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In recent years, asynchronous brain computer interface (BCI) systems have been utilized in many domains such as robot
controlling, assistive technology, and rehabilitation. In such BCI systems, movement intention detection algorithms are used to
detect movement desires. In recent years, movement-related cortical potential (MRCP), an electroencephalogram (EEG) pattern
representing voluntary movement intention, attracts wide attention in movement intention detection. Unfortunately, low MRCP
detection accuracy makes the asynchronous BCI system impractical for real usage. In order to develop an effective MRCP
detection algorithm, EEG data have to be properly preprocessed. In this work, we investigate the relationship and effects of three
factors including frequency bands, spatial filters, and classifiers onMRCP classification performance to determine best settings. In
particular, we performed a systematic performance investigation on combinations of five frequency bands, five spatial filters, and
six classifiers. *e EEG data were acquired from subjects performing series of self-paced ankle dorsiflexions. Analysis of variance
(ANOVA) statistical test was performed on F1 scores to investigate effects of these three factors. *e results show that frequency
bands and spatial filters depend on each other. *e combinations directly affect the F1 scores, so they have to be chosen carefully.
*e results can be used as guidelines for BCI researchers to effectively design a preprocessing method for an advanced asyn-
chronous BCI system, which can assist the stroke rehabilitation.

1. Introduction

A brain computer interface (BCI) system is a system that
translates human minds to control signals for external de-
vices. *ese external devices include simple feedback sys-
tems and more complex devices such as prosthetic organs
[1]. Moreover, a BCI system can be used for communication
between persons. It transmits one’s messages as brain ac-
tivity signals to other persons through a system that can
decode the signals to human recognizable messages. In this
sense, patients suffering from a brain disease including
locked-in syndrome (LIS) or completely locked-in state
(CLIS), as they cannot move, talk, or even blink, can get
benefits from the BCI system [2]. *erefore, large amount of
research effort has been devoted to solving communication
problem for these patients [1, 3–5].

In the past decade, there has been evidence based on the
Hebbian theory [6] showing that motor function loss can be

restored by brain plasticity induction through the BCI
system for rehabilitation [7]. *is phenomenon can be a
great advantage for stroke patients, whose brain regions
were partially destroyed by blood clots in the brain vessel.
*is situation is a cause of mobility and speech function
impairment that affects the patients’ daily life. After some
treatments and a long-term rehabilitation program, some
patients can partially or even fully recover their motor
functions; it depends on how long the symptom lasts, how
much the brain region is destroyed, how well the brain
plasticity develops, and even how good the rehabilitation
program is.

BCI systems can be categorized by their functions into
two types: synchronous and asynchronous. For the syn-
chronous BCI system, aka a cue-based BCI system, users
have to perform specific task in response to given cues while
using the system. *is scenario often causes discomfort and
fatigue. For this reason, asynchronous BCI systems have
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been proposed since the last decade [1]. *e asynchronous
BCI system, aka a self-paced BCI system, allows its users to
perform tasks upon their desire. In this sense, the asyn-
chronous BCI system overcomes the ordinary synchronous
BCI system by providing more comfort and causing less
fatigue. *ese properties are very important to the BCI
system for rehabilitation because the users have to interact
with the system for a long period. However, designing an
asynchronous BCI system is much more challenging due to
the fact that the acquired signals are noisier because users
can pay less concentration to use the system.

Recently, the asynchronous BCI system has been used in
stroke rehabilitation for the first time to induce brain
plasticity [8]. *e asynchronous BCI system is applied in
stroke rehabilitation by using brain signals measured from
the scalp, known as electroencephalogram (EEG), to drive a
rehabilitation tool. Particularly, movement intention is
detected from EEG data and translated to a control signal to
instantaneously switch on an electrical stimulator. Upon
completion of some rehabilitation sessions, stroke impact
scale (SIS) appears to improve in all patients, demonstrating
that impacts on stoke patients could be alleviated. *e key of
these improvements is the preciseness of the electrical
stimulator activation when patients start to move or start to
imagine about moving the affected limb [9]. Although there
have been evidences showing that the recent BCI systems for
stroke rehabilitation can induce brain plasticity in stroke
patients [8–10], its limitation in terms of movement in-
tention detection accuracy makes it not widely used.

To detect the movement intention, there are two types of
signals that are usually utilized: movement-related cortical
potential (MRCP) [11] and event-related desynchroniza-
tion/synchronization (ERD/ERS). *ese two come from
different domains; MRCP is extracted from a time domain as
a pattern of time series signal while ERD/ERS is extracted
from a frequency domain. In terms of movement intention
detection accuracy, MRCP and ERD/ERS provide compa-
rable detection accuracy. However, it has been recently
shown that MRCP is superior in terms of detection latency
and therefore is preferred to ERD/ERS for movement in-
tention detection [12, 13].

Over the past decade, many algorithms have been
proposed to detect the movement intention before real
movement execution [14–18]; however, it is still unclear
about how to filter or clean the acquired signals before
feeding them to a classifier. For example, Niazi et al. [16] and
Lin et al. [17] proposed methods utilizing matched filter
(MF) and locality sensitivity discriminant analysis (LSDA) to
detect movement intentions from MRCP, but they suffered
from difficult choices in selecting both an appropriate fre-
quency band and a spatial filtering technique. Instead of
finding an appropriate solution, the choices were made
arbitrarily.

