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Amyloid is generally an aggregate of insoluble fibrin; its abnormal deposition is the pathogenic mechanism of various diseases, such
as Alzheimer’s disease and type II diabetes. Therefore, accurately identifying amyloid is necessary to understand its role in
pathology. We proposed a machine learning-based prediction model called PredAmyl-MLP, which consists of the following
three steps: feature extraction, feature selection, and classification. In the step of feature extraction, seven feature extraction
algorithms and different combinations of them are investigated, and the combination of SVMProt-188D and tripeptide
composition (TPC) is selected according to the experimental results. In the step of feature selection, maximum relevant
maximum distance (MRMD) and binomial distribution (BD) are, respectively, used to remove the redundant or noise features,
and the appropriate features are selected according to the experimental results. In the step of classification, we employed
multilayer perceptron (MLP) to train the prediction model. The 10-fold cross-validation results show that the overall accuracy
of PredAmyl-MLP reached 91.59%, and the performance was better than the existing methods.

1. Introduction

Amyloid is an insoluble fibrous protein formed by the aggre-
gation of certain misfolded proteins [1]. They are found in
bacteria, fungi, yeast, and mammals [2]; the diversity of func-
tions is comparable to soluble proteins. Amyloid proteins
play an important role in the formation of biofilms [3], the
binding and storage of peptide hormones [4], antimicrobial
activity [5], and the antiviral innate immune response [6].
But not all amyloid proteins are beneficial, the extracellular
deposition of amyloid fibrils can cause a series of diseases
such as Alzheimer’s diseases [7], type II diabetes, and Parkin-
son’s disease [8, 9]. To understand amyloid proteins and
related diseases deeply, researchers have carried out a lot of
work on amyloid proteins, including amyloidosis [10, 11],
polymorphs of amyloid proteins at the molecular level [12],
amyloid region [13], and antibody amyloid [14].

Studies have shown that not all regions of polypeptides
contribute equally to its aggregation; only some short specific
amino acid sequences can act as facilitators of amyloid fibril

formation [15, 16]. Therefore, many computational methods
for detecting the amyloid-forming regions have been pro-
posed. AGGRESCAN [17] is a web tool, which identifies
the aggregation-prone regions in the sequence based on the
intrinsic aggregation-prone profile of amino acids and their
relative positions. Due to its dependence on the analysis of
linear sequences, it is difficult for AGGRESCAN to predict
the aggregation properties of folded proteins. Zambrano
et al. improve AGGRESCAN and propose a new method
called AGGRESCAN3D (A3D for short) [18]. By using many
factors affecting protein aggregation, A3D obtains a more
accurate prediction for globular proteins. Zyggregator [19]
predicts the aggregation-prone regions of polypeptides based
on the physical and chemical properties of protein primary
structure, such as hydrophobicity and secondary structure
tendency. Based on the formation mechanism of β-sheets
in amyloid aggregates, PASTA [20] uses the energy function
to calculate the amino acid fragments in the sequence. Fol-
dAmyloid [21] introduces the expected probability of hydro-
gen bonds and the packing density of residues to detect the
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amyloidogenic regions in polypeptide chains. Maurer-Stroh’s
method [22] is a prediction algorithm using position-specific
scoring matrices to determine amyloid formation sequences.

The prediction principles of the above methods are dif-
ferent and have their own advantages and disadvantages.
The idea of combining different predictors to improve the
identification ability was first introduced in AmylPred [23],
subsequently followed by the improved version AmylPred2
[24]. AmylPred2 combines 11 different individual predictors
to form a consensus prediction of the amyloidogenic region.
The consensus of AmylPred2 is based on binary predictions;
Emily et al. improves the weighting process and proposes
MetAmyl [25]. MetAmyl introduces the meta-prediction
whose input is the prediction scores of base-prediction based
on a statistical approach.

In recent years, machine learning has increasingly
become a favorite tool in the field of bioinformatics [26–
35]. Many scholars try to use machine learning algorithms
to predict amyloidogenic propensity. PASTA 2.0 [36] not
only uses a pairwise energy potential to predict amyloid fibril
regions but also uses machine learning algorithms to detect
secondary structure. FISH Amyloid [37] proposes an original
machine learning classification method to investigate co-
occurrence patterns in the sequence based on the assumption
that the distribution of residues in amyloid-forming frag-

ments is position-specific. APPNN [38] is a phenomenolog-
ical amyloid formation propensity predictor established on
recursive feature selection and feed-forward neural network.
Experimental results show that APPNN has a high accuracy
value compared with other amyloidogenic propensity predic-
tion methods.

