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Traditionally, the identification of parameters in the formulation and solution of inverse problems considers that models, variables,
and mathematical parameters are free of uncertainties. This aspect simplifies the estimation process, but does not consider the
influence of relatively small changes in the design variables in terms of the objective function. In this work, the SIDR
(Susceptible, Infected, Dead, and Recovered) model is used to simulate the dynamic behavior of the novel coronavirus disease
(COVID-19), and its parameters are estimated by formulating a robust inverse problem, that is, considering the sensitivity of
design variables. For this purpose, a robust multiobjective optimization problem is formulated, considering the minimization of
uncertainties associated with the estimation process and the maximization of the robustness parameter. To solve this problem,
the Multiobjective Stochastic Fractal Search algorithm is associated with the Effective Mean concept for the evaluation of
robustness. The results obtained considering real data of the epidemic in China demonstrate that the evaluation of the
sensitivity of the design variables can provide more reliable results.

1. Introduction

Since the first case of coronavirus disease 2019 (COVID-19),
a total of 82,877 confirmed cases and 4,633 deaths have been
reported in China, up to May 2, 2020. In order to study the
dissemination of this disease, various mathematical models
have been proposed and revisited. A large part of these
models is based on compartments and relations between
the different groups of individuals [5]. As pointed out by
Adam [1], many of the mathematical models used to guide
the policies of the countries to the pandemic situation are
improvements of the simple compartmental SIR model
(representing susceptible, infected, and recovered individ-
uals, respectively). Some authors introduced new effects in
this kind of model; for instance, Lin et al. [7] modified a SEIR
model (here, E refers to exposed individuals) to introduce the
effect of government actions and individual reactions to the

disease. Recently, Ndaïrou et al. [11] presented a compart-
mental model with emphasis in super-spreader individuals,
applied to the Wuhan case. Liu et al. [8] proposed the appli-
cation of a four-stage modified SEIR model to the spread of
the disease in Wuhan; some important factors were consid-
ered, as the isolation of the city and the construction of field
hospitals. A possible vaccine administration strategy was
detailed by Libotte et al. [6], considering the Wuhan case
and using a multiobjective approach. This scenario indicates
the large number of possibilities to enhance the predictions of
compartmental models.

In all these models, no information about uncertainties
are considered, that is, errors associated with modelling and
estimation of parameters are neglected. In this case, optimal
solutions may be influenced by small perturbations, as dem-
onstrated by Deb and Gupta [3]. The objective of this work is
to analyze the influence of noise during the solution of an
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inverse problem that aims to determine the parameters that
characterize a SIDR (Susceptible, Infected, Dead, and
Recovered) model. For this purpose, a robust inverse prob-
lem is formulated and solved using the Stochastic Fractal
Search [12]. The problem proposed in this work considers
the minimization of deviation between experimental and
calculated values, together with the maximization of robust-
ness parameter.

2. Background Information on
Robustness Analysis

In many optimization problems, decision variables are sub-
ject to perturbation. When solving the problem, one must
consider that the solution must be acceptable with respect
to small changes in the values of the decision variables.
Robust optimization is aimed at obtaining solutions that
are least sensitive to such perturbations, that is, solutions that
present the smallest possible deviation in relation to the
objective value when subject to noise. The concepts of robust
optimization were introduced by Tsutsui and Ghosh [16].
The objective function to optimize in searching robust solu-
tions may be formulated as follows:

f R xð Þ =
ð+∞
−∞

f x + δð Þ p δð Þ dδ, ð1Þ

where δ is the noise parameter, and pðδÞ represents the prob-
ability distribution function. Usually, this effective objective
function is not available, since the probability distribution
may not be known. Therefore, the calculation of the expected
performance is usually not trivial in many applications.

Deb and Gupta [3] proposed a methodology for obtain-
ing robust solutions in the context of multiobjective optimi-
zation (more details on multiobjective optimization can be
seen in Miettinen [10]). Essentially, it is proposed to optimize
the mean effective objective values computed at a point by
averaging the function values of a few samples in its vicinity,
instead of optimizing the original objective functions. Thus, a
solution x∗ is called a multiobjective robust solution of type I,
if it is the global feasible Pareto optimal solution to the multi-
objective minimization problem given by

Min f eff1 xð Þ,⋯, f effm xð Þ
� �

,

Subject to x ∈ δ
ð2Þ

where f effi ðxÞ is defined as follows:

f effi xð Þ = 1
Bδ xð Þj j

ð
y∈Bδ xð Þ

f i yð Þ dy, ð3Þ

for i = 1,⋯,m, and BδðxÞ is the hypervolume of the
neighborhood.