Although some researchers were aware of these prob-
lems and attempted to explore an appropriate configuration
or combination of computation methods for the movement
intention or the movement imagination detection in BCI
system [14, 19–24], none of them explored these problems
thoroughly. *e most systematic study was in [14] where

combinations among three factors of spatial filter, temporal
filter, and classifier were analyzed. However, the work only
focuses on movement intention classification between left
and right hand, not on movement intention detection.
Moreover, not only MRCP or EEG data in time domain but
also ERD/ERS data were used as it can be an obstacle for a
real-time usage. In [24], the authors studied the effects of
frequency and spatial filters on the contingent negative
variation (CNV), a cue-based version of MRCP. Although
their experiments were very systematic and concerned many
aspects, they did not focus on self-paced experiments. In
addition, effects of classifiers were also not mentioned in
their work except for linear discrimination analysis (LDA).
Furthermore, their results are limited to only offline usage
due to the delay of the frequency filter. For other works,
experiments were done under some constraints (e.g., a preset
classifier, a preset frequency band, or a preset spatial filter).
*ese situations could cause problems; for example,
changing one factor may affect other factors as will be shown
in our study. Also, the data were not acquired in a self-paced
manner, nor the detection cannot be employed in real time
[19], which makes the result unusable for movement in-
tention detection problem.

In this paper, we make the first attempt to study effects
and relationship among the 3 factors—frequency bands,
spatial filtering techniques, and classifiers, specifically on
EEG data acquired in a self-paced manner for movement
intention detection. In detail, we recorded 19-channel EEG
data from 9 subjects while performing a series of self-paced
ankle dorsiflexions. After labeling and extracting the data,
we employed frequency filters in the range of 0.01–5Hz,
where MRCP can be observed [25, 26]. Five well-known
spatial filtering techniques and six classifiers were used. *e
five spatial filtering techniques are (1) no spatial filtering
(NoF), (2) surface Laplacian (SL), (3) independent com-
ponent analysis (ICA), (4) common spatial pattern analysis
(CSP), and (5) principle component analysis (PCA). *e six
classifiers include (1) linear discrimination analysis (LDA),
(2) support vector machine (SVM), (3) one-nearest neighbor
utilizing Euclidean distance (1-NN-ED), (4) one-nearest
neighbor utilizing dynamic time warping distance (1-NN-
DTW), (5) shape-based template matching (TM), and (6)
matched filter (MF). To emphasize, this study mainly focuses
on finding relationship and effects of various factors and on
determining good combinations among them. Our results
provide valuable insights towards a development in an ef-
fective movement intention detection algorithm for asyn-
chronous BCI rehabilitation systems.

Additionally, a novel shape-based template matching
algorithm is added to our study to investigate a possibility of
utilizing a shape of MRCP via time series mining techniques
in BCI applications. Our study provides insight that can be
used to help improve performance and efficiency of move-
ment intention detection in asynchronous BCI systems.

Contributions and impact of this work can be sum-
marized as follows:

(i) *is work investigates relationship and effects of the
three critical factors in asynchronous BCI systems

2 Computational and Mathematical Methods in Medicine



for stroke rehabilitation. *e results demonstrate
that these factors are quite sensitive. Different
combinations of the factors can substantially in-
fluence the system’s performance.

(ii) *is work can be used as primitive guidelines to
process self-paced EEG data in an asynchronous
BCI system, which can assist the stroke
rehabilitation.

(iii) *is work explores a possibility of utilizing shapes of
time series signals to detect MRCP from self-paced
EEG data using unconventional time series mining
techniques.

2. Methodology

2.1. Subjects. Nine subjects (seven males and two females;
age ranges from 22 to 26 years) participated in the exper-
iment. None of the subjects had any known neurological
disorders, nor had experiences with any BCI systems prior to
the experiment. All subjects gave their signed informed
consents for the experiments, and the experiment protocol
was approved by the research ethics review committee for
research involving human research participants, Health
Science Group, Chulalongkorn University (COA No. 049/
2018).

2.2. Experimental Protocol and Data Acquisition. At the
beginning of the recording session, each participant was
asked to sit on a chair in a comfortable position with both
legs rested on the ground. After that, 19 channels of
monopolar EEG were collected from each subject in the
10–20 system using Electro-Caps (Electro-Caps, Electro-
Cap International Inc.) and a Nicolet w10-20HB amplifier
(Natus Medical Inc.). *e electrodes were located at Fp1,
Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6,
O1, and O2. *e ground electrode was the ground node of
the cap that is in the middle among Fp1, Fp2, and Fz, and the
reference was placed on the left earlobe. With the use of
electrolyte gel, the impedance of all electrodes was calibrated
to be less than the 5k-Ohm threshold before starting the data
acquisition. One channel of surface electromyography
(EMG) was also recorded by a Nicolet w10-20HB amplifier
(with disposable electrodes) for the purpose of EEG signal
labeling. EMG was recorded from bipolar derivation from
the tibialis anterior (TA) muscle and on the bony surface of
the knee of the dominant leg (right knees in all subjects). All
of the EEG and EMG signals were sampled at 1024Hz. EEG
signals were filtered by a Butterworth band-pass filter with a
frequency band of 0.01 to 30Hz and a notch filter to filter out
49–51Hz power-line distortion [27]. In the recording ses-
sions, subjects were instructed to perform self-paced ballistic
ankle dorsiflexions. *e duration between consecutive trials
was roughly 3 to 7 seconds. Roughly, there are about 280,000
data points per channel per session that need labeling.
During the recording session to reduce artifacts, each subject
was asked to stay relaxed, closing the eye lids, and not to
move other body parts. *e protocol is shown in Figure 1.
Each subject took about six recording sessions with resting

