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.e basic experimental data of traditional Chinese medicine are generally obtained by high-performance liquid chromatography
and mass spectrometry. .e data often show the characteristics of high dimensionality and few samples, and there are many
irrelevant features and redundant features in the data, which bring challenges to the in-depth exploration of Chinese medicine
material information. A hybrid feature selection method based on iterative approximate Markov blanket (CI_AMB) is proposed
in the paper. .e method uses the maximum information coefficient to measure the correlation between features and target
variables and achieves the purpose of filtering irrelevant features according to the evaluation criteria, firstly. .e iterative ap-
proximation Markov blanket strategy analyzes the redundancy between features and implements the elimination of redundant
features and then selects an effective feature subset finally. Comparative experiments using traditional Chinese medicine material
basic experimental data and UCI’s multiple public datasets show that the new method has a better advantage to select a small
number of highly explanatory features, compared with Lasso, XGBoost, and the classic approximate Markov blanket method.

1. Introduction

At present, due to the rapid development of scientific and
technological level, the information acquisition technology
and storage capacity have been greatly improved, and the
data obtained carry more sufficient information, for which
the scale is getting larger and larger. In the field of basic
research of materials about traditional Chinese medicine,
high-performance liquid phase (waters H-class) and mass
spectrometry (synapt G2-si) are usually used to obtain
experimental data. .ese data often involve thousands of
substances, which are characterized by high-dimensional
data and easily cause dimensional disasters. At the same
time, due to the limitation of the experimental times, the
characteristic of small samples is also presented, which
easily leads to problems, such as overfitting. Conventional
statistical analysis methods, such as multiple linear

regression, principal component regression, and ridge
regression, choose regression coefficients to reflect the
relationship between variables [1–3], however, which
cannot effectively delete irrelevant features and redundant
features, and achieve the purpose of screening important
substances for basic data of traditional Chinese medicines
with high dimensionality and a small amount. At the same
time, the traditional feature selection methods, such as
Lasso and K-split Lasso [4], only can delete irrelevant
features and redundant features to some extent and cannot
meet the data processing requirements of high-dimen-
sional small samples when dealing with data. .erefore, in
view of the problem that high-dimensional small sample
data of Chinese medicine contain more irrelevant infor-
mation and redundant information, it is urgent to find an
analytical model that can select effective features from
high-dimensional small sample data, and improve the
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accuracy and operation of the model to provide technical
support for researchers.

Next, this article will introduce the research-related work
in Section 2. .e new method is elaborated in Section 3. In
Section 4, two basic data on TCMmaterials and three public
UCI data are used to analyze in the new method, which is
also compared with several existing algorithms to further
verify the feasibility and effectiveness. Finally, the full text is
summarized in Section 5.

2. Related Work

Feature selection is an effective method to solve dimen-
sionality disasters and achieve feature dimensionality re-
duction. It can preserve the effective features that are most
beneficial to regression (or classification) by analyzing the
intrinsic relationship between features and target variables
and features [5, 6], so that the redundant features and
unrelated features to the target variable are better eliminated,
aiming to reduce the complexity of the algorithm and im-
prove the accuracy of the algorithm. According to the
combination with machine learning, feature selection
methods can be divided into filtering, encapsulation, em-
bedded, and integrated [7]. Filtering is independent of a
specific machine learning model, in which feature sorting
and feature space search are generally used to obtain feature
subsets including some special typical methods, for example,
mutual information, symmetric uncertainty, and maximum
information coefficient [8–10]. Encapsulation is to integrate
the learning algorithm into the feature selection process, that
is, the classification algorithm is regarded as a black box to
evaluate the feature subset performance, which is to achieve
the maximum classification accuracy rate. Embedded in-
corporates the feature selection process as the part into the
learning algorithm..is method is used to solve the problem
of high reconstruction cost when encapsulating different
datasets. .e integrated method is to gain the results, re-
spectively, by learning using multiple feature selection
methods firstly and then integrate each result with a certain
rule. .e method is better than the single feature selection
method, which is suitable for solving the problem of in-
stability of the feature selection method.