These methods can help us understand amyloid-related
diseases and find potential therapeutic targets. However,
their work focuses on predicting the amyloid-forming region
of a given sequence, rather than identifying whether this
sequence is amyloid. Niu et al. propose RFAmyloid [39] to
identify amyloid based on random forest, which obtains an
accuracy of 89%. Although high accuracy has been achieved,
there are still many aspects worthy of further investigation,
such as redundant features due to no feature selection. In this
paper, we aim to propose a new amyloid predictor, PredA-
myl-MLP, to further improve the prediction performance.

2. Materials and Methods

2.1. Framework of PredAmyl-MLP. In this paper, we proposed
a new amyloid predictor called PredAmyl-MLP, the frame-
work of which is shown in Figure 1. First, we, respectively,
extracted 188-dimensional vectors and 8000-dimensional vec-
tors to represent protein sequences by using the SVMProt-
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Figure 1: The frame chart of the PredAmyl-MLP predictor.

2 Computational and Mathematical Methods in Medicine



188D method and the TPC method. Next, we reduced the
188-dimensional vectors to 121-dimensional vectors using
the MRMD method, reduced 8000-dimensional vectors to
425-dimensional vectors using the BD method, and then
generated multi-feature vectors by combining the 121-
dimensional and 425-dimensional vectors. Finally, we con-
structed a multilayer perceptron-based classifier that takes
the multi-feature vectors as input. We will introduce the
datasets, feature extraction, feature selection, and classifiers
in detail in the following section.

2.2. Dataset. In this study, we utilized the dataset constructed
by Niu et al. who developed a web server named RFAmyloid
[39] to identify amyloid proteins. There are three reasons
for considering this dataset as our experimental dataset.
First, the dataset was collected from the UniProt database
(http://www.uniprot.org/) and the AmyPro database (http://
www.amypro.net/); thus, it is reliable. Second, the authors
employed the program CD-HIT [40] to cluster proteins that
meet a similarity threshold and removed redundant and
homology-biased sequences [41]. Finally, and most impor-
tantly, using the same dataset allows us to compare the pro-
posed method fairly with existing methods. The final
dataset consists of 165 amyloid proteins (positive examples)
and 382 non-amyloid proteins (negative examples).

2.3. Feature Extraction. The first and the most important step
of designing a protein predictor is how to represent protein
by features that can effectively discriminate positive samples
from negative samples [42–48]. In this paper, we try to encode
amyloid proteins with multi-feature, which consists of two
basic feature representation methods, namely, SVMProt-
188D and Tripeptide compositions (TPC). SVMProt-188D is
based on the composition and physicochemical properties of
amino acids. It has achieved good performance on several bio-
informatics applications such as human protein subcellular
localization prediction [49–52], TATA binding protein identi-
fication [53], and protein functional family prediction [54–
59]. TPC is based on the tripeptide composition of protein.
It also has been widely applied to solve many bioinformatics
problems such as hormone binding protein identification
[60], the prediction of subcellular localization of mycobacte-
rial proteins, and the identification of cancerlectins [61–63].
In this paper, we, respectively, extract SVMProt-188D and
TPC features from a protein and combine the features to rep-

resent the protein. The experimental results show that the
multi-feature can effectively encode the protein, which is
shown in Section 3.2. The detail of SVMProt-188D and TPC
is as follows.

2.3.1. SVMProt-188D. Based on the composition and physi-
cochemical properties of amino acids, the SVMProt-188D
method encodes a protein as a 188-dimensional feature vec-
tor. The first 20 dimensions are represented by calculating
the frequencies of 20 natural amino acids (A,C,D,E,F,-
G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y in alphabetical order) in
the sequence. The formula can be defined as

V1, V2,⋯, V20ð Þ = Ni

L
, ð1Þ

where Ni represents the number of the ith amino acid in the
protein sequence and L represents the length of a sequence.
Obviously, ∑Vi = 1.