periods of two to ten minutes in between. During the re-
cording sessions, videos were recorded for EMG signal
synchronization. *e recording was made in an environ-
ment similar to a hospital setting.

2.3. Data Labeling. After the EEG data acquisition, each
period of the movement execution had to be labeled as a
baseline for classification. To detect the onset and offset of
each movement initiation and termination, respectively,
EMG data were utilized in this process; EMG was visually
inspected to discover movement onsets and offsets. Only
trials whose EMG movement onset were at least 4 seconds
apart from the previous offset were considered. Recorded
raw data and their label are made publicly available as stated
in the Data Availability section so that the experiment in this
work can be reproduced.

2.4. Data Segmentation. *e data were manually segmented
(into 2-second sequences) for classification. For movement
intention segments, we extracted a sequence starting before
each actual movement and ending after the movement. In
particular, each potential MRCP segment was extracted by
considering a 2-second duration before each movement
onset, and each non-MRCP segment was extracted by
considering a 2-second duration right after each movement
offset. After segmentation, there are 1,674 MRCP segments
and 1,544 non-MRCP segments in total. All of the acquired
segmented data were z-normalized. Further explanations
and examples of segmented data can be downloaded via the
link described in the Data Availability section.

2.5. Spatial Filtering Techniques. Electroencephalography
(EEG) is an electrophysiological monitoring method to
record electrical activities, i.e., voltage fluctuations within
the neurons of the brain. However, these voltage fluctuations
are so small (μV) that the EEG signal is easily contaminated
by noise or even electric fields from other brain regions,
resulting in a low signal-to-noise ratio of the acquired EEG.
Many spatial filtering techniques have been introduced to
accentuate localized EEG activities to maximize the signal-
to-noise ratio. In this section, we describe some details of the
widely used spatial filtering techniques that have been ap-
plied in our experiments to reduce noises or to enhance the
quality of EEG signals.

2.5.1. Surface Laplacian. SL is a technique used to reduce
contamination in an electrode caused by other surrounding
electrodes. SL is calculated by subtracting the weighted
voltage of the surrounding electrodes from the working
electrode. *e weight is usually the distance from the
electrode of interest to each of the surrounding electrodes.
According to [28], the formula of SL is shown in the fol-
lowing equation:

Vsurrogate � Vmain − 􏽘
jϵNN

1/dj

􏽐jϵNN 1/dj􏼐 􏼑
Vj, (1)
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where Vsurrogate is the output voltage of SL, Vmain is the
voltage between the electrode of interest and a reference
electrode, NN is a set of surrounding electrodes, dj is the
distance between j surrounding electrodes and the electrode
of interest, and Vj is the voltage between the electrode j and
the reference electrode. In our experiments, dj was set to 1
for all j ϵNN and only nine channels, i.e., F3, Fz, F4, C3, Cz,
C4, P3, Pz, and P4, were used as working electrodes as these
electrodes have surrounding electrodes.

2.5.2. Independent Component Analysis. ICA was invented
to deal with problems similar to the cocktail-party problem.
It can be used to separate a mixed signal into independent
signals. In EEG domain, EEG signals are simultaneously
acquired from many channels, thus a signal from one
channel can be contaminated by the others. In this case, ICA
is used to separate acquired signals into independent signals.
According to [29], assume that we acquired n linear mixed
signals from n channels x1, . . . , xn. Each signal xi is origi-
nated from n independent components as illustrated in the
following equation:

x1 � a1s1 + a2s2 + · · · + ansn. (2)

We can rewrite equation (2) in terms of vectors and
matrix as shown in the following equation:

x � As, (3)

where x is a column vector form of n EEG channels, s is a
column vector form of n independent components, and A is
a matrix of size n × n. Instead of finding x, we want to find
the inverse of A, denoted by W, to obtain the independent
component s. A well-known algorithm for ICA is fastICA
[29]. Instead of rejecting noisy components and recon-
structing the original data as performed in [27], we used W
to form independent components as new representations
and feed them to the classifiers.