This approach is suitable for problems in which the result
of the integral in Equation (3) can be obtained in a closed
analytical form. For problems in which the search space is
more complex, Equation (3) can be approximated by the

mean value of the objective function, using a Monte Carlo
integration given by

f effi xð Þ ≈ 1
H
〠
H

k=1
f i yk
� �

: ð4Þ

In practice, a set of H points are randomly sampled (or
respecting some structured manner, such as the Latin Hyper-
cube method) in the range yk ∈ ½ð1 − δÞx, ð1 + δÞx�, and the
mean function value approximates Equation (3).

3. Stochastic Fractal Search

In the last decades, the development of optimization algo-
rithms based on swarm intelligence has allowed the solution
of complex problems in different areas of science and engi-
neering. Inspired by the collective intelligent behavior of
insects or animal groups in nature, such as flocks of birds,
swarms of bees (bats, fireflies), colonies of ants, and swarms
of fruit flies, various optimization algorithms have been pro-
posed [15]. In this work, we use a promising method, recently
proposed by Salimi [12], called Stochastic Fractal Search
(SFS) algorithm. The main steps of the metaheuristic are pre-
sented below.

The SFS algorithm is a nature-inspired metaheuristic
based on the natural growth phenomenon of fractals. Candi-
date solutions (particles) explore the search space consider-
ing a diffusion property which is regularly seen in random
fractals. The SFS approach is based on random fractals grown
by Diffusion Limited Aggregation concept [17]. This optimi-
zation strategy adopts a random walk in order to simulate the
diffusion process, where the diffusing particle sticks to the
seed particle. This process is repeated until a cluster has been
created [12].

Two steps are applied to generate new candidate solutions
at each iteration: diffusion and updating. In the first, each
particle diffuses around its current position to ensure the
exploitation property. The diffusion process avoids being
trapped in local optimum and increases the chance of finding
the global solution. In the second, a point in a group updates
its location based on the locations of other points in the group.
SFS considers a static diffusion process, that is, the best particle
generated from the diffusion process is the only particle that is
considered; the rest of the particles are ignored. In addition to
efficient exploration of the feasible problem, SFS uses some
random methods as updating processes.

The diffusion process uses Gaussian random walks to
generate points around each particle until a predefined max-
imum diffusion number is reached. There are two types of
Gaussian walks in the diffusion process:

G1 =Gaussian μBP, σð Þ + ε × BP − ε′ × Pi

� �
,

G2 =Gaussian μp, σ
� � ð5Þ

where ε and ε′ are uniformly distributed random number in
the range ð0, 1Þ. In turn, BP and Pi are the position of the best
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point and the i-th point in the group, respectively. The first
two Gaussian parameters are μBP and σ, where μBP is exactly
equal to BP. The two latter parameters are μP and σ, where μP
is equal to Pi. The standard deviation σ is dynamically
adjusted based on the number of the generation g.

σ = log gð Þ
g

× Pi − BPð Þ
����

����: ð6Þ

The update process employs two statistical procedures
to undertake the exploration in SFS. Initially, all the points
are ranked based on the value of the fitness function, by
calculating

Pai =
rank Pið Þ

N
, ð7Þ

where rank ðPiÞ is the rank of the point Pi among the
other points of the group. In the first updating process,
for each point Pi in group, the j-th component of Pi is
updated according to

Pi′ jð Þ = Pr jð Þ − ε × Pt jð Þ − Pi jð Þð Þ, ð8Þ

where Pr and Pt are randomly selected points in the
group. The point is updated if the condition Pai < ε is
satisfied, where Pai is given by Equation (7). Otherwise,
Pi remains unchanged. In the second update process, Pi′
is updated if Pai < ε holds for Pi′. Thus, the point is mod-
ified according to

Pi′′= Pi′− bε × Pt′− BP
� �

, ð9Þ

if ε′ ≤ 0:5, where ε′ is a random number generated by the
Gaussian distribution. Otherwise, Pi′ is updated by

Pi′′= Pi′+ bε × Pt′− Pr′
� �

: ð10Þ

In these cases, Pt′ and Pr′ are randomly selected points
obtained from the first procedure. Details on the imple-
mentation are presented by Salimi [12].

