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In recent years, the research on electroencephalography (EEG) has focused on the feature extraction of EEG signals. The
development of convenient and simple EEG acquisition devices has produced a variety of EEG signal sources and the diversity
of the EEG data. Thus, the adaptability of EEG classification methods has become significant. This study proposed a deep
network model for autonomous learning and classification of EEG signals, which could self-adaptively classify EEG signals
with different sampling frequencies and lengths. The artificial design feature extraction methods could not obtain stable
classification results when analyzing EEG data with different sampling frequencies. However, the proposed depth network
model showed considerably better universality and classification accuracy, particularly for EEG signals with short length, which
was validated by two datasets.

1. Introduction

Epilepsy is characterized by recurrent seizures caused by the
abnormal discharge of brain neurons, which often bring
physical and psychological harm to patients. Approximately
50 million epilepsy patients have been documented globally,
and epilepsy has become one of the most common nervous
system diseases endangering human health worldwide. Brain
wave is a synaptic postsynaptic potential generated by
numerous neurons when the brain is active. It can record
brain wave changes during brain activity and reflect the
electrophysiological activities of the cerebral cortex or scalp
surface of brain neurons [1]. Accordingly, brain wave analy-
sis has become an effective and important method for the
study of epilepsy.

Since the 1980s, scholars have been conducting research
on epilepsy based on electroencephalography (EEG), among
which the identification of epilepsy by analyzing EEG data is
one of the important research contents [2]. With the devel-
opment of computer science and technology, numerous

studies have focused on the classification of features
extracted from EEG signals by using a computer classifica-
tion model [3, 4]. Such a research often follows the following
steps: EEG data acquisition and prepossessing, feature
extraction, classification model training, and data prediction.
Feature extraction from EEG data is one of the most
important steps. Numerous methods are used to extract
EEG features, including time-domain, frequency-domain,
and time-frequency analyses and chaotic features [5–7].
Moreover, some studies have combined or redesigned these
methods to obtain new features, thereby eventually achiev-
ing good classification results [8–10].

With the development of science and technology, the
accuracy of medical EEG acquisition equipment has been
improved. In addition, some portable EEG acquisition
equipment has been developed. For example, emotive has
been widely used in brain-computer interface [11–13]
because it is lightweight and inexpensive and has similar
performance to medical equipment. However, although a
variety of medical devices or portable EEG acquisition
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devices produce numerous EEG data that can be used for
epilepsy research, the different data sources result in a lack
of uniform data formats, such as different sampling frequen-
cies, different signal lengths, and different sampling chan-
nels. The inconsistency of data specifications often affects
the features obtained by traditional feature extraction
methods. This situation raises a question on how to improve
the ability of classification methods to adapt to new data.
Hence, the universality of classification methods should be
improved, while ensuring the enhanced detection and recog-
nition of EEG data.

At present, in-depth learning technology is a popular
research area. Given this technology’s autonomous learning
characteristics from data, it can directly skip the manual
design features and extraction process in the traditional
methods, avoid the difficulties of manual design features in
traditional methods, and manually adjust numerous param-
eters. In-depth learning technology can accomplish numer-
ous tasks that are difficult to complete in the traditional
methods [14]. Some researchers have studied EEG via a deep
network [15]. Tabar and Halici [16] converted one-
dimensional (1D) brain waves into two-dimensional (2D)
image data through short-time Fourier transform and
accessed the deep network for classification. Bashivan et al.
[17] converted the frequency bands extracted from brain
waves into topographical maps (2D images) through spectral
power and classified the images into depth networks. Hos-
seini et al. [18] used an in-depth learning method based on
a cloud platform to propose a solution for epilepsy preven-
tion and control. Xun et al. [19] and Masci et al. [20] pro-
posed a coding method for epileptic EEG signals based on
the deep network. However, the majority of these studies
have focused on regular data, such as the same frequency
and same length of the sample data. In the feature design
aspect, these studies have converted 1D EEG data into 2D
image data in advance and classified the features via the deep
network. The current study constructed a classification
model based on the deep convolution network to automati-
cally learn the characteristics of EEG and adapt to the EEG
data of different sampling frequencies and lengths. Our
method (including network model and training method)
can considerably identify different forms of EEG data.

The remainder of this paper is organized as follows. Sec-
tion 2 first simulates the EEG data with different frequencies.
Thereafter, we classify the data with existing manual feature
design classification methods and indicate their disadvan-
tages compared with our model. Section 3 provides details
of our proposed network model, training methods, and data
processing methods. Section 4 compares our model with
existing methods and discusses the advantages of our model.
Section 5 presents the summary.