The latter dimensions are correlated with eight physico-
chemical properties including hydrophobicity, normalized
Van der Waals volume, polarity, polarizability, charge, sur-
face tension, secondary structure, and solvent accessibility.
Each property is divided into three categories, and 20 amino
acids belong to different categories (listed in Table 1). All
physicochemical properties are described by three descrip-
tors C (composition), T (transition), and D (distribution).
The C, T , and D descriptors of each property consist of 3,
3, and 15 numbers, respectively. C is the frequency of amino
acids in a specific category. T is the percent frequency that
amino acids in a category followed by amino acids in another
category, such as the transitions from hydrophilic to hydro-
phobic or from neutral to hydrophilic. D calculates the pro-
portions of the chain length of the first, 25, 50, 75, and
100% amino acids in a specific category and enlarges the cal-
culations by 100 times.

Therefore, after analyzing the composition and eight
physicochemical properties of amino acids, we can obtain a
total of 20 + ðC + T + DÞ × 8 = 188 features.

2.3.2. TPC. The TPC method represents sequences based on
the tripeptide composition of protein. Three amino acids
are linked by peptide bonds to form a tripeptide, thus pro-
ducing 20 × 20 × 20 = 8000 possible tripeptides. TPC trans-
forms 8000 tripeptides into an 8000-dimensional feature

Table 1: Three groups of amino acids divided by 8 different physicochemical properties.

Physicochemical property Class1 Class2 Class3

Hydrophobicity RKEDQN GASTPHY CVLIMFW

Normalized Van der Waals volume GASCTPD NVEQIL MHKFRYW

Polarity LIFWCMVY PATGS HQRKNED

Polarizability GASDT CPNVEQIL KMHFRYW

Charge KR ANCQGHILMFPSTWYV DE

Surface tension ILMFPWYV KTSEC GQDNAHR

Secondary structure EALMQKRH VIYCWFT GNPSD

Solvent accessibility ALFCGIVM RKQEND MPSTHY
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vector that can express a protein sequence. The formula is
defined as follows:

F = f1, f2,⋯, f8000½ �T , ð2Þ

where T is the transposition of a vector and f i is the fre-
quency of the tripeptide in the sequence, which can be calcu-
lated as

f i =
Ni

L − 2
, ð3Þ

where Ni is the number of the ith tripeptide and L represents
the length of a sequence.

2.4. Feature Selection. Feature selection plays an important
role in the improvement of identification performance. It
can remove redundant or noise features. We adopted the
maximum relevant maximum distance (MRMD) [64]
method to select optimal features from SVMProt-188D fea-
tures and adopted the binomial distribution (BD) [65]
method to select optimal features from TPC features. The
principles of the two feature selection methods are as follows.

2.4.1. MRMD.Most dimensionality reduction methods focus
on the correlation between features and target class, ignoring
the redundancy of features [64]. However, the effect of highly
correlated feature vectors on classification cannot be super-
posed. The MRMD method considers these two aspects to
score features. Therefore, the score for each feature contains
two components, the maximum relevant MR score and the
maximum distance MD score, which can be defined as

max MRi +MDið Þ: ð4Þ

The relevance between feature and target class is mea-
sured by the Pearson correlation coefficient (PCC). The for-
mula is defined as

PCC Fi
!, C

!� �
=

∑N
k=1 Fik − Fi

� �
Ck − �C
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

k=1 Fik − Fi

� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

k=1 Ck − �C
� �2q , ð5Þ

where N is total number of samples, Fi
!

and C
!
consist of the

ith dimension feature vector and the corresponding target
class c in each sample, respectively; Fik and Ck is the kth ele-

ment of Fi
!

and C
!
, respectively. If this feature contributes

significantly to classification, the value of jPCCj will be large.
Thus, the MR score for feature i is calculated as

max MRi = PCC Fi
!, C

!� ����
���: ð6Þ

The correlation between features is evaluated by calculat-
ing the distance between features. In this work, Euclidean
distance (ED), Cosine similarity (COS), and Tanimoto coef-
ficient (TC) are employed as distance functions. The formu-
las are as follows:

EDi =
∑

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑M

k=1 Fi − Fkð Þ2
q

M − 1
i ≤ k ≤M, k ≠ ið Þ,

COSi =
∑Fi ∗ Fk

Fik k ∗ Fkk k ∗ M − 1ð Þ i ≤ k ≤M, k ≠ ið Þ,

TCi =
∑Fi ∗ Fk

Fik k2 + Fkk k2 − Fi ∗ Fk

� �
∗ M − 1ð Þ i ≤ k ≤M, k ≠ ið Þ,

ð7Þ

and the MD score for feature i is defined as

max MDi =
1
3

EDi + COSi + TCið Þ: ð8Þ

2.4.2. BD. In this work, the binomial distribution method
[66–68] was applied to select the optimal subset from 8000
tripeptide features. First, we judged whether the occurrence
of tripeptides in a certain kind of protein is random by calcu-
lating the probability of the ith tripeptide in the class j sam-
ples, like this:

Pij = 〠
Ni

k=nij

Ni!

k! Ni − kð Þ! qj
k 1 − qj
� �Ni−k, ð9Þ

where qi is the proportion of the number of tripeptides in
class j samples to in all samples, nij andNi are the occurrence
number of the ith tripeptide in class j (j = f0, 1g) and all sam-
ples, respectively. A smaller P value indicates more certainty
about the occurrence of tripeptides. Hence, the confidence
level (CL) of the ith tripeptide in the class j samples can be
defined as

CLij = 1 − Pij: ð10Þ

Obviously, each tripeptide feature has two CL values, and
we will choose the larger one.

Then, the features are arranged in descending order by
CL values to create a ranked list. The first feature subset con-
tains only the first feature in the list,D1 = ½ f1�T . And each
new subset was produced when the next candidate feature
was added to the previous subset. This process was repeated
until all features in the list were added. The resulting 8000
feature subsets can be described as

D = D1,D2,⋯,D8000½ �T : ð11Þ

Finally, for every feature set, a prediction model was con-
structed. The optimal feature subset can be selected based on
the maximum accuracy of 10-fold cross-validation.

2.5. Classifier.Waikato Environment for Knowledge Analysis
(Weka) is a well-known machine learning and data mining
software. In the platform of Weka, we can integrate our
own algorithms and even use his own algorithms to imple-
ment the classification task. In this paper, we experimented
with many classification algorithms based on the Weka
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platform, such as random forest, naive Bayes, logistic, IBK,
and bagging [69, 70]. Finally, we choose the multilayer per-
ceptron (MLP) as our classifier, and the experimental results
are shown in Section 3.3.

Artificial neural network is a machine learning algorithm
that simulates the human brain. Multilayer perceptron is a
kind of feedforward artificial neural network, which has a
strong learning ability and robustness [71]. It performs very
well in solving various practical problems and has been
widely used in the field of bioinformatics, such as disease
diagnosis [72, 73], the prediction of protein secondary struc-
ture [74], and gene classification [75]. MLP utilizes feature
vectors as nodes in the input layer. In the training process,
the output values are compared with the actual values, and
error information is fed back. Based on the information, the
weights continuously update until the prediction error is suf-
ficiently small. Figure 2 is a schematic diagram of MLP. In
this work, we constructed an MLP model with one hidden
layer. The number of neurons in the hidden layer is set to half
of the sum of the number of input features and output clas-
ses. Meanwhile, the learning rate and the number of itera-
tions are set to 0.3 and 500, respectively.

2.6. Measurement. To evaluate the performance of our pre-
diction model, we used four indicators commonly used in
bioinformatics: accuracy (ACC), sensitivity (SE), specificity
(SP), and Mathew’s correlation coefficient (MCC) [76–87].
These measures are formulated as follows:

ACC = TP + TN
TP + TN + FP + FN

,

SE =
TP

TP + FN
,

SP =
TN

TN + FP
,

MCC =
TP × TN‐FP × FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FPð Þ TP + FNð Þ TN + FPð Þ TN + FNð Þp ,

ð12Þ

where TP is the abbreviation of true positive, which means
the number of amyloid proteins predicted in the positive
samples; FP is the abbreviation of false positive, which means
the number of amyloid proteins predicted in the negative
samples; TN is the abbreviation of true negative, which
means the number of non-amyloid proteins predicted in
the negative samples; and FN is the abbreviation of false neg-
ative, which means the number of non-amyloid proteins pre-
dicted in the positive samples. The SE and SP, respectively,
denote the predictive ability of a model in positive and nega-
tive samples. Both ACC and MCC denote the overall perfor-
mance of a model. For all the indicators mentioned above,
the higher scores they achieve, the better performance the
models have.

3. Results and Discussion

3.1. Experiments on Feature Selection. As described in
Framework of PredAmyl-MLP, we, respectively, extract
SVMProt-188D and TPC features from samples and encode
each sample with a multi-feature of 8188 dimensions. Train-
ing a classification model using too many feature vectors with
low confidence will be relatively time-consuming, and the
model may be overfitting. On the contrary, if the number
of feature vectors is too small, they will not afford enough
information to discriminate positive samples from negative
samples. Therefore, to construct a robust and efficient predic-
tion model, we, respectively, adopt MRMD and BD methods
to choose an appropriate number of features from SVMProt-
188D and TPC features. In this section, we will give the pro-
cess of feature selection and experimental results.