4. Multiobjective Stochastic Fractal Search

In this work, the SFS strategy is extended for multiobjective
optimization context. This new approach, called the Multi-
objective Optimization Stochastic Fractal Search (MOSFS)
algorithm, incorporates two operators to the original SFS
algorithm: Fast Nondominated Sorting and Crowding Dis-
tance [2]. Briefly, MOSFS presents the following structure.
An initial population of size NP is randomly generated.
Then, a new population is generated from the current popu-
lation, using the operators proposed in SFS. Each candidate
of the new population is evaluated considering the vector of
objectives. All dominated candidate solutions are removed
from the population through the Fast Nondominated Sorting
operator. The population is sorted into nondominated fronts

(sets of vectors that are nondominated with respect to each
other). This procedure is repeated until all vectors are
assigned to a front. During the evolutionary process, if the
number of individuals in the current population is larger
than a predefined number, it is truncated according to the
Crowding Distance.

5. Methodology

Traditionally, models based on compartments have been
used to represent dynamic behavior of disease. In the litera-
ture, various applications involving this type of model can
be found. The objective of this work is to determine the
parameters of an epidemiological model to predict the evolu-
tion of COVID-19 epidemic considering experimental data
from China, considering uncertainties. For this purpose, the
SIDR (Susceptible, Infectious, Dead, and Recovered) model
is adopted [5].

In this model, it is assumed that, for each infected indivi-
dual/host, the disease can be transmitted to a susceptible
individual. The number of susceptible individuals (S) varies
with time according to

dS
dt

= −
βSI
N

, ð11Þ

where t is the time and β is the rate of disease transmission
The dynamics of the number of infected individuals is calcu-
lated by

dI
dt

= βSI
N

−
γ

1 − ρ
I, ð12Þ

where γ is the per-capita recovery rate, and ρ is the death
probability. In turn, the number of dead individuals is
calculated by

dD
dt

= ρ

1 − ρ
γI, ð13Þ

with m = ðρ/1 − ρÞγ representing a per-capita mortality
rate [5]. Finally, the number of recovered individuals is
obtained from

dR
dt

= γI: ð14Þ

The initial conditions of the system are given by
ðSð0Þ, Ið0Þ,Dð0Þ, Rð0ÞÞ = ðS0, I0,D0, R0Þ.

In this work, we used a normalized version of the SIDR
model, with scaled variables defined as Sn = S/N , In = I/N ,
Dn =D/N , and Rn = R/N , where N is the population size. In
this case, the following constraint must be obeyed: SnðtÞ +
InðtÞ +DnðtÞ + RnðtÞ = 1. Thus, the system represented by
Equations (11)–(14) is converted into the normalized model
represented by

dSn
dt

= −βSnIn, ð15Þ
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dIn
dt

= βSnIn −
γ

1 − ρ
In, ð16Þ

dDn

dt
= ρ

1 − ρ
γIn, ð17Þ

dRn

dt
= γIn : ð18Þ

The new initial condition for the susceptible, infected,
dead, and recovered populations is represented by Sn0, In0,
Dn0, and Rn0, respectively.

In order to determine the SIDR parameters, it is required
to formulate and solve an inverse problem. In general, the
identification procedure consists in obtaining the model
parameters through the minimization of the difference
between calculated and real values. For the real data of the
epidemic in China, both infected ðIeÞ and dead ðDeÞ time
series are known. Thus, the merit function to be minimized
is defined as follows:

F Ic,Dcð Þ = 1
max Ieð Þ2 〠

M

i=1
Iei − Icð Þ2 + 1

max Deð Þ2 〠
N

j=1
De

i −Dcð Þ2,

ð19Þ

where Ic and Dc are the calculated values for infected and
dead individuals, respectively. M and N are the number of
data for Ic and Dc, respectively.