2.5.3. Common Spatial Pattern. CSP is a method used for
constructing a new representation from a high dimensional
data to a lower dimensional data whose variance is maxi-
mized between two classes of data. In EEG domain, inputs of
CSP are two classes of multichannel EEG data, i.e., MRCP

and non-MRCP data. CSP then calculates a projection
matrix that is used to project multichannel data into a low
dimensional spatial subspace by a linear transformation
[30]. *e first and the last row of the projection matrix are
most suitable for discriminating two different classes. *ey
provide a transformation that maximizes a variance in one
class and minimizes a variance in another. In this work, the
first row of the projection matrix was utilized as a weight for
multichannel EEG to make a new representation as per-
formed in [16].

2.5.4. Principle Component Analysis. PCA has been used as a
dimensionality reduction technique for most data miners.
However, PCA can also be used in data compression as it can
bring out strong patterns from complex data while pre-
serving variability. PCA projects the original data onto a new
set of axes via its eigenvector, which is called principle
component. Apart from the dimensionality reduction, PCA
can also be used to decompose original data into a new set of
decorrelated data by projecting the data onto orthogonal
axes. Details of PCA, its principle, calculation, and appli-
cation are well described in [31, 32]. In this work, we
decomposed multichannel EEG data into independent
components and then used them similarly to ICA.

2.6. Classifiers

2.6.1. Linear Discriminant Analysis. LDA is one of the most
widely used classification algorithms in BCI systems due to its
simplicity and efficiency. It is based on the use of hyperplanes
to separate different classes of data. A hyperplane can be de-
termined by minimizing the intraclass variance and maxi-
mizing the distance between the means of two classes of data.

2.6.2. Support VectorMachine. SVM [33] is based on an idea
of hyperplane construction, which provides a maximum
margin that can be used to separate the data. If the data are
linearly separable in the input space, a hyperplane is con-
structed from the input data. Otherwise, a mapping of
features to a higher dimensional space is done via a kernel
function before a hyperplane construction. In this work, we
used the svm function in MATLAB and performed

Dorsiflexion Dorsiflexion

Neutral Neutral

Movement onset Movement offset Movement onset Movement offset

Idle Idle IdleBallistic ankle
dorsiflex

Ballistic ankle
dorsiflex

Figure 1: *e experimental protocol shows the task of ballistic ankle dorsiflexion sequence followed by idle states. Idle states are as long as
the user desires. *ese idle states normally take about 3 to 7 seconds.
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optimization on all parameters using grid search with default
settings.

2.6.3. One-Nearest Neighbor. 1-NN is a widely used classifier
in a time series domain. A distance measure is used to
measure similarity between two time series, in this case, two
epochs of EEG data. A simple distance measure is Euclidean
distance (ED), and a more complex one is dynamic time
warping (DTW). *e main difference between these two
measures is that DTW has a nonlinear alignment ability,
which makes DTW achieve higher accuracy than ED. *e
nonlinear alignment of DTW can be restricted to prevent
unreasonable warping through the use of a global constraint,
which in turn further increases the accuracy. In this work, 1-
NN was utilized, while both ED and DTW were used as
distance measures. For DTW, we used the Sakoe–Chiba
band, which is one of the widely used global constraint, with
r � 10%. More information about DTW and the global
constraints can be found in [34].

2.6.4. Matched Filter. MF is a technique to extract a tem-
plate, which is a known signal, in an unknown signal. MF
can be calculated by convolving the unknown signal with a
time-reversed template. In this work, an average of MRCP
data was used to create a template.

2.6.5. Template Matching. TM is similar to MF but different
in template construction and similarity measurement. In time
seriesmining, template construction can also be done through
shape-based averaging. One of the most well-known shape-
based averaging techniques for time series data is dynamic
time warping barycenter averaging (DBA) [35], which had
shown to outperform other existing averaging methods
[35–37]. For similarity measurement, TM utilizes DTW as a
similarity measure, whileMF uses a convolution technique. In
this work, we used DBA with a medoid of MRCP data as an
initial template. *e global constraint was set to 10% [38] for
preventing unreasonable warp.

2.7. Experiment Setup. In the experiment, we started by
filtering the acquired EEG data with a causal second-order
Butterworth band-pass filter with frequency bands of [0.01-
1], [1-2], [2-3], [3-4], and [4-5] Hz, followed by data seg-
mentation. However, we set the order of Butterworth filter to
2nd order and did not take other filter orders into account in
this experiment due to an unstable problem of IIR filters as
discussed in [20]. It is worth noting that there are infinitely
many possible ways to extract frequency bands in the range
of [0.01–5] Hz, where MRCP can be observed; thus, to make
it feasible to extract only a prominent band and reject ir-
relevant ones, we decided to decompose the frequency into a
bin of 1Hz. Afterwards, MRCP and non-MRCP data were
shuffled, and then stratified sampling was performed to
create training and test sets with the ratio of 2/3 and 1/3,
respectively. Overall numbers of MRCP and non-MRCP
data for training set and test set of each subject are shown in
Table 1. *en, five different spatial filtering techniques

including no spatial filtering (NoF) were performed. For
ICA and PCA, which require continuous data, MRCP and
non-MRCP data of each training set were concatenated to
form continuous data. To classify the MRCP data, six dif-
ferent classifying methods were used. To summarize, there
were 5 frequency bands, 19 channels without spatial filter, 9
channels for SL, 19 components for ICA and PCA, 1 channel
for CSP, and 6 classifying methods; thus, there were 5 ×

(19 + 9 + 19 + 19 + 1) × 6 � 2, 010 combinations in total for
each individual. By aiming to achieve high detection rate
while providing low false alarm rate, we evaluated the results
by measuring F1 scores. F1 scores are calculated by taking
both precision and recall into account to maintain balance
between them. Precision is a number of correctly predicted
MRCP samples divided by a number of total samples pre-
dicted as MRCP. Recall is a number of correctly predicted
MRCP samples divided by a number of total MRCP samples.
F1 scores are calculated as shown in the following equation:

F1 score �
2

recall−1 + precision−1􏼠 􏼡. (4)

*e best channel and component of each spatial tech-
nique and the threshold of the classifiers were selected from
the best one that achieves the highest F1 score.