For the 188-dimensional features extracted by the
SVMProt-188D method, we assessed their importance by
calculating the MRMD scores. The feature with a higher
score has a more significant contribution to amyloid identifi-
cation. The MRMD score consists of the Pearson correlation
coefficient and distance function. The MRMD method pro-
vides three distance functions including Euclidean distance
(ED), Cosine similarity (COS), and Tanimoto coefficient
(TC). Different distance functions will lead to different
MRMD scores for each feature. Thus, choosing an appropri-
ate distance function is crucial for removing redundant
features.

We employed support vector machines (SVM) [88, 89], a
powerful classification algorithm, to examine the perfor-
mance of three distance functions and select an optimal fea-
ture subset. First, we ranked the features in decreasing order
of the MRMD scores to obtain the feature list. Then, we built
feature subsets according to the feature order in the list. The
first set contains only the feature ranking first in the list. A
new set was generated when the second feature was added
to the previous set. This process was repeated until all candi-
date features were added. Finally, the constructed 188 subsets
were input into an SVM-based classifier, and the 10-fold
cross-validation accuracy was obtained.

Figure 3 illustrates the performance of MRMD based
on different distance functions, where MEAN represents the
average of three distance function. As shown in Figure 3,
ED, COS, TC, and MEAN have the best predictive

Input layer Output layerHidden layer

. . .

. . .

x1

x2

xn

y0

y1

Figure 2: The structure of MLP with one hidden layer.
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performance when using the top-ranked 121, 174, 177, and
121 features, respectively. Furthermore, the results obtained
by ED distance function are almost identical to those
obtained by the average of different distance functions. It
suggests that the method using ED distance function can
achieve the same effect as using the average of the three dis-
tance functions. Although the maximum accuracy of TC is
slightly higher than that of ED, the number of features
required for ED to obtain the best performance is much
lower than that of TC. Therefore, we adopted ED as the
distance function of the MRMD method and used the top
121 features in the ED ranking list to construct an optimal
feature subset.

Figure 4 presents the MRMD score of each feature calcu-
lated using ED distance function, where the features marked
with red are selected and the ones marked with blue are
removed. As we can see from Figure 4, most of the redundant
features appear continuously and concentratedly, such as 21-
26, 42-47, 126-131, 147-152, and 168-175. We analyzed the
reasons and found that these features were extracted based
on the content of three categories of amino acids in the
sequences and the transition frequency between every two
categories. Such features are regarded as redundant features,
possibly because they are insensitive to identifying amyloid
or encodes very similar. This discovery also brings new ideas
for our future research.

For the 8000 features extracted by the TPC method, we
sorted them using the BD method. According to the sort
order, a certain number of features are selected and formed
a feature subset. Thus, we can construct 8000 feature subsets.
For each subset, the SVM classifier trained with 10-fold
cross-validation. The relationship between the accuracy and
the number of features is shown in Figure 5. As shown in
Figure 5, the accuracy reaches a maximum of 91.22% when
the number of features is 1565. This number is much larger
than the number of 547 samples in our dataset. The construc-
tion of a robust prediction model must take into account the
time-consuming and risk of overfitting caused by high-
dimensional feature vectors. Ultimately, we chose the top

425 features which can achieve an overall accuracy of
87.93% which was just slightly lower than the maximum
accuracy (91.22%) produced by the top 1565 features. There-
fore, the top 425 features served as the optimal feature subset
in the TPC feature method.

In summary, we, respectively, selected 121 features from
SVMProt-188D features and 425 features from TPC features,
then combined the 121 features and 425 features to form a
multi-feature which consists of 546 features. The multi-
feature is used to train the multilayer perceptron classifier
in this study.

3.2. Performance of Different Features. As shown in Exper-
iments on Feature Selection, we, respectively, extracted
188-dimensional vectors and 8000-dimensional vectors from
protein sequences by using the SVMProt-188D method
and the TPC method. Next, we reduced the 188-dimensional
vectors to 121-dimensional vectors using the MRMDmethod,
reduced 8000-dimensional vectors to 425-dimensional vec-
tors using the BD method, and then generated multi-feature
vectors by combining the 121-dimensional and 425-dimen-
sional vectors. We used the multi-feature with dimensions
of 546 to represent samples.