In order to evaluate the influence of perturbations in this
(nominal) optimization problem, the robustness of the vari-
ables Ic and Dc is analyzed. In this case, for each candidate
solution generated by using the MOSFS algorithm, H points
are sampled using the Latin Hypercube method. Each point
is evaluated considering the system of ordinary differential
equations given by Equations (15)–(18). For this purpose,
the Fourth-Order Runge-Kutta method is used. After such
simulations, the Mean Effective approach is employed. Then,
the mean effective objective is associated with the candidate
generated by MOSFS. This procedure is performed until the
maximum number of generations is reached.

6. Results and Discussion

Considering the methodology presented, two cases are ana-
lyzed: in the first, the parameters of the SIDR model are esti-
mated through the formulation and solution of an inverse
problem without considering possible uncertainties. In the
second one, the influence of possible perturbations on the
decision variables is considered. For this purpose, the criteria
below are defined.

In both problems analyzed, the parameters of the SIDR
model are defined in the following intervals (obtained after
preliminary runs): 0:1 ≤ β ≤ 0:6, 0:04 ≤ γ ≤ 0:6, 0 ≤ I0 ≤ 1,
and 0 ≤ ρ ≤ 1. The results correspond to 20 runs of the meta-
heuristics (using a different seed for each run) for a maxi-
mum of 250 generations in each run. The initial conditions
of the compartmental model are given by ðSð0Þ, Ið0Þ,Dð0Þ,
Rð0ÞÞ = ð1 − I0, I0, 0, 0Þ, and the COVID-19 data are
retrieved from Worldometer [18]. In order to evaluate the

performance of SFS, three other evolutionary algorithms are
considered: Genetic Algorithm (GA) [4], Differential Evolu-
tion (DE) [14], and Firefly Algorithm (FA) [19]. For GA, we
adopted a population size equals to 25, maximum number of
generations equals to 250, crossover probability equals to 0.8,
and mutation probability equals to 0.01. In the case of DE,
the population size is equal to 25, maximum number of gener-
ations equals to 250, and probability crossover and perturba-
tion rate both equal to 0.9. In FA, we set the population size
equals to 25, maximum number of generations equals to
250, and maximum attractiveness value and absorption coeffi-
cient both equal to 0.9. In both algorithms, the stopping crite-
rion used is the maximum number of generations.

In the deterministic inverse problem, Equation (19) must
be minimized. For this purpose, SFS is employed with 25
individuals in the population. Table 1 presents the results
for the best result and the standard deviation considering
SFS, GA, DE, and FA algorithms in 20 runs (using a different
seed for each run). In this table, we can observe that all algo-
rithms converged to the same result. Table 1 presents the
results for the best result and the standard deviation. It can
be noted that the optimal value of F is relatively high. How-
ever, the corresponding standard deviation value indicates
that the metaheuristic obtained very close optimizers in all
runs. This is due to the fact that the population dynamics
undergoes many variations in the course of the epidemic.
Such variations are due to government actions, disease miti-
gation strategy, and capacity of the health network. All of
these aspects have an impact on the time series of the number
of infected and dead individuals. Therefore, the best curve fit-
ting is not necessarily able to accurately describe the behavior
of the epidemic at all times.

Figure 1 presents the nonnormalized profiles considering
the estimated parameters by solving the inverse problem
defined by the minimization of Equation (19)—these results
are weighted in relation to number of infected individuals,
that is, the population size is a portion of the population that
has been effectively tested. In Figures 1(b) and 1(c), we can
observe the accuracy of the curve fitting. Note that the time
series present sudden changes between two consecutive
points that make the compartmental model not be able to
describe its behavior more accurately. This is clear, mainly,
from day 85 in the data referring to the number of dead indi-
viduals. Figure 1(a) presents the evolution of susceptible pop-
ulation during the epidemic. As expected, after the maximum
value observed for the number of infected individuals
(approximately between days 20 and 30), the number of sus-
ceptible individuals decreases.

