prediction capability
of the RBF algorithm

(3) Verify that the modeling time of the Fast-RBF algo-
rithm on large datasets is much smaller than that of
the RBF algorithm

For the experimental environment, the operating system
is Windows 10; the processor is an Intel i5 2.71GHz CPU;
the memory is 8GB; and the main application software is
MATLAB R2015a.

4.1. Experimental Preparation. The use case in this section is
from MRI scans of five subjects recruited by the University
Hospitals Cleveland Medical Center Institutional Review
Board. Before the experiment, a block diagram is first used

Input: DatasetfZi = ð~xi, yiÞgni=1, approximation parameter ξ, parameter η, parameter λ, parameter μ, and kernel width δi, where ξ =

1e − 6 and η =max ð0, max ðdiag ð~KÞ − ð2/CÞ y

−y

" #
ÞÞ

Output: Core-set Q, Lagrangian coefficient ~α
Training steps:
Step 1: Randomly select 20 samples to form the initial core set Q0;
Generate the center c0 and radius R0 of the initial CC-MEB according to equation (21) and set the number of iterations t to be 0
Step 2: Randomly select 59 samples and calculate the distance from any sample to the center of the CC-MEB according to equation

(22). If there is no sample ~x outside CC‐MEBðct , ð1 + ξÞRtÞ, proceed to step 6
Step 3: Find the farthest sample from the center ct in step 2 and add the sample to core-set Qt+1 =Qt ∪ f~xg
Step 4: Solve the new CC-MEB, recorded as MEBðQt+1Þ, and ct+1 = cMEBðQt+1Þ, Rt+1 = RMEBðQt+1Þ
Step 5: Set t = t + 1 and return to step 2
Step 6: Terminate the training and return the required output
Prediction step:

Input the test sample ~xtest into the following:
y test = pTφð~xtestÞ = λcTφð~xtestÞ

Algorithm 1: The Fast-RBF algorithm.
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to frame the area to be identified, as shown in Figure 3. Next,
we train and test the data of region of interest in abdominal
organ map. The experiment is to classify the liver and kid-
neys of the region of interest in the abdominal organ map.

For each case, we extract the local textural features from
four different types of abdominal 3D MR images, namely,
fat, water, in-phase (IP), and opposed-phase (OP), as the
input of the algorithm. Noise cannot be avoided in these
actual data, and this noise will affect the final image recogni-
tion effect. Therefore, this paper adopts the method proposed
in [30, 31] to design a convolution kernel as shown in
Table 1, preprocesses the experimental data, and implements
feature extraction.

In addition, we also consider the pixel spacing of the MR
images and adopt the grid division strategy. Let (x, y) repre-
sent the position information of the pixel. That is, we com-
bine the features that we extracted and obtain a six-
dimensional feature.

4.2. Experimental Method.We define the liver of the region of
interest in abdominal MR images as class A, the kidneys as
class B, and other tissues as class C. Therefore, this is a multi-
classification problem. We train “liver (class A)-kidney (class
B),” “liver (class A)-other tissue (class C),” and “kidney (class
B)-other tissue (class C)” to obtain three classification results;
the final result is then determined by voting. The voting
method is as follows:

Let A = B = C = 0.
The classification is (A, B) if it belongs toA, andA = A + 1;

otherwise, B = B + 1.
The classification is (A, C) if it belongs to A, and A = A

+ 1; otherwise, C = C + 1.
The classification is (B, C) if it belongs to B, and B = B + 1;

otherwise, C = C + 1.
The final sample belongs to the class with the largest

values of A, B, and C.
The classification accuracy is used to measure the perfor-

mance of the algorithm.

prediction accuracy =
the number of correctly classified test samples

total number of test samples
:

ð27Þ

4.3. Experimental Results. Cases 1-4 contain a total of 59,904
data points. We randomly selected 10,000 data points, 20,000
data points, 30,000 data points, 40,000 data points, 50,000
data points, and 59,904 data points for training. Case 5,
which contains 16,896 data points, was used as the test set.
The experiment was repeated 10 times for each training set
size to verify the advantages of the proposed method.

4.3.1. Core Set of the Fast-RBF Algorithm. Figure 4 shows the
average values of the total number of core-set samples for the
three classifiers at different training set sizes. Figure 4 shows
that the total number of core sets is between 240 and 300,
which is much smaller than the sample size. Replacing all
the samples with the core sets in the model construction step
will greatly improve the operational efficiency.