.e feature selection method has attracted the attention
of many domestic and foreign scholars. For example, in the
field of biomedicine, Yao et al. [11] proposed a multimodal
modal feature selection method based on hypergraph for
multitask feature selection and finally selected effective brain
region information; Sun et al. [12] proposed a hybrid feature
selection algorithm based on Lasso, which can select a subset
of information genes with strong classification ability;
Mingquan et al. [13] proposed information gene selection
method based on symmetry uncertainty and support vector
machine (SVM) recursive feature elimination, which can
effectively eliminate genes unrelated to categories. At the
same time, feature selection methods are also well applied in
other fields. Nagaraja [14] used partial least squares re-
gression and optimized experimental design to select fea-
tures with strong correlation with categories; Hu et al. [15]
proposed feature selection algorithm by joint spectral

clustering and neighborhood mutual information, which
can remove signature-independent features.

However, the research methods mentioned in the above
literature can only remove irrelevant features or eliminate
redundant features to a certain extent and cannot meet the
data processing needs of high-dimensional small sample
problems of traditional Chinese medicine. .erefore, some
researchers have conducted in-depth discussion and re-
search to do a two-stage analysis of feature correlation and
redundancy and approximated the approximate Markov
blanket (AMB) to the feature selection process to achieve the
purpose of screening effective and fewer features [16].
Among them, the literature [17] proposed a method of
approximating the Markov blanket using cross entropy. .e
method first uses the Pearson coefficient to calculate the
correlation between features and removes the irrelevant
features and then uses the approximate Markov blanket to
perform redundant features: deletion; the paper [18] pro-
posed a maximum correlation minimum redundancy fea-
ture selection algorithm using approximate Markov
blankets. .e method first uses the criterion of maximum
correlation minimum redundancy for feature correlation
ordering and then does approximate calculation by com-
bining mutual information with Marco to remove irrelevant
features and redundant features; the literature [19] proposed
a feature selection method based on the maximum infor-
mation coefficient and approximate Markov blanket (FCBF-
MIC), which firstly measured correlation between features
and categories by symmetric uncertainty to delete the fea-
tures that are not related to categories or weakly correlated.
Secondly, the Markov carpet is approximated by using the
maximum information coefficient, thereby achieving the
purpose to delete redundant features. However, after the
analysis and discussion of the experiment, it is found that the
above method is more strict because of the definition of the
approximate Markov blanket, which makes it impossible to
select a small number of highly explanatory features in the
high-dimensional small sample data of Chinese medicine, so
it is still needed for us to do further research and exploration
of Chinese medicine data analysis methods.

In a feature selection study, higher-quality feature se-
lection methods should exhibit the following characteristics
[20]: (1) interpretability, meaning that the features selected
in the model have scientific significance; (2) acceptable
model stability; (3) avoidance of deviations in the hypothesis
test; and (4) model calculation complexity within a man-
ageable range. At the same time, in the literature [21], a
standard of optimal feature subsets is proposed into four
categories: unrelated features, weakly correlated and re-
dundant features, weakly correlated nonredundant features,
and strongly correlated features. It is considered that the
optimal feature subset should contain the latter two in this
paper. .rough a large number of experimental compari-
sons, the standard has been proved to have lower time
complexity and better feature selection results [22, 23].

In view of this, this paper proposes a hybrid feature
selection method based on iterative approximate Markov
blanket (CI_AMB), which is divided into two phases: in the
first phase, it first uses the maximum information coefficient
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to measure correlation between the per-dimensional fea-
tures and target variables and achieves the filtering of un-
related features and the acquisition of candidate feature
subsets according to some evaluation criteria; in the second
stage, the candidate feature subsets are sorted and classified
into K subsets and then iteratively cull redundant features to
obtain weakly correlated nonredundant features and
strongly correlated features based on the maximum ap-
proximate Markov carpet of information coefficients. Not
only can the algorithm effectively filter the irrelevant features
and eliminate redundant features, but also reduces the time
complexity of the model and improves the interpretation
degree of the model. It is a new model suitable for high-
dimensional small sample data analysis of traditional Chi-
nese medicine.