The influence of each parameter of the model on the
objective function is assessed by perturbing the best solutions
presented in Table 1, aiming to show the variation of F in the
vicinity of the optimal value of each parameter. The vector of
optimal parameters is denoted by θ∗ = ðβ∗, γ∗, I∗0 , ρ∗Þ. For
each parameter, 100 equally spaced points are evaluated, in
the range ½ð1 − τÞθ∗k , ð1 + τÞθ∗k �, for k = 1,⋯, 4, where
τ = 0:25. Figure 2 shows the influence of each parameter in
relation to the objective function defined by Equation (19).
Note that, in the analyzed range, in fact, the optimal values
of the corresponding parameters represent the minimum
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value of F. This indicates that, at least locally, the optimal
parameters obtained represent the best fit in relation to the
analyzed data. In addition, it is possible to notice that β is
the parameter that presents greater sensitivity in relation to
F, in the proposed analysis.

In order to analyze the sensitivity of the design variables,
a multiobjective optimization problem is formulated. In the
robust inverse problem, Equation (19) must be minimized

and the noise parameter ðδÞ is maximized. By solving this
new problem, it is possible to assess the parameters of the
compartmental model in the presence of uncertainty. Thus,
the adjustment of the time series of data considers possible
variations caused by external factors, such as underreporting
of infected and dead individuals. Figure 3 shows the Pareto
curve obtained for the robust inverse problem, calculated
by the MOSFS method, using the Effective Mean approach

Table 1: Results of the deterministic inverse problem obtained in 20 executions of the SFS method, with tf = 95 days.

β day−1
� �

γ day−1
� �

I0 −ð Þ ρ −ð Þ F −ð Þ

SFS
Best 3:686 × 10−1 7:5125 × 10−2 2:7807 × 10−3 3:0866 × 10−2 0:8249

Standard deviation 1:545 × 10−8 1:7875 × 10−8 1:2128 × 10−7 2:3232 × 10−8 1:9897 × 10−9

GA
Best 3:685 × 10−1 7:5222 × 10−2 2:7901 × 10−3 3:0898 × 10−2 0:8251

Standard deviation 2:446 × 10−7 2:7555 × 10−7 2:1433 × 10−7 1:2987 × 10−8 2:7434 × 10−7

DE
Best 3:686 × 10−1 7:5133 × 10−2 2:7811 × 10−3 3:0877 × 10−2 0:8250

Standard deviation 1:355 × 10−8 6:8876 × 10−8 7:8887 × 10−7 4:2879 × 10−7 8:7445 × 10−8

FA
Best 3:685 × 10−1 7:5123 × 10−2 2:7812 × 10−3 3:0862 × 10−2 0:8249

Standard deviation 5:566 × 10−8 3:8577 × 10−8 5:1764 × 10−8 6:2766 × 10−7 3:4445 × 10−9
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Figure 1: Profiles obtained by solving the inverse problem of Equation (15). In the case of the classes of infected and dead individuals, the data
used for the adjustment are also shown.
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with H = 50 random samples, noise parameter varying in the
range 0 ≤ δ ≤ 0:1, and the same parameters adopted in the
previous problem.

In order to compare the obtained results by using the
MOSFS (population size equals to 25 and maximum number
of iterations equals to 250), three evolutionary multiobjective
optimization algorithms are considered: Nondominated
Sorting Genetic Algorithm (NSGA-II) [2], Multiobjective
Optimization Differential Evolution algorithm (MODE)
[13], and Multiobjective Optimization Firefly Algorithm

(MOFA) [9]. For NSGA-II, we set the population size equals
to 25, maximum number of iterations equals to 250, cross-
over probability equals to 0.8, and mutation probability
equals to 0.01. For MODE, we adopt population size equals
to 25, maximum number of iterations equals to 250, cross-
over probability equals to 0.9, and perturbation rate equals
to 0.9. For MOFA, the population size is equal to 25, maxi-
mum number of generations equals to 250, and maximum
attractiveness value and absorption coefficient both equal to
0.9. The stopping criterion used is the maximum number of
iterations. The Effective Mean approach runs with H = 50
random samples and noise parameter varying in the range
0 ≤ δ ≤ 0:1. Figure 3 shows the Pareto curve obtained for
the robust inverse problem considering different multiobjec-
tive optimization strategies.