We employed three-way repeated measures analysis of
variance (ANOVA) with Greenhouse–Geisser adjustment,
which is used to adjust the degree of freedom, to investigate
the effects of 3 independent variables, i.e., 5 spatial filters, 5
frequency bands, and 6 classifiers, on F1 scores. *e total
number of repeated measurements was 5 × 5 × 6 � 150. By
employing ANOVA, we can investigate whether the var-
iation of factors lead to significant difference of experi-
mental results. In other words, the ANOVA can be used as
an evidence to reject or accept the null hypothesis, which
means the mean values of tested groups are the same. If the
null hypothesis is rejected, the mean values of tested groups
are considered different, and we can imply that the factors
affect the results. On the other hand, if the null hypothesis
is accepted, the mean values of tested groups can be
considered similar, and the factors do not affect the results.
*e post hoc test used the Bonferroni adjustment to
compensate for multiple comparisons. For the ANOVA
test and the post hoc test, a significance level of P< 0.01 was
adopted in this work. Due to the fact that our sample size is

Table 1: Number of samples in MRCP class vs. non-MRCP class of
all participants.

Training set Test set
Subject MRCP Non-MRCP MRCP Non-MRCP
1 122 108 62 55
2 120 113 61 57
3 124 106 63 54
4 118 111 60 57
5 116 103 59 53
6 99 90 51 46
7 142 135 72 69
8 140 135 71 69
9 129 121 65 62
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not considered very large, we decided to set the significance
level of P< 0.01 instead of P< 0.1 or P< 0.05 as used in
many previous works [8, 14, 16] for compensation and
giving more confidence. *e statistical analysis was per-
formed by IBM SPSS Statistics 22.0.

3. Results

3.1. !ree-Way Repeated Measures ANOVA. *e output of
three-way repeated measures ANOVA is shown in Table 2.
*ere is a significant interaction effect between spatial filter
and frequency, SF∗ Freq · (F(3.659, 29.275) � 10.811,

P< 0.01). None of other interaction effects are significant.
*is means the effect of frequency and the effect of spatial
filter are dependent in some circumstances, which will also
be explored in this work. *ere is also a significant effect of
the frequency, Freq(F(2.167, 17.339) � 21.384, P< 0.01),
and the classifier, Classifier(F(1.24, 9.921) � 13.102,

P � 0.003). No other significant effects are found.
To visualize the three-way interaction, we illustrate

multiple comparison graphs of the three-way interaction in
Figure 2. *e highest estimated marginal mean of F1 scores
can be found by utilizing EEG data in frequency [0.01-1] Hz
with SL, regardless of the choice of classifier. For the clas-
sifier, also shown in Figure 2, LDA and SVM provide
comparable F1 scores; the rest provide relatively lower F1
scores than LDA and SVM, while providing comparable F1
scores to each other.

*e results in Figure 2 also show that these factors are
quite sensitive. Choosing different combinations of the
factors can substantially affect the F1 scores. *e scores
could range from as low as 44.4% with the choice of [3-4] Hz
frequency +CSP filter +MF classifier to as high as 82.3%
with the choice of [0.01-1] Hz frequency + SL spatial fil-
ter + SVM classifier.

After a post hoc test of the classifier, we found that SVM
is the most prominent classifier, being an independent factor
without any intervention from other factors. *e estimated
marginal mean of SVM is 66.4% with a significantly higher
F1 score than the others including LDA, as shown in
Figure 3.

*e estimated marginal mean difference between SVM
and LDA is about 4%. Moreover, the multiple comparison
results of the classifiers revealed that LDA is the second
most prominent classifier providing high F1 scores with a
significant difference from the other classifiers. 1-NN-ED,
1-NN-DTW, and TM provide comparable F1 scores among
each other, i.e., 59.6%, 58.6%, and 58.1%, respectively. MF
is the worst classifier providing the lowest F1 score of
53.7%.

From the three-way repeated measures ANOVA test, the
result tells us that frequency has a significant impact while
spatial filter has no significant impact. However, since fre-
quency and spatial filter are highly correlated, we need to
conduct one-way repeated measures ANOVA to investigate
simple effects of spatial filter at every single level of fre-
quency and also simple effects of frequency at every single
level of spatial filter.