3. Research on Hybrid Feature Selection
Method Based on Iterative Approximation
Markov Blanket (CI_AMB)

.e maximum information coefficient (MIC) is a new in-
formation-based metric proposed by Reshef et al. [24] in
2011. It not only better reflects the correlation between
features and target variables, and features and features, but
also makes up for the problem that metrics such as mutual
information cannot be normalized and sensitive to dis-
cretization and that metrics such as information gain and
symmetry uncertainty cannot effectively measure the non-
function dependence between features. In many experi-
mental analyses, the characteristic that the largest
information coefficient has good stability and the ability to
metric the relationship among the features are also effec-
tively demonstrated [25–27].

.e Markov blanket is a method that minimizes subset of
features to keep maximizing the target variable information
and meanwhile makes the remaining feature subset to be
independent of the target variable under the conditions that
subset of features has been selected [19, 28]. Although the
Markov carpet can achieve the effect of feature dimension
reduction, because its independent conditions are too strict
and the relationships discovered belong to the NP-hard
problem, the feature selection method often adopts the
strategy of approximating the Markov blanket. .erefore,
combining the advantages of the largest information coeffi-
cient, in this paper, we use MIC to approximate the Markov
blanket (see Definition 1) in order to better eliminate the
redundant features, so that the optimal feature subset
screening and model optimization are achieved.

Definition 1. (approximate Markov blanket). Assume that
there are two different features in the feature set, respec-
tively, if

MIC fi, obj( ≥MIC fj, obj  MIC fi, fj ≥MIC fj, obj .
�����

(1)

It is considered that fi is an approximate Markov
blanket of fj, that is to say, fi is retained while fj is a
redundant feature and removed from the feature set.

Definition 2. (weakly correlated nonredundant features and
strongly correlated features). Only when satisfying the
condition that there is no an approximate Markov blanket to
feature fi, the feature fi is a weakly correlated nonredun-
dant feature or a strongly correlated feature, namely,
fi ∈ F − firrelevant − fredundant , where F is the feature
complete set and firrelevant and fredundant are the irrelevant
feature set and the redundant feature set, respectively.

.e CI_AMB method is mainly divided into two stages.
In the first stage, it firstly uses the MIC method to measure
the correlation between each feature and the target variable
and achieves the filtering of better irrelevant features
according to the evaluation criteria to achieve the acquisition
of candidate feature subsets. .e features selected by the
MIC method are usually highly correlated with the re-
dundant features accompanied, in which the more amounts
of the redundant features not only increase the time com-
plexity and space complexity of the model, but also reduce
the degree of interpretation of the model. .erefore, in the
second stage, the new method further analyzes the redun-
dancy of the feature, that is, according to the feature score
obtained by the MIC method, the features of the candidate
subset are arranged in ascending order and equally divided
into K parts. And then, the approximate Markov blanket
(AMB) is used to iteratively eliminate redundant features, so
that weakly correlated nonredundant features and strongly
correlated features can be selected (Algorithm 1)..e flow of
the algorithm construction is shown in Figure 1.

.e specific construction process of the model is as
follows:

Phase 1. Filtering irrelevant features
Step 1. MIC calculation: MIC calculation is performed
on the original data with m features, that is, the
maximum information coefficient is calculated for each
feature by formula (2) and obtains a score sequence
Tlist � (t1, t2, . . . , tm) of all features, and theTlist value is
[0, 1]. It is worth noting that the closer the score of the
feature is to 1, the stronger the correlation of feature
and the target variable is, and the closer the score is to 0,
the weaker the correlation is:

MIC Os(  � max
xy<B(n)