The analysis of Figure 3 shows that, as the noise parame-
ter δ increases, the value of the objective F also increases. Ini-
tially, note that the nominal solution is equivalent to the
point on the Pareto curve that δ = 0 (see Table 1). Increasing
F means that the associated fitted curve departs from the
actual data as δ increases. Such displacement is caused by
noise in the design variables, which can be understood as
the existing uncertainties in the real data. In addition, in this
figure, we can observe a similar behavior for all algorithms.
Thus, the proposed multiobjective strategy was able to obtain
the Pareto curve when compared with other algorithms.
Table 2 presents some highlighted points of the Pareto curve
(points A, B, and C), as shown in Figure 3.

0.75
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Figure 2: Sensitivity analysis of (a) β, (b) γ, (c) I0, and (d) ρ in relation to the value of the objective function.
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Figure 3: Pareto curve of the robust inverse problem.
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Figure 4 shows the nonnormalized profiles correspond-
ing to the parameters of points A, B, and C, as shown in
Table 2. Each of these three points presents a different com-
promise in relation to the objectives of the robust inverse
problem. Point A, represented by a circle, presents an
extreme compromise in relation to F, that is, it does not pri-
oritize robustness. On the other hand, point C, represented
by a diamond, has an extreme compromise to robustness.
In turn, point B, represented by a triangle, presents an inter-
mediate compromise between both objectives. Figure 4 also
shows the profile which is equivalent to the nominal inverse
problem solution ðδ = 0Þ, represented by the solid line.

Especially in relation to the curve of infected people as a
function of time (Figure 4(b)), note that the solution of the

robust inverse problem provides profiles which are shifted
in relation to the result corresponding to the nominal case.
Such displacements tend to become more pronounced when
the required level of robustness increases. Thus, the profiles
of the susceptible, dead, and recovered compartments are
also shifted, in order to maintain NðtÞ = SðtÞ + IðtÞ +DðtÞ
+ RðtÞ constant.

7. Conclusions

In this work, we proposed and solved two inverse problems
(nominal and robust) to simulate the dynamic behavior of
COVID-19 considering real data from China. Stochastic
Fractal Search algorithm was employed to solve the nominal

Table 2: Some points of the robust inverse problem obtained with the MOSFS method. Points A, B, and C are highlighted in Figure 3.

Point δ β day−1
� �

γ day−1
� �

I0 −ð Þ ρ −ð Þ F −ð Þ
A 9:8432 × 10−4 3:7746 × 10−1 5:9720 × 10−2 2:8831 × 10−3 3:2556 × 10−2 1:3739
B 9:4248 × 10−2 3:9105 × 10−1 4:5508 × 10−2 2:9617 × 10−3 3:6130 × 10−2 4:0218
C 5:2114 × 10−2 3:8435 × 10−1 4:9799 × 10−2 3:0543 × 10−3 3:3932 × 10−2 2:3307
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Figure 4: Profiles obtained by solving the robust inverse problem with different values for δ. Points A, B, and C denote the profiles
corresponding to the parameters listed in Table 2. The profile represented by the solid line corresponds to the nominal case, whose
parameters are shown in Table 1.

7Computational and Mathematical Methods in Medicine



inverse problem.We also proposed an extension of SFS in the
multiobjective context to solve the robust inverse problem. In
order to assess uncertainties, the mean effective concept was
considered. The parameters of the compartmental SIDR
model were determined and analyzed considering both
nominal and robust context. In order to analyze the influ-
ence of uncertainties, a multiobjective optimization problem
was formulated and solved. This problem considers the min-
imization of deviations associated with the experimental
data and calculated values considering the proposed model
and the maximization of the robustness parameter. In gen-
eral, the solution of the proposed multiobjective problem
demonstrates that the increase in the noise parameter
implies an increase in the value of the objective function.
The use of the proposed robust approach to estimate the
compartmental model parameters demonstrates the impor-
tance of incorporating a methodology to assess the robust-
ness during the solution of the proposed inverse problem.
Finally, the use of a mathematical model associated with
optimization tools may contribute in the future to the study
and development of strategies to understand the dynamic
behavior of COVID-19.

Data Availability

The data used to support the findings of this study are avail-
able from the Worldometer’s COVID-19 Data (https://www
.worldometers.info/coronavirus/country/china/).
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