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Appendix A: Generalized EM Algorithm for Parameter Estimation

In the proposed method, we estimate the parameter φ given in Section 2.2 by a generalized

EM algorithm. The observed likelihood function,

L(φ) =
∑
Θ

Pr(Y = y|Θ = θ;φ) Pr(Θ = θ;φ)

=
∑
Θ

∏
s∈S

f0(ys)
1−θsf1(ys)

θs Pr(Θ = θ;φ),

contains f1(ys), the marginal density function for a non-null voxel given in Section 2.1. With

non-parametric specification for the effect size distribution g, given in equation (6), f1(ys;p)

can be expressed as a mixture form; specifically, as a normal mixture given by equation (7)

when asymptotic normality is assumed for the sampling distribution of Ys or a t-mixture when

the sample size is not large enough (see Section 2.2). In estimating the mixture structure, we

induce latent variables. Let Ks = (Ks0, Ks1, Ks2, . . . , KsB) be the vector of latent variables

satisfying
∑B

b=0 Ksb = 1, such that Ks0 = 1 if Θs = 0 and Ksb = 1 if the observed ys belongs

to the bth component of the mixture distribution for non-null voxels (b = 1, . . . , B). The

probability of Ksb = 1 given Θs is expressed as

Pr(Ks0 = 1|Θs = 0) = 1,

Pr(Ksb = 1|Θs = 1) = pb, b = 1, . . . , B.

We denote U = {Ks : s ∈ S} to represent the set of Ks for all the voxels.

For a complete data variable set, (Y ,Θ,U), including the latent variables Θ and U ,

let ℓ be a log likelihood function, ℓ(φ;y,θ,u) = log Pr(Y = y,Θ = θ,U = u;φ). At the

(t + 1)th iteration of the EM algorithm, the (t + 1)th estimate of the parameter φ(t+1) is

obtained by maximizing the expected value of the log likelihood function for the complete

data variables ℓ(φ;Y ,Θ,U), given the observed data y under the current estimate of the
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parameters φ(t), expressed as

Q(φ|φ(t)) = E[ℓ(φ;Y ,Θ,U)|y;φ(t)]

This function can be divided into two parts,

Q(φ|φ(t)) = Q1(p|φ(t)) +Q2(γ|φ(t)),

where

Q1(p|φ(t)) =
∑
θ

∑
u

Pr(Θ = θ,U = u|Y = y;φ(t)) log Pr(Y = y,U = u|Θ = θ;p)

and

Q2(γ|φ(t)) =
∑
θ

Pr(Θ = θ|Y = y;φ(t)) log Pr(Θ = θ;γ).

The former, Q1, can be expressed under the conditional independence assumption in equa-

tion (2),

Pr(Y = y,U = u|Θ = θ;p) =
∏
s∈S

Pr(Ys = ys,Ks = ks|Θs = θs;p)

=
∏
s∈S

Pr(Ys = ys|Ks = ks) Pr(Ks = ks|Θs = θs;p)

=
∏
s∈S

(
f0(ys)

ks0

B∏
b=1

hb(ys)
ksb

)(
B∏
b=1

pksbb

)θs

,

where f0 is the null density function and hb represents a density function of the bth mixture

component. We note that f0 and hb have different forms for different assumptions of the

sampling distribution of Ys, namely f0(ys) = ϕ(y; 0, c2n) and hb(ys) = ϕ(y; tb, c
2
n) in the

proposed estimation method with normal approximation and f0(ys) = ϕt(y/cn;n− 2, 0) and
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hb(ys) = ϕt(y/cn;n− 2, tb/cn) in the counterpart with the t-distribution. Thus, we have

Q1(p|φ(t)) =
∑
θ

∑
u

Pr(Θ = θ,U = u|Y = y;φ(t))

×
∑
s∈S

(
ks0 log f0(ys) +

B∑
b=1

ksb log hb(ys) + θs

B∑
b=1

ksb log pb

)
.

Because the null density function f0 and the function hb do not depend on the parameter p

(b = 1, . . . , B),

∂Q1

∂pb
=
∑
θ

∑
k

Pr(Θ = θ, K = k|Y = y;φ(t))
∑
s∈S

θsksb
1

pb

=
1

pb

∑
s∈S

E
[
ΘsKsb|y;φ(t)

]
.