MI∗ Os, x, y( 

logmin x, y 
, (2)

where MI∗(Os, x, y) refers to the maximum mutual
information of Os under mesh partitioning [19, 29], Os is
the ordered pair set of samples, x means dividing the value
range of feature X into x segments, y means dividing the
value range of dependent variable Y into y segments, and
B(n) is the upper limit of themeshing. Generally, the value
of B(n) is B(n) � n0.6, and n is the sample size.
Step 2. Determining the candidate feature subset: MIC
calculation is used to obtain the score sequence Tlist, and
the descending order is arranged and the sequence Tlist is
intercepted according to a certain ratio, and then the
current top ranked feature subset is selected; if the selected
feature subset satisfies the best of evaluation index RMSE,
the candidate feature subset Dm′

(m′ dimension feature,
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m′ <m) can be directly selected, but if not, the progress of
filtering operation and judgment is continued:

RMSE �

������������

1
n



n

i�1
yi − yi( 

2




. (3)

Step 3. Data division and initialization: the candidate
feature subsets Dm′

are arranged in reverse order

according to the feature scores, thereby obtaining an
aligned candidate feature subset Dlist in order to ensure
the maximum retention for the features with high
important correlation in the regression tasks by ranking
the features in the later processing, then subdividing
the candidate feature subset Dlist into K groups, and
defining Dlist(i) is the i−th(1≤ i≤K) feature after
dividing the candidate feature subset into K groups
subset, while initializing the optimal feature set Tbest to
be empty.

Input: dataset D(X, Y), n samples, m features
K//the number of feature subsets divided

Output: optimal feature subset Tbest, n samples, m″ features
Begin
Phase 1: filtering irrelevant features
For I� 1 to m: //MIC calculation
Standardize X and Y;
Calculating the MIC score value for each feature in D(X, Y);
End
According to the evaluation index RMSE, the filtered candidate feature subset is determined, and the candidate feature subset of
the m′ dimension is arranged in ascending order;
.en, the selected candidate feature subset sequences are divided: Dlist � Dlist(1), Dlist(2), . . . , Dlist(K) ; //Divided into K shares
Tbest � NULL; //Initialize the optimal feature subset to be empty
Phase 2: eliminating redundant features
Performing redundancy analysis on the first feature subset using the AMBmethod and filtering out nonredundant features to join
Tbest;

For I� 2 to K: //Iterative AMB
Temp Dlist � Tbest ∪Dlist(i); //Add the current optimal feature subset Tbest to the next partition subset

Tbest � AMB(Temp Dlist); //Update the list of optimal features using the AMB method, and finally |Tbest| � m″
End
Construct a regression model and verify and evaluate the validity and reliability of the model;
End

ALGORITHM 1: CI_AMB algorithm.
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Figure 1: CI_AMB model.
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Phase 2. Eliminating redundant features
Step 4. Feature redundancy analysis: first, the redun-
dant features are removed from the first one feature
subset Dlist(1) by using the AMB method (i.e., Defi-
nition 1), and then the nonredundant features are
filtered into Tbest. Secondly, Tbest and the second one
feature subset Dlist(2) are merged as the current feature
subset, and it will be analysed by the AMB method to
delete the redundant features, and then the Tbest is
updated currently. .erefore, the optimal feature
subset Tbest with the remaining the m″ dimension
(m″<m′) is obtained by iterating sequentially to the k-
th feature subset Dlist(k) in order.
Step 5. Model evaluation: compare and evaluate various
strategies by using the weakly correlated nonredundant
and strongly correlated optimal feature subsets (Tbest)
obtained in the above steps.

4. Experimental Design

4.1. Experimental Data Description. .e five experimental
datasets were used in this paper including the traditional
Chinese medicine material basic experimental data
(WYHXB and NYWZ) of the Modern Chinese Medicine
Preparation Ministry of Education, the Residential Building
Dataset (RBuild), Communities and Crime on the UCI
dataset (CCrime), and BlogFeedback (BlogData for short),
and the basic information of each dataset is described in
Table 1. Among them, there are 798 features, 1 dependent
variable, and 54 samples in WYHXB data, and 10283 fea-
tures, 1 dependent variable, and 54 samples in NYWZ data;
BlogData is data describing blog posts, which includes 280
features, 1 dependent variable, and 60021 samples; RBuild is
data describing residential buildings, which includes 103
features, 1 dependent variable, and 372 samples; CCrime is
data describing community crime, which includes 127
features, 1 dependent variable, and 1994 samples. It is worth
noting that the UCI datasets obtained from the UCI Ma-
chine Learning Repository generally have more missing
values; therefore, the mean filling method is used for data
processing during the experiment. In this paper, using
BlogData, RBuild, and CCrime of the UCI dataset is to
compare the regression effects of the new model on the
public dataset to verify the reliability and generalization of
the new model in our experiments.