2. Experimental Result

This section first describes two open datasets and classifies
and compares the EEG data at different sampling frequen-
cies using an artificial design feature method and deep net-
work autonomous feature learning method.

2.1. Data Description and Data Synthesis

2.1.1. Dataset 1. The first dataset comes from the dataset
published by Andrzejak et al. [21]. This dataset consists of
five subsets (represented as A to E). Each subset contains
100 EEG signals of 23.6 sec in length, and the sampling fre-
quency is 173.6Hz. The data include records of healthy and
epileptic patients. Among them, there were two subsets of
EEG recorded during epileptic seizures, which had 200 sam-
ples, and one set of EEG records in the seizure period had
100 samples. Figure 1 shows two types of signals in epilepsy
patients during nonepilepsy and epilepsy. They are classified
as F and S, respectively. Among them, 200 samples are clas-
sified as F and 100 samples are classified as S. Class F is
labeled as a nonepileptic seizure EEG signal, while class S
is a seizure signal.

2.1.2. Dataset 2. The second dataset was collected by Boston
Children’s Hospital [22]. EEG signals are obtained by mea-
suring electrical activity in the brain by connecting multiple
electrodes to a patient’s scalp. Data length is approximately
from half an hour to one hour, including epileptic seizure
and nonepileptic data. The sampling frequency of each data
sample is 256Hz, which contains 23–25 channels, and the
sample length is approximately 921600. The dataset has 24
subjects. The first 10 subjects are selected for experiment.
Each channel in the sample has a name; for example, the first
channel was named FP1-F7 (see Figure 2). We selected one
of the 23 channels for our study. When epilepsy occurs,
the EEG signal will fluctuate substantially, resulting in an
increase in the signal variance. We make channel selection
based on variance [23]. The method is as follows. We calcu-
late the variance of each channel in each sample, with each
sample having a channel with the largest variance, and
derive the statistics on these channels thereafter with the
largest variance in the sample. The “FT9-FT10” channel
has the highest number of occurrences, thereby leading us
to choose this channel. A total of 200 EEG samples of epilep-
tic seizures and 200 nonepileptic seizures were randomly
intercepted on the FT9-FT10 channel. The length of each
signal sample was 4096 (or 16 sec). Class F remains to be
labeled as a nonepileptic seizure EEG signal in dataset 2,
while class S is a seizure signal.

The signal is a cortical signal, the signal on the left side of
the black line is no epilepsy, and the signal on the right side
of the black line is epilepsy, as shown in Figure 2.

The two datasets are the most widely used in the current
research on epilepsy data classification and detection. Given
that the sampling frequency of signals in the two datasets is
fixed, we use the signal processing library in SciPy [24] to
obtain additional EEG data with different sampling frequen-
cies, particularly to resample the existing data and obtain a
new sampling frequency dataset thereafter. For example,
the sampling frequency of the original dataset 1 is
173.61Hz, and the original dataset is resampled at 163.61,
153.61, 143.61, 133.61, 123.61, 113.61, and 103.61Hz
(decreasing at 10Hz). In this example, 1-0 represents the
original 173.61Hz data and 1-1 represents the 163.61Hz
data. By analogy, the resampled new dataset is shown in
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Table 1. Table 2 shows that for the resampling of data 2, the
sampling frequency of the original dataset 2 is 256Hz. In
this example, the original dataset 2 is resampled at 236,
216, 196, 176, 156, 136, and 116Hz (decreasing at 20Hz).
Hence, new datasets can be obtained, in which 2-0 still rep-
resents data of the original dataset 2.

2.2. Classification Results Based on the Artificial Design
Feature Extraction Method. Features or design new features
should be selected for classification based on the artificial
design feature extraction method. The current study selects
the feature extraction methods [25–27], which have a good
classification effect in the existing research, including
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Figure 1: Signal samples of categories F and S in dataset 1.