Here,

E
[
ΘsKsb|y;φ(t)

]
= Pr(Θs = 1, Ksb = 1|Y = y;φ(t))

= Pr(Ksb = 1|Θs = 1,Y = y;φ(t)) Pr(Θs = 1|Y = y;φ(t))

= Pr(Ksb = 1|Θs = 1, Ys = ys;φ
(t)) Pr(Θs = 1|Y = y;φ(t))

=
hb(ys)p

(t)
b π

(t)
s (1)

f1(ys;p(t))
,

where π
(t)
s (θs) = Pr(Θs = θs|Y = y;φ(t)) and f1(ys;p

(t)) =
∑B

b=1 p
(t)
b hb(ys), and p(t) =

(p
(t)
1 , . . . , p

(t)
B ) represents the current estimate of the parameter p. Since

∑B
b=1 pb = 1, the

method of Lagrange multipliers induces

p
(t+1)
b =

∑
s∈S π

(t)
s (1)w

(t)
b (ys)∑

s∈S π
(t)
s (1)

,

where w
(t)
b (ys) = p

(t)
b hb(ys)/f1(ys;p

(t)).
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The other parameter, γ, can be updated in the same, as shown by Shu et al. (2015).

Specifically, Q2 can be maximized by solving the following nonlinear equation,

∂

∂γ
Q2(γ|φ(t)) = 0.

This equation can be solved by the Newton-Raphson method, since we can obtain the first

and second derivatives for Q2 with respect to γ,

∂

∂γ
Q2(γ|φ(t)) = E

[
H(θ)|y;φ(t)

]
− E [H(θ)|γ] ,

∂2

∂γ∂γT
Q2(γ|φ(t)) = −Var [H(θ)|γ] .

However, the convergence of the solution depends on its initial value. Therefore, Shu et al.

(2015) proposed to choose γ(t+1) that increases Q2(γ|φ(t)). Providing that the other param-

eter p(t+1) maximizes Q1, this is equivalent to choosing φ(t+1) that satisfies Q(φ(t+1)|φ(t)) ≥

Q(φ(t)|φ(t)) , following the approach of the generalized EM algorithm (Dempster et al., 1977).

With S(t)(γ) =
∂

∂γ
Q2(γ|φ(t)) and I(γ) = −

∂2

∂γ∂γT
Q2(γ|φ(t)), we find γ(t+1) that increases

Q2 using a backtracking line search algorithm (Nocedal and Wright, 2006). Specifically, we

consider the following candidates in ascending order of m = 0, 1, . . . ,

γ(t+1,m) = γ(t) + λmI(γ
(t))S(t)(γ(t)).

Then we update γ as γ(t+1) = γ(t+1,m) which is the first one satisfying the Armijo condition

(Nocedal and Wright, 2006),

Q2(γ
(t+1,m)|φ(t))−Q2(γ

(t)|φ(t)) ≥ αλmS
(t)(γ(t))TI(γ(t))S(t)(γ(t)).

In practice, we set α = 10−4 and λm = 2−m, which are same values chosen by Shu et al.
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(2015). For the value of S(t)(γ(t)) = E
[
H(θ)|y;φ(t)

]
−E [H(θ)|γ] and I(γ) = Var [H(θ)|γ],

Monte Carlo averages are used from a Gibbs sampler with the distribution of Θ and Θ|Y ,

Pr(Θ = θ) ∝ exp
{
γTH(θ)

}
,

Pr(Θ = θ|Y = y;φ) ∝ exp

γ1 ∑
(s,t)∈S1

θsθt +
∑
s∈S

{γ2 − log f0(ys) + log f1(ys;p)} θs

 .

The Gibbs sampler from the distribution of Θ is based on the following Markov property,

Pr(θs|θs̄) = Pr(θs|θNs)

=
exp

{
γ1
∑

t∈Ns
θt + γ2

}
1 + exp

{
γ1
∑

t∈Ns
θt + γ2

},
where s̄ is the set excluding s from S and Ns is a set of voxels that are contiguous to the voxel

s. In the calculation of the expected values in S(t)(γ(t)) or I(γ) using the Gibbs sampler,

we obtain an updated sample of θ after all θs ∈ S are updated. In its implementation,

we generated 5, 000 samples and ignored the first period with 1, 000 samples as the burn-in

period. This burn-in period was determined by a visual inspectation of the estimated ratio

of null voxels.