Both WYHXB and NYWZ are the basic experimental
data of Shenfu injection in the treatment of cardiogenic
shock. .e experimenters used the left anterior descending
coronary artery near the cardiac tip to replicate the meta-
phase cardiogenic shock rat model and gave the Shenfu
injection (unit: ml·kg−1) to the shock rat models divided into
7 groups (0.1, 0.33, 1.0, 3.3, 10, 15, and 20, respectively) by
the dose of Shenfu injection, in which included 6 rats in each
group, and set the model group and blank group in whole
experiment meanwhile. After 60 minutes of administration,
the pharmacodynamic indicators of the red blood cell flow
rate (m/s) were collected. .e substance information con-
tained in the Shenfu injection is called exogenous substance

(i.e., WYHXB data, as shown in Table 2), and the substance
information of the experimental individual itself is called
endogenous substance (i.e., NYWZ data, as shown in
Table 3). In the two data, the material information is
characteristic, and the red blood cell flow rate is the de-
pendent variable.

4.2. Results and Discussion. .e programming tool used in
this experiment is Python 3.6, the operating system is
Windows 10, the memory is 8GB, and the CPU is Intel (R)
Core (TM) i5-3230M.

4.2.1. Filtering of Irrelevant Features. In order to ensure the
reliability of the new model, the RMSE (root mean square
error) of the two regression models of GBDT [30] and
XGBoost [31] was adopted as the comprehensive evaluation
index, that is, the average value of the two regression models
RMSE was taken as the evaluation index, and then the
characteristics of the original dataset were filtered by the
certain ratio P gradually (if the number of features has a
decimal number, the result is rounded in the experiment), so
that it can be sure that the corresponding RMSE value is the
best when what the ratio P is taken. And it is more ap-
propriate to judge how many irrelevant features are deleted
to achieve the purpose of effectively filtering the irrelevant
features, and the experimental results are shown in Table 4.

According to the experimental results in the above
Table 4, when P � 0.85 in the WYHXB data, the corre-
sponding average RMSE mean value is the best, and 120
irrelevant features are filtered (the original features are 798);
when P � 0.8 in the NYWZ data, the corresponding average
RMSE is the best, and 2057 irrelevant features are filtered
(10283 original features); when P � 0.5 in the BlogData data,
the corresponding RMSE is the best, and 140 irrelevant
features are filtered (280 original features); when P � 0.7 in
RBuild data, its corresponding RMSE mean is the best, and
31 irrelevant features are filtered (103 original features);
when CCrime data takes P � 0.95, its corresponding RMSE
mean is the best, and 7 irrelevant features (127 original
features) were filtered. As a result, after filtering the irrel-
evant features by the aboveMICmethod, a candidate feature
subset of five sets of experimental data can be obtained. By
further analyzing the candidate feature subsets, it can be
found that the RMSE of the original data has little difference
with the RMSE of the candidate feature subsets (the ex-
perimental results are shown in Table 5); therefore, the
features deleted in this experiment have little effect on the
accuracy of the model and the process finally filters out
irrelevant features and better preserves the features asso-
ciated with the target variables.

4.2.2. Elimination of Redundant Features. .rough the
above experiments, filtering of irrelevant features can be
achieved by obtaining candidate feature subsets. However,
according to the construction of the new model, it is nec-
essary to divide the candidate feature subsets (ascending
order) equally in the experimental process, but different
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Table 3: Partial data of basic experiments with traditional Chinese medicine substances (NYWZ).