3.2. One-Way Repeated Measures ANOVA. *e results of
simple effects of spatial filter at every single level of fre-
quency are shown in Table 3. Interestingly, a significant
simple effect of spatial filter can be found only in the fre-
quency band of [0.01-1] Hz, SF at [0.01-1] Hz
(F(3.463, 183.548) � 76.338, P< 0.01). No other significant
effect of spatial filter can be found when using other levels of
frequency. *is result means that a spatial filter can be
arbitrarily chosen in any frequency band except in [0.01-1]
Hz, which has to be precisely chosen to provide valuable
results.

To visualize the effects, we plot a multiple comparison
graph for the simple effects of spatial filter at each level of
frequency in Figure 4.

In particular, NoF, SL, ICA, CSP, and PCA for EEG data
in [0.01-1] Hz frequency provide estimatedmarginal means of
F1 scores of 61%, 78%, 66.5%, 57.4%, and 62.6%, respectively.

After post hoc tests, there is a significant difference when
comparing NoF with SL and ICA, but there is no significant
difference between CSP and PCA. SL provides the highest F1
score, and it is significantly different from the rest when the
frequency is fixed to [0.01-1] Hz. ICA is the second best
choice of spatial filter in this bandwidth. It provides the
second highest F1 score with a significant difference from
other spatial filters. CSP and PCA are also significantly
different from each other but they are insignificantly dif-
ferent from NoF.

Next, we provide a further exploration to investigate
simple effects of frequency at each type of spatial filters. We
therefore conducted one-way repeated measures ANOVA
by fixing spatial filter types and adjusting the frequency
bandwidth. *e output is shown in Table 4. Frequency gives
significant effects on NoF, SL, ICA, and PCA: Freq on NoF
(F(3.303, 175.053) � 5.536, P � 0.001), Freq on SL
(F(3.167, 167.856) � 70.402, P< 0.01), Freq on ICA
(F(3.085, 163.490) � 10.265, P< 0.01), and Freq on
PCA(F(3.433, 181.937) � 6.094, P< 0.01), respectively. No
significant effect of frequency is found on CSP.

After post hoc tests, pairwise comparison of estimated
marginal mean of F1 scores reveals that for NoF, only one
pair of [0.01-1] and [2-3] Hz frequency bands does have
significantly different scores; the rest of the frequency bands
are found not to be significantly different from each other.
For SL and ICA, the [0.01-1] Hz frequency band provides a
prominent estimated marginal mean of F1 score, which
made this bandwidth significantly different to all others,
while the rest are insignificantly different. For PCA, there are
only two pairs of frequency bands that provide significant
difference of estimated marginal mean of F1 score; the first
pair is [0.01-1] and [3-4] Hz; the second is [0.01-1] and [4-5]
Hz. *ese results are illustrated in Figure 4.

3.3. Localization of MRCP Detection Performance.
Furthermore, to investigate MRCP localization diagnosis
accuracy, we provide a topoplot of F1 score in Figure 5
corresponding to a surrogate channel of SL at frequency
[0.01-1] Hz, which is the best combination among these
factors for each subject. *e channel that provides
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Table 2: Results of the three-way repeated measures ANOVA test of F1 scores.

Source Type III sum of squares Corrected degree of freedom Mean square F value P value Partial eta squared
SF 0.478 1.273 0.375 7.163 0.018 0.472Error (SF) 0.534 10.185 0.052
Freq 0.958 2.167 0.442 21.384 0.000 0.728Error (freq) 0.359 17.339 0.021
Classifier 2.135 1.24 1.721 13.102 0.003 0.621Error (classifier) 1.303 9.921 0.131
SF∗ Freq 0.999 3.659 0.273 10.811 0.000 0.575Error (SF∗ Freq) 0.739 29.275 0.025
SF∗Classifier 0.172 4.088 0.042 1.661 0.182 0.172Error (SF∗Classifier) 0.827 32.705 0.025
Freq∗Classifier 0.135 4.859 0.028 1.676 0.165 0.173Error (Freq∗Classifier) 0.644 38.870 0.017
SF∗ Freq∗Classifier 0.397 6.268 0.063 1.299 0.274 0.14Error (SF∗Freq∗Classifier) 2.445 50.143 0.049
P value less than 0.01 is shown in bold, showing significant effects of the parameter to F1 scores. Note that there is a significant interaction effect between
spatial filter and frequency; further analysis is needed for these two parameters.
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Figure 2: Multiple comparison results of the three-way interactions among different spatial filter, frequency, and classifier. *e best
combination is when classifier� SVM, spatial filter� SL, and frequency� [0.01–1] Hz. (a) Estimated marginal means of F1 score with
classifier� LDA. (b) Estimated marginal means of F1 score with classifier� SVM. (c) Estimated marginal means of F1 score with clas-
sifier� 1-NN-ED. (d) Estimated marginal means of F1 score with classifier� 1-NN-DTW. (e) Estimated marginal means of F1 score with
classifier�MF. (f) Estimated marginal means of F1 score with classifier�TM.

Computational and Mathematical Methods in Medicine 7



0.54

0.57

0.60

0.63

0.66

Es
tim

at
ed

 m
ar

gi
na

l m
ea

ns

SVM MF TMLDA 1-NN-
ED

1-NN-
DTW

Classifier

Figure 3: Comparison of the estimated marginal means of F1 scores in various classifiers, showing SVM as the dominant classifier.