Similarly, we obtain the value of Q2(γ
(t+1,m)|φ(t)) − Q2(γ

(t)|φ(t)), using the following

equation,

Q2(γ
(t+1,m)|φ(t))−Q2(γ

(t)|φ(t))

= E
[(
γ(t+1,m) − γ(t)

)T
H(θ)|y;φ(t)

]
+ log

 E
[
exp

{
−
(
γ(t+1,m)

)T
H(θ)

}
|φ(t+1,m)

]
E
[
exp

{
− (γ(t))

T
H(θ)

}
|φ(t)

]
 .

In this calculation, we generate the samples of Θ under the parameter φ(t+1,m). For

updating γ, in order to avoid the Ising parameters that cause phase transition, if all the
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values of θ in the remaining 4, 000 samples were equal, we proceed to the next iteration

without updating to φ(t+1,m). We confirmed that the estimated values from our algorithms

were sufficiently close to the true values specified in the simulation. Here we stopped the

algorithm after 100 updates in our application example.
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Appendix B: Simulation results for the other proportions of disease-

associated voxels

(a) Strong dependency: γ = (0.25,−0.1)
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(b) Intermediate dependency: γ = (0.15,−0.45)
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(c) Weak dependency: γ = (0.05,−0.85)
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Figure 1: Average bias in estimating effect sizes for each of the top 500 voxels across 100
simulations when the sample size n is 50 (left), 100 (center), and 200 (right). Panels (a),
(b), and (c) represent scenarios with various degrees of dependency among contiguous voxels
specified by the parameter γ of the Ising model when the proportion of disease-associated
voxels is 10%.
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(a) Strong dependency: γ = (0.25, 0)
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(b) Intermediate dependency: γ = (0.15, 0)
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(c) Weak dependency: γ = (0.05, 0)
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Figure 2: Average bias in estimating effect sizes for each of the top 500 voxels across 100
simulations when the sample size n is 50 (left), 100 (center), and 200 (right). Panels (a),
(b), and (c) represent scenarios with various degrees of dependency among contiguous voxels
specified by the parameter γ of the Ising model when the proportion of disease-associated
voxels is 50%.
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Appendix C: Simulation results when the model is misspecified.

(a) Senario 1
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(b) Senario 2
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Figure 3: Average bias in estimating effect sizes for each of the top 500 voxels across 20
simulations when the model is misspecified. The sample size n is 50 (left), 100 (center),
and 200 (right). The true latent variables, θ, were generated independently across voxels
in Sinario 1 (a) and generated from an Ising model in Sinario 2 (b), with proportions of
disease-associated voxels of 20%. Note that we had similar results for the other proportions
of disease-associated voxels, i.e., 10% and 50% (results not shown).
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Appendix D: Application of the proposed method with normal

approximation to neuroimaging data from an Alzheimer’s disease

study

(a) Rejected voxels (b) Estimated effect size

Figure 4: Application of the method with normal approximation to Alzheimer’s disease.
Panel (a) displays rejected voxels for the nominal FDR level of 0.05. Panel (b) displays
positive effect size estimates.
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Appendix E: The difference of effect sizes between naive method

and proposed method for induvidual voxels in the application
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Figure 5: Some examples of the difference of effect sizes between naive method and proposed
method for induvidual voxels in (a) SFGdor.R (AAL index: 4), (b) DCG.R (AAL index:
34) and (c) CUN.L (AAL index: 45). The voxels are orderd based on naive estimates. The
black line shows naive estimates and the red dots show proposed effect size estimates.
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Appendix F: Processes to transform original raw data to normal-

ized data for association analysis using the proposed method in a

neuroimaging data application

Download the OASIS brain dataset 
“OASIS-2” from the OASIS web site: 
https://www.oasis-brains.org/#data

demographics data 
(oasis_longitudinal_ 
demographics.xlsx

MRI data
(OAS2_RAW_PART1.tar.gz,  
OAS2_RAW_PART2.tar.gz)

Subject ID
(subject_id.csv)

Pre-processing by SPM
• Averaging and co-

registration within 
subjects (average.m)

• Co-registration among 
subjects, normalization , 
modulation, and 
smoothing (preprocess.m)

• Gray matter intensity 
normalization using R 
package WhiteStripe
(masking.m, whitestripe.R)

• Calculate t-statistic from 
the general linear model 
(reg.m, estimate.m)

Identify 
non-converter
/ converter

Merge with
subject_id.csv

Implement the proposed 
method 
(EffectSizeEstimate.R)

Figure 6: Flowchart of the processes to transform original raw data to normalized data for
association analysis. The names of data or program code files are in brackets.
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