11.10_787.5077m/z 12.29_526.1784m/z 12.29_531.2005m/z . . . 12.47_631.3847m/z Red blood cell flow rate (μ·m/s)
53.3719 11557.6 764.329 . . . 1795.79 2200
43.4717 7971.33 875.465 . . . 1842.39 2750
76.507 3399.9 870.161 . . . 1562.81 1980
153.145 51027.4 916.064 . . . 1619.62 1860
16.3197 10694.4 942.699 . . . 1612.42 2100
42.2836 11048.1 714.536 . . . 1649.23 2000
. . . . . . . . . . . . . . . . . .

55.5021 4702.83 748.844 . . . 1632.9 2481
153.21 78912.8 835.24 . . . 1647.55 2970
. . . . . . . . . . . . . . . . . .

Table 1: Basic dataset information (default task: regression).

Datasets Number of samples Number of attributes
WYHXB 54 799 (798 + 1)
NYWZ 54 10284 (10283 + 1)
BlogData 60021 281 (280 + 1)
RBuild 372 104 (103 + 1)
CCrime 1994 128 (127 + 1)

Table 2: Partial data of basic experiments with traditional Chinese medicine substances (WYHXB).

0.34_237.0119m/z 0.35_735.1196m/z 0.36_588.0942m/z . . . 0.36_590.0903m/z Red blood cell flow rate (μ·m/s)
0.48808 302.16 0 . . . 27.8589 750
100.078 62.016 0 . . . 3.80712 1400
11.6992 52.5058 7.61005 . . . 4.85059 785
143.643 284.113 0 . . . 456.607 790
7.75089 54.4535 0 . . . 0 670
18.2499 0 0 . . . 14.6621 680
. . . . . . . . . . . . . . . . . .

28.5783 0 0 . . . 2.3551 850
2.91064 0 16.1624 . . . 3.41406 620
. . . . . . . . . . . . . . . . . .

Table 4: Experimental results of five datasets of filter-independent features.

P

WYHXB NYWZ BlogData RBuild CCrime
Number of
features Ave-RMSE Number of

features Ave-RMSE Number of
features

Ave-
RMSE

Number of
features Ave-RMSE Number of

features
Ave-
RMSE

0.95 758 234.960328 9768 233.324863 266 12.645784 97 354.101779 120 0.131535
0.9 718 235.019819 9254 233.324863 252 12.645784 92 354.090179 114 0.131695
0.85 678 234.800187 8740 233.324863 238 12.645784 87 354.134252 107 0.131858
0.8 638 235.133101 8226 233.324863 224 12.645784 82 354.146541 101 0.131792
0.75 598 235.104648 7712 233.388367 210 12.645784 77 353.914801 95 0.131897
0.7 558 235.132128 7198 233.388367 196 12.645784 72 353.914801 88 0.131853
0.65 518 235.191663 6683 233.385479 182 12.645784 66 353.923275 82 0.131902
0.6 478 235.202756 6169 233.394604 168 12.645784 61 354.042364 76 0.132113
0.55 438 235.263138 5655 233.394604 154 12.645784 56 354.050328 69 0.132164
0.5 399 235.962421 5141 233.357302 140 12.645784 51 354.053246 63 0.132310
0.45 359 235.941428 4627 233.355757 126 12.649723 46 354.770411 57 0.132497
0.4 319 236.399412 4113 233.354086 112 12.651157 41 354.849084 50 0.132620
0.35 279 236.574098 3599 233.354248 98 12.657242 36 355.659524 44 0.133428
0.3 239 376.546789 3084 233.358374 84 12.664293 30 355.714190 38 0.133759
0.25 199 406.768586 2570 233.399275 70 12.671595 25 355.700106 31 0.134865
0.2 159 445.621765 2056 233.437486 56 12.676944 20 355.714027 25 0.136386
0.15 119 545.521345 1542 233.539485 42 12.677181 15 355.722452 19 0.137433
0.1 79 553.326100 1028 233.550540 28 12.677343 10 355.785519 12 0.139937
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partitioning strategies will affect the final experimental
results, so further discussion and analysis of the parameter
K are needed (the value range of K is set to 1 to 15) to
determine the optimal K value to ensure the reliability of
the model results. At the same time, in order to avoid the
contingency of the experiment as much as possible, the
experiment still adopts the RMSE of GBDT and XGBoost
as the comprehensive evaluation index (i.e., the mean
RMSE of the two). After experimental analysis (results
shown in Figures 2–6), it can be found that when k � 5 of
WYHXB data, its corresponding RMSE value is the best;
when k � 6 of NYWZ data, its corresponding RMSE value
is the best; when the k � 5 of the BlogData data, the cor-
responding RMSE value is the best; when the k � 3 of the
RBuild data, the corresponding RMSE value is the best;
when k � 14 in the CCrime data, the corresponding RMSE
value is the best. After the division of the candidate feature
subsets, the redundancy of the features can be analyzed in
the later experiments, so as to select the optimal feature
subsets.