To verify the validity of the multi-feature used in this
paper, we first used multilayer perceptron as the classifier
and compared the multi-feature with some other features,
including k-skip-2-gram [90], pseudo amino acid composi-
tion (PseAAC) [91], conjoint triad (CTriad) [92], dipeptide
composition (DPC) [93], and 473D [94]. Then, three com-
pared features with higher accuracy were combined and eval-
uated. Both PseAAC and DPC are based on amino acid
composition. PseAAC takes into account the local informa-
tion and long-range correlation of sequences. DPC repre-
sents a protein sequence through dipeptide composition
information.N-gram is a commonmodel in natural language
processing, and k-skip-n-gram integrates the distance infor-
mation between n residues into the traditional n-gram
model. CTriad is a feature extraction method based on the
neighbor relationship of amino acids. 473D encodes a
sequence into a 473-dimensional feature vector based on
the PSI-BLAST [95] and PSI-PRED [96] profiles.
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The 10-fold cross-validation results are shown in Table 2,
where both SVMProt-188 and TPC denote the final feature
after feature selection. As shown in Table 2, from the indica-
tors of ACC and MCC, the combination of SVM-188D and
TPC used in this paper performs better than all other
methods and has a better overall performance. According
to the indicator of SE, our multi-feature also has the highest
value, which demonstrates that our method performs better
than other methods in identifying amyloid proteins from
positive samples. According to the indicator of SP, our
method is slightly lower than TPC, 473D, and the combina-
tion of CTriad and 473D. However, the values of ACC,
MCC, and SE of our method are obviously higher than theirs.
Especially the SE of 473D and the combination of CTriad and
473D are 0.339 and 0.036, respectively, which verify that they
are biased to classify proteins as non-amyloid protein. There-
fore, from the overall perspective, our method obviously per-
forms better than all other methods.

To further illustrate that our multi-feature method has
better performance regardless of the classifier, we, respec-
tively, compared our multi-feature method with other feature
extraction methods based on six different classifiers. The
result is shown in Figure 6. As we can see from Figure 6, in
each group of models using the same classifier, the accuracy
of the combination of SVMProt 188-D and TPC is signifi-
cantly higher than other feature extraction methods. Taking
the classifier SGD as an example, the accuracy of the combi-
nation of SVMProt 188-D and TPC is about 9-16% higher
than other methods. In general, our multi-feature method
has better performance regardless of the classifier.

3.3. Performance of Different Classifiers. The selection of a
classification algorithm is an important step to improve the
accuracy of the model. Based on the multi-feature used in this
paper, we compared multilayer perceptron with ten popular
classifiers, including random forest, naïve Bayes, decision
tree, AdaBoostM1, logistic, SGD, LibSVM, IBK, LWL, and
bagging. SGD is a linear classifier using a stochastic gradient
descent optimization algorithm. Naïve Bayes is based on

Bayes’ theorem and assumes that the features are indepen-
dent and equally important. LibSVM is a software developed
by Lin et al. to implement SVM. Logistic establishes a regres-
sion equation for the decision boundary based on the train-
ing data and classifies the test data accordingly. Decision
tree divides test datasets based on the concept of entropy in
informatics. AdaBoost, bagging, and random forest are
ensemble classifiers. AdaBoost is an adaptive iterative algo-
rithm, which integrates multiple weak classifiers trained on
the same dataset into a strong classifier. Bagging is a parallel
ensemble learning method based on bootstrap sampling. It
trains a base classifier for each sampled dataset and then
combines the base classifiers. Random forest is an extended
variant of bagging that uses decision trees as the base classi-
fier and introduces random attribute selection. Both IBK
and LWL are lazy learning algorithms, which mean that the
model is trained after receiving a test sample. IBK works by
finding the k training samples nearest to a given test sample
and determine the category of the given sample based on
these k “neighbors,” while LWL adds a concept of weighting.
The results of 10-fold cross-validation are shown in Table 3.
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Figure 5: The accuracies of models built with different number of
features.

Table 2: Comparison of different feature representation methods.