Table 3: Simple effect results of spatial filter with each frequency band from the one-way repeated measures ANOVA test of F1 scores.

Source Type III sum of squares Corrected degree of freedom Mean square F value P value Partial eta squared
SF at [0.01-1] Hz 1.354 3.463 0.391 76.338 0.000 0.590Error (SF at [0.01-1] Hz) 0.940 183.548 0.005
SF at [1-2] Hz 0.064 3.551 0.018 2.768 0.034 0.050Error (SF at [1-2] Hz) 1.232 188.184 0.007
SF at [2-3] Hz 0.030 3.212 0.009 1.397 0.244 0.026Error (SF at [2-3] Hz) 1.132 170.222 0.007
SF at [3-4] Hz 0.015 2.809 0.005 0.755 0.513 0.014Error (SF at [3-4] Hz) 1.082 148.867 0.007
SF at [4-5] Hz 0.014 3.318 0.004 0.990 0.404 0.018Error (SF at [4-5] Hz) 0.728 175.831 0.004
*e only significant simple effect of the spatial filter can be found only in the frequency band of [0.01-1] Hz, where the P value is less than 0.01.
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Figure 4: Comparison of the estimated marginal means of F1 scores in various frequency bands on different spatial filters. SL spatial filter at
[0.01-1] Hz frequency clearly provides the best result.
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prominent F1 scores for each subject is Cz in most subjects
except in subject 2 where both Cz and Fz are prominent and
in subject 9 where Fz provides higher F1 score than Cz.

*e results in Figure 2 also show that these factors are quite
sensitive. Choosing different combinations of the factors can
substantially affect the F1 scores. *e scores could range from
as low as 44.4% with the choice of [3-4] Hz frequency+CSP
filter +MF classifier to as high as 82.3% with the choice of
[0.01-1] Hz frequency+SL spatial filter + SVM classifier.

After a post hoc test of the classifier, we found that SVM
is the most prominent classifier, being an independent factor

without any intervention from other factors. *e estimated
marginal mean of SVM is 66.4% with a significantly higher
F1 score than the others including LDA, as shown in
Figure 3.

4. Discussion

*is study aimed to investigate factors that affect performance
of MRCP detection in asynchronous BCI, which can facilitate
stroke rehabilitation systems. To tackle this problem, we
carried out a systematic analysis on effects of three prevalent

Table 4: Simple effects of frequency with each type of spatial filter from the one-way repeated measures ANOVA test of F1 scores.

Source Type III sum of squares Corrected degree of freedom Mean square F value P value Partial eta squared
Freq on NoF 0.058 3.303 0.018 5.536 0.001 0.095Error (freq on NoF) 0.557 175.053 0.003
Freq on SL 1.602 3.167 0.506 70.402 0.000 0.571Error (freq on SL) 1.206 167.856 0.007
Freq on ICA 0.196 3.085 0.064 10.265 0.000 0.162Error (freq on ICA) 1.014 163.490 0.006
Freq on CSP 0.015 2.743 0.005 0.643 0.575 0.012Error (freq on CSP) 1.196 145.357 0.008
Freq on PCA 0.086 3.433 0.025 6.094 0.000 0.103Error (freq on PCA) 0.746 181.937 0.004
*ere are significant simple effects of frequency band on all types of spatial filter but not CSP, where P value is more than 0.01.
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Figure 5:*e topoplot demonstrates the F1 score of each channel for every subject when frequency was set with [0.01-1] Hz using SL spatial
filter. *e channels with higher discriminant power appear brighter. (a) Subject 1. (b) Subject 2. (c) Subject 3. (d) Subject 4. (e) Subject 5. (f )
Subject 6. (g) Subject 7. (h) Subject 8. (i) Subject 9.
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factors including 5 different frequency bands of the EEG data,
5 spatial filters, and 6 classification algorithms. To focus on
both high detection rate and quality of the detection, we
analyzed these factors using F1 scores. Series of ANOVA tests
were conducted to investigate relationship and effects among
these factors based on F1 scores.

Interestingly, the results show that there is no significant
relationship in three-way interaction. However, in two-way
interaction, there is a significant interactive effect between
frequency and spatial filter. *is means that the effect of
frequency and the effect of spatial filter are dependent in
some circumstances. When EEG data were filtered to the
frequency band of [0.01-1] Hz, applying different spatial
filters will provide significantly different F1 scores. None-
theless, results were not significantly different regarding
different spatial filters in other frequency bands. In other
words, the spatial filter only has to be carefully and precisely
chosen when used with EEG data in [0.01-1] Hz range. More
specifically, the experiment results show that utilizing fre-
quency in [0.01-1] Hz with SL spatial filter provided best F1
scores. *is can be interpreted as the discriminant feature of
MRCPmay be discovered only in frequency band of [0.01-1]
Hz and not all types of spatial filter can reveal this dis-
criminant feature. However, we also respect the fact that
different experiment protocols and different methods in
acquiring EEG data may affect the setting in the pre-
processing step; our experiment intends to reveal an in-
fluence, effect, and interaction among these factors more
than to discover the best setting for the preprocessing step
under some preset factors as done in previous works
[20, 21, 24]. By pointing out that not all the settings can
enhance the accuracy, we suggest researchers who conduct
research in this area select these factors in the preprocessing
method with extra care.