For further analyzing the model, each dataset was
randomly divided into a training set and a test set with the
ratio of 6 : 4, and XGBoost [31], Lasso [32], FCBF-MIC [19],
and the improved algorithm (CI_AMB) were used for
training and learning; the test set was subjected to regression
experiment (model parameters selected were consistent with
the above experimental results), and RSME was used as the
model index. At the same time, in order to ensure the re-
liability of the model results, each test data was tested 10

times, and then the average value was taken as the final
experimental results. In order to verify the effect and ef-
fectiveness of the feature selection during the experiment,
the original data were also compared using the regression
model of GBDT and XGBoost. .e experimental results are
shown in Tables 6–7:

It can be seen from the experimental results in the above
table that the feature selection of the CI_AMB method is
performed on the test set of five sets of raw data, and the
experimental results are as follows: the number of original
features of the WYHXB data is 798, and after the redun-
dancy feature is removed, the final number of optimal
feature subsets selected is 80, including 19 strongly corre-
lated features and 61 weakly correlated nonredundant fea-
tures. .e number of original features of NYWZ data is
10283. After the elimination of redundant features, the final
number of optimal feature subsets that can be screened is
220, including 59 strongly correlated features and 161 weakly
correlated nonredundant features; the original number of
BlogData data is 280, after the redundant features are
eliminated, and finally, the number of optimal feature
subsets that can be screened out is 48, including 5 strongly
correlated features and 43 weakly correlated nonredundant
features. .e number of original features of RBuild data is
103, after the elimination of redundant features. Finally, the
number of optimal feature subsets that can be screened out is
35, including 16 strongly correlated features and 19 weakly
correlated nonredundant features; the number of original
features of CCrime data is 127, after doing the redundancy,

Table 5: Comparison of experimental data between raw data and candidate feature subsets.

Original data Candidate feature subset
Number of features RMSE Number of features RMSE

WYHXB 798 234.967849 678 234.800187
NYWZ 10283 234.052699 8226 233.324863
BlogData 280 12.645784 140 12.645784
RBuild 103 352.473674 72 353.914801
CCrime 128 0.131377 120 0.131535
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Figure 2: WYHXB parameter K selection.
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and the final number of suboptimal set of features can be
selected to 37, including 3 strongly correlated feature and 34
weakly correlated nonredundant feature. It is worth noting
that after filtering the irrelevant features and eliminating the
redundant features, the obtained strongly correlated features
and weakly correlated nonredundant features are distin-
guished according to the degree of correlation between the
features and the target variables, that is, if the MIC score is
greater than 0.6, it is a strongly correlated feature, and if not,
it is a weakly correlated nonredundant feature.