Method ACC (%) SE SP MCC

SVMProt-188D+TPC 91.59 0.836 0.950 0.798

PseAAC+473D 64.71 0.339 0.780 0.126

PseAAC+CTriad 72.76 0.491 0.830 0.333

CTriad+473D 70.56 0.036 0.995 0.119

473D+PseAAC+CTriad 67.45 0.230 0.866 0.120

SVMProt-188D 80.80 0.606 0.895 0.527

TPC 90.12 0.776 0.955 0.760

k-skip-2-gram 71.11 0.291 0.893 0.228

PseAAC 78.42 0.570 0.877 0.469

CTriad 72.57 0.345 0.890 0.281

DPC 68.37 0.345 0.830 0.193

473D 76.96 0.339 0.955 0.398
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Figure 6: The accuracy of various feature extraction methods using
different classifiers.
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In Table 3, although the multilayer perceptron method
presented in this paper is slightly lower than IBK in the SP
index, multilayer perceptron is obviously superior in the
other three indices. In the indicator of SE, naïve Bayes
achieved higher value than multilayer perceptron, but in
the other three indicators of ACC, SP, and MCC, multilayer
perceptron is superior to naïve Bayes. According to the indi-
cators of ACC and MCC, multilayer perceptron is higher
than all other classifiers. In general, the multilayer perceptron
classifier used in this paper has better performance than
other classifiers, which demonstrates that our method is
effective in identifying amyloid.

3.4. Comparison with Other Methods. To further evaluate the
performance of PredAmyl-MLP, we compared it with two
state-of-the-art methods such as RFAmyloid [39] and
BioSeq-Analysis [97] on the same dataset. BioSeq-Analysis
is a platform of DNA, RNA, and protein sequence analysis
that is available online at http://bioinformatics.hitsz.edu.cn/
BioSeq-Analysis/PROTEIN. The SVM and random forest
algorithm are used in the BioSeq-Analysis prediction
method, we compared them separately. The comparison
results are shown in Table 4. As we can see from Table 4,
our predictor outperforms the other methods in all indica-
tors. Furthermore, Figure 7 plots the ROC curves of the four
methods. We can also see that PredAmyl-MLP is superior to
existing methods in the prediction of amyloid.

4. Conclusions

In this paper, we proposed a novel model for identifying
amyloid proteins, called PredAmyl-MLP. We used the

SVMProt-188D and the Tripeptide composition methods
to represent protein sequences, respectively. After removing
redundant features, a multilayer perception-based prediction
model was constructed using mixed feature vectors. To vali-
date the performance of PredAmyl-MLP, we compared dif-
ferent feature subsets, classifiers, and other methods. As a
result, the features after dimension reduction can achieve bet-
ter performance. Moreover, the combination of two feature
representation methods significantly improves accuracy.
Through a lot of experiments, PredAmyl-MLP achieved an
accuracy of 91.59%, and MCC reached 0.798, outperforming
other existing methods. The online server for this article is
available at http://106.12.83.135:8080/amyWeb_Release/index
.jsp.

In future work, we will optimize the feature representa-
tion method, using lower-dimensional feature vectors to rep-
resent amyloid sequences. Moreover, we will consider other
computational intelligence models [98–102] and optimiza-
tion methods [103–105] for amyloid prediction.

Data Availability

The datasets used during the present study are available
from the corresponding author upon reasonable request,
or can be downloaded from http://106.12.83.135:8080/
amyWeb_Release/index.jsp
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Table 3: Comparison of multilayer perceptron with other
classifiers.

Method ACC (%) SE SP MCC

Multilayer perceptron 91.59 0.836 0.950 0.798

Random forest 85.00 0.642 0.940 0.629

Naïve Bayes 86.28 0.848 0.869 0.692

Decision tree 79.52 0.618 0.872 0.503

AdaBoostM1 82.81 0.612 0.921 0.574

Logistic 87.93 0.721 0.948 0.705

SGD 89.57 0.776 0.948 0.747

LibSVM 74.95 0.424 0.890 0.357

IBK 79.52 0.376 0.976 0.481

LWL 81.35 0.594 0.908 0.537

Bagging 83.36 0.588 0.940 0.585

Table 4: Comparison of our method with other existing methods.

Method ACC (%) SE SP MCC

PredAmyl-MLP 91.59 0.836 0.950 0.798

RFAmyloid 89.19 0.781 0.927 0.739

BioSeq (RF) 81.31 0.6374 0.8989 0.5626

BioSeq (SVM) 76.86 0.4953 0.9006 0.4419
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Figure 7: ROC curve for PredAmyl-MLP and other methods.
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