*e classifying method does not have any interaction
effects with other factors, meaning that an appropriate
classifier will provide good F1 scores regardless of the fre-
quency bands and spatial filters used. *e most prominent
classifier for MRCP detection is SVM, while LDA is the
second best. 1-NN-ED, 1-NN-DTW, and TM provide
similar results, while MF provides the worst F1 scores. *ese
results are according to the fact that EEG data are non-
stationary signals; thus, a classification algorithm which is a
stable learning algorithm like SVM and LDA can provide
superior results than 1-NN-ED and 1-NN-DTW [26]. Al-
though MF and TM are members of stable learning algo-
rithm, neither MF nor TM provides comparable F1 score to
SVM and LDA. We notice that compressing nonstationary
signals into one template as done in MF and TM is not a
good solution for dealing with EEG data. However, TM
provides comparable F1 scores to 1-NN-ED and 1-NN-
DTW, but not MF. *is is resulted from the shape-based
averaging that tries to average the data based on its shape.

Moreover, the distance measures do not significantly
affect the results when EEG data are used in time domain as
1-NN-ED and 1-NN-DTW provide similar results. If
memory space is taken into account, TM will be superior to
1-NN-ED and 1-NN-DTW. *ese three classifiers provide
comparable F1 scores; however, 1-NN-ED and 1-NN-DTW

use a lazy learningmethod that keeps all training instances in
memory to make a decision. Instead of keeping all available
training instances, MF and TM create templates of groups of
training data. *us, it reduces memory usage and decision
time. For MF and TM that needs template constructions,
TM is a better choice than MF because TM employs a shape-
based averaging technique, whereas MF uses a simple mean
averaging method. Furthermore, utilizing TM could provide
comparable F1 scores with 1-NN-DTW, which means that
the shape-based averaging method such as DBA can reserve
important information, while the number of kept instances
in memory is minimized.

5. Conclusion

We performed a comprehensive statistical analysis on
performance of different frequency bands, spatial filters, and
classifying methods to reveal effects and relationship among
these factors. *e performance was analyzed based on F1
scores. *e results showed that the classifier is an inde-
pendent factor, whereas the frequency and the spatial filter
are dependent factors. *us, the frequency and the spatial
filter have to be considered simultaneously.*ese results can
be used as guidelines for research in MRCP detection, es-
pecially on lower limb movement. For time series miners
who are interested in developing an MRCP detection al-
gorithm, either a more sophisticated data representation or
projection for MRCP is required to provide superior results.

Data Availability

*e BCI data used to support the findings of this study are
available at http://www.cu-timeseries.com or from the
corresponding author upon request.

Conflicts of Interest

*e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

*is work was supported by Rachadapisek Sompote Fund for
Postdoctoral Fellowship, Chulalongkorn University (to Sura
Rodpongpun); *ailand Research Fund and Chulalongkorn
University given through Royal Golden Jubilee Ph.D. Program
(grant number PHD/0057/2557, *apanan Janyalikit); the
90 Anniversary of Chulalongkorn University, Rachadapisek
Sompote Fund (to *apanan Janyalikit).

References

[1] J. R. Millan, F. Renkens, J. Mourino, and W. Gerstner,
“Noninvasive brain-actuated control of a mobile robot by
human eeg,” IEEE Transactions on Biomedical Engineering,
vol. 51, no. 6, pp. 1026–1033, 2004.

[2] U. Chaudhary, B. Xia, S. Silvoni, L. G. Cohen, and
N. Birbaumer, “Brain–computer interface–based communi-
cation in the completely locked-in state,” PLoS Biology, vol. 15,
no. 1, Article ID e1002593, 2017.

10 Computational and Mathematical Methods in Medicine

http://www.cu-timeseries.com


[3] L. A. Farwell and E. Donchin, “Talking off the top of your
head: toward a mental prosthesis utilizing event-related brain
potentials,” Electroencephalography and Clinical Neurophys-
iology, vol. 70, no. 6, pp. 510–523, 1988.

[4] N. Birbaumer, N. Ghanayim, T. Hinterberger et al., “A
spelling device for the paralysed,” Nature, vol. 398, no. 6725,
pp. 297-298, 1999.

[5] S. Muthong, P. Vateekul, andM. Sriyudthsak, “An adjustment
strategy on multi-session eeg data for online left/right hand
imagery classification,” in Proceedings of the 2016 8th Inter-
national Conference on Knowledge and Smart Technology
(KST), pp. 179–183, IEEE, Chiangmai, *ailand, February
2016.

[6] D. O. Hebb, !e Organization of Behavior: A Neuro-
psychological !eory, Psychology Press, London, UK, 2005.

[7] J. J. Daly and J. R. Wolpaw, “Brain-computer interfaces in
neurological rehabilitation,” !e Lancet Neurology, vol. 7,
no. 11, pp. 1032–1043, 2008.
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