4.3.2. Prediction Ability of the Fast-RBF Algorithm. It can be
seen from Table 2 that both algorithms can achieve a good
generalization performance. However, with the increase in

Start

Receive the 
input data and
initialize the 
parameters 

According to equation (21), 
get the original c0 and R0 of the

CC-MEB with 20 samples

Randomly select 59 samples and
calculate the distance from any

sample to c according to equation (22) 

Add the farthest sample to the
core set and obtain a new

CC-MEB with this new core set 

Yes

No

End

Obtain the result:
the core set and 

Lagrangian coefficient 

Are there samples
outside of the CC-MEB?

Figure 2: Flow chart of the algorithm.

Figure 3: Areas to be identified.

Table 1: Convolutional kernel CK3×3.

0.1 0.1 0.1

0.1 0.2 0.1

0.1 0.1 0.1
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the amount of training data, the RBF algorithm requires
more samples to participate in the modeling step, so it is
more constrained. When the data size exceeds 30,000 data
points, it can no longer be solved. The Fast-RBF algorithm
uses core-set technology to solve the problem. Key samples
are added to the core set one by one, and the average size of
the core set does not exceed 300, so it can process a larger
dataset and can achieve a generalization ability comparable
to that of the RBF algorithm. The organ classification results
are shown in Figure 5.

4.3.3. Time Performance of the Fast-RBF Method. Table 3
shows that the modeling time required by the two algorithms
has a stable growth with increasing sample size. When the
size of the dataset is 30,000 data points, the average modeling
time of the RBF algorithm is 7,580 seconds, while the average
time of the Fast-RBF algorithm is 15.2609 seconds. The
modeling time of the Fast-RBF algorithm is much smaller
than that of the RBF algorithm. In addition, when the size
of the dataset is more than 30,000 data points, the RBF algo-
rithm will not run.

4.4. Experimental Conclusion. It is known from experiments
that the Fast-RBF algorithm can be used for organ recogni-
tion in MR images. The advantage of the proposed algorithm
is that it requires far less modeling time than the RBF algo-

rithm in large datasets under the premise of ensuring the pre-
diction accuracy. The algorithm has strong practicability.

5. Conclusion

Our studies are based on MRI of challenging body sections
of the abdomen. We proposed the Fast-RBF algorithm,
which is suitable for the rapid training of a large dataset.
By introducing the ε-insensitive loss function, learning the
structural risk term and kernel method of the support vector
machine, and using the core-set principle, the proposed
algorithm can meet the needs of large sample sizes. This
method can quickly process large datasets and is suitable
for medical image processing.

The method proposed in this paper is a supervised learn-
ing method. The training samples need to be labeled, and the
workload of data preparation is large. In the future, we will
further study the semisupervised abdominal image recogni-
tion method in which only a small number of class labels
are needed to achieve image processing.

Data Availability

Data sharing is not available for our study, as the experimental
data were afforded by our collaboration partners at the Uni-
versity Hospitals Cleveland Medical Center, OH, USA. With-
out permission, we cannot share any of our data with others.
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Figure 5: Test results. (a) Original picture. (b) Organ classification
results.Number of samples ⨯104
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Figure 4: The size of the core set at different sample sizes.

Table 2: Prediction accuracy and standard deviation of the two
algorithms at different dataset sizes.

Size of the dataset
Prediction accuracy and standard

deviation
RBF Fast-BRF

10,000 0:9345 ± 0:0083 0:9458 ± 0:0153

20,000 0:9389 ± 0:0063 0:9551 ± 0:0132

30,000 0:9381 ± 0:0104 0:9496 ± 0:0098

40,000 — 0:9467 ± 0:0111

50,000 — 0:9432 ± 0:0112

59,904 — 0:9552 ± 0:0066

Table 3: Average modeling time and standard deviation of the two
algorithms under different data sizes.

Size of the dataset
Modeling time and standard
deviation of each method (s)
RBF Fast-BRF

10,000 210:5813 ± 3:5134 10:1719 ± 7:0177

20,000 737:1344 ± 7:1357 12:8016 ± 4:0126

30,000 7:58E + 03 ± 164:0596 15:2609 ± 8:2559

40,000 — 16:5953 ± 9:1518

50,000 — 17:5953 ± 9:1983

59,904 — 22:9781 ± 7:0587
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Additional Points

Human and Animal Rights. The experimental data are from
five subjects recruited by the University Hospitals Cleveland
Medical Center Institutional Review Board. We used these
data to be compatible with the board’s requirements.

Consent

Informed consent was obtained from all the individual par-
ticipants included in this study.

Disclosure
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