After the CI_AMB feature selection, it can be found
that (1) compared with the original data (in the case of no
feature selection), the new method has the slightly inferior

result (0.0024 greater error than the result of the original
data) in the CCrime data (using the RMSE of GBDTas the
evaluation index, Table 6), but in other datasets, the results
are better than the original data (see Table 6 and 7); (2)
compared with XGBoost, Lasso, and FCBF-MIC, while the
number of features is similar, the RMSE values of the
evaluation models in the CI_AMB method are better than
in other methods. At the same time, in order to observe
and compare the experimental results more intuitively, the
trend graphs of the two evaluation indicators (GBDT and
XGBoost) were plotted (Figures 7 and 8) to reflect the
overall fluctuation of the RMSE. Combining the above
table with the experimental results of Figures 7 and 8, it can
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Figure 6: CCrime parameter K selection.

Table 7: Comparison of experimental results of CI_AMB with other methods (RMSE evaluation index of XGBoost).

Original data CI_AMB XGBoost Lasso FCBF-MIC
Number of
features RMSE Number of

features RMSE Number of
features RMSE Number of

features RMSE Number of
features RMSE

WYHXB 798 227.9061 80(19 + 61) 205.0669 83 221.8774 89 214.0560 15 229.7367
NYWZ 10283 219.7160 220(59 + 161) 201.5748 212 220.3312 215 225.1712 60 225.1525
BlogData 280 8.6356 48(5 + 43) 4.1587 43 10.0949 47 10.2909 9 10.8045
RBuild 103 264.5195 35(16 + 19) 255.1114 23 269.8928 26 261.3095 3 278.6242
CCrime 127 0.1447 37(3 + 34) 0.1443 37 0.1487 31 0.1483 5 0.1492
Average
value 144.1844 133.2112 144.4690 142.1952 148.8934

Table 6: Comparison of experimental results between CI_AMB and other methods (RMSE evaluation index of GBDT).

Original data CI_AMB XGBoost Lasso FCBF-MIC
Number of
features RMSE Number of

features RMSE Number of
features RMSE Number of

features RMSE Number of
features RMSE

WYHXB 798 267.5115 80(19 + 61) 232.7352 83 269.1644 89 255.9661 15 265.0474
NYWZ 10283 258.4021 220(59 + 161) 234.8831 212 263.3908 215 256.2172 60 265.2352
BlogData 280 22.7247 48(5 + 43) 7.4822 43 14.5660 47 18.7933 9 24.2629
RBuild 103 458.0302 35(16 + 19) 417.1441 23 458.2780 26 466.8546 3 461.7130
CCrime 127 0.1067 37(3 + 34) 0.1091 37 0.1176 31 0.1121 5 0.1231
Average
value 201.3550 178.4708 201.1034 199.5887 203.2763
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be observed that the improved algorithm is generally
superior to other algorithms, indicating that the new
model is effective in removing the effects of irrelevant
features and redundant features. In summary, not only can
the improved algorithm better filter out the strongly
correlated features and weakly correlated nonredundant
features, but also improves the regression accuracy of the
model to some extent.

5. Conclusions

Aiming at the problem that the basic experimental data of
TCM present high dimensionality and few samples and
contain more irrelevant information and redundant infor-
mation, a hybrid feature selection method based on iterative
approximation Markov blanket is proposed. .e method
performs two-stage feature analysis by the maximum in-
formation coefficient and iterative approximation Markov
blanket, respectively, to do filtering of unrelated features and
culling of redundant features, so as to achieve the screening
of optimal feature subsets. .rough the experimental
comparison between the basic data of Chinese medicine and
UCI dataset, it is proved that the improved algorithm sig-
nificantly reduces the feature dimension and improves the
interpretation degree of the model. It is a kind of analysis
suitable method for high-dimensional small sample data of
traditional Chinese medicine. In the next research work, we
will continue to optimize the algorithm and ensure the
reasonable setting of relevant parameters can be further
studied when building the model.

Data Availability

.e traditional Chinese medicine data used in this study can
be obtained by contacting the first author. .e UCI datasets
can be obtained through the UCI Machine Learning Re-
pository (http://archive.ics.uci.edu/ml/datasets.html). It
should be noted that the UCI datasets are commonly used
standard test datasets proposed by the University of Cal-
ifornia, Irvine, for machine learning.
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