Figure 2: Signal samples of dataset 2.
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integral absolute value, root mean square, waveform length,
sample entropy, Lee’s index, Hurst index, DFA index, and
multifractal feature. After feature extraction, several com-
mon classifiers are selected from the scikit-learn library
[28], including k-nearest neighbor (k-NN), linear classifier
(LDA), support vector machine (SVM), decision tree (DT),
multilayer perceptron (MLP), and Gaussian naive Bayes
(GNB). These classification algorithms adopt self-contained
parameters in the library. Tables 3 and 4 use the aforemen-
tioned features and classifiers to classify datasets 1-0 and 2-
0, respectively. The table shows the results of the 3-, 5-,
and 10-fold cross-validations. The last column of AVG is
the average classification accuracy of each classifier. SVM,
which is the commonly used classifier, achieves good classi-
fication accuracy and validates the effectiveness of the fea-
ture extraction methods.

Tables 5 and 6 show the accuracy of the 5-fold classifica-
tion of datasets by various classifiers.

Table 5 shows that under different sampling frequencies,
traditional classification methods based on artificial design
feature have different classification results in different clas-

sifiers. For example, the classification results of SVM
should be optimized to GNB. When sampling frequency
decreases, classification accuracy fluctuates. For example,
the classification accuracy of k-NN decreases, and those
of LDA and SVM change substantially. Table 6 shows that
the average accuracy of the last column is higher than that
of Table 5. This result indicates that the classification
method based on artificial design features can achieve
superior classification results in datasets 2-0 to 2-7. How-
ever, the classification accuracy of data with different
sampling frequencies continues to fluctuate significantly.
Figure 3 shows the average classification accuracy of two
datasets based on artificial design features at different sam-
pling frequencies. The classification results of datasets 1-0
to 1-7 are not ideal, while datasets 2-0 to 2-7 have better
classification results. These synthesizations show that the
method based on artificial design features depends on
the selection of classifiers. Moreover, this method’s charac-
teristics are sensitive to the data of different sampling
frequencies, which substantially reduces the applicability
of the method.

Table 1: List of datasets obtained after resampling for dataset 1.

Dataset
name

Sample frequency
(Hz)

Sample
length

Time length
(s)

1-0 173.61 4096 23.6

1-1 163.61 3861 23.6

1-2 153.61 3625 23.6

1-3 143.61 3153 23.6

1-4 133.61 3389 23.6

1-5 123.61 2917 23.6

1-6 113.61 2681 23.6

1-7 103.61 2445 23.6

Table 2: List of datasets after resampling for dataset 2.

Dataset
name

Sample frequency
(Hz)

Sample
length

Time length
(s)

2-0 256 4096 16

2-1 236 3776 16

2-2 216 3616 16

2-3 196 3136 16

2-4 176 2816 16

2-5 156 2496 16

2-6 136 2176 16

2-7 116 1856 16

Table 3: Classification accuracy of various classifiers on 1-0 using
the artificial design feature method.

k-fold k-NN LDA SVM DT MLP GNB AVG

3 0.9066 0.8703 0.9265 0.8264 0.7894 0.6966 0.836

5 0.92 0.9067 0.9533 0.83 0.8133 0.7367 0.86

10 0.9333 0.91 0.9633 0.8333 0.8567 0.7467 0.8739

Table 4: Classification accuracy of various classifiers on raw data 2
using the artificial design feature method.

k-fold k-NN LDA SVM DT MLP GNB AVG

3 0.975 0.9776 0.98 0.95 0.9726 0.9377 0.9655

5 0. 9725 0.9775 0. 9775 0. 9475 0. 98 0.96 0.9692

10 0.975 0.9775 0.975 0.955 0.98 0.955 0.9696

Table 5: Classification accuracy of the 5-fold classifier for datasets
1-0 to 1-7.

Dataset k-NN LAD SVM DT MLP GNB AVG

1-0 0.92 0. 9067 0.9533 0.83 0.8133 0.7367 0.8600

1-1 0.93 0.9300 0.95 0.8067 0.84 0.7367 0.8656

1-2 0.9367 0.94 0.9567 0.8233 0.8167 0.72 0.8656

1-3 0.9233 0.91 0.9367 0.78 0.81 0.6833 0.8406

1-4 0.91 0.9033 0.9567 0.81 0.7667 0.68 0.8378

1-5 0.8833 0.8733 0.91 0.8033 0.77 0.6833 0.8206

1-6 0.8667 0.8767 0.89 0.77 0.8033 0.6767 0.8139

1-7 0.8833 0.9233 0.9267 0.8 0.78 0.6867 0.8333

Table 6: Classification accuracy of the 5-fold classifier for datasets
2-0 to 2-7.

Dataset k-NN LAD SVM DT MLP GNB AVG

2-0 0.9725 0.9775 0.9775 0.9475 0.98 0.96 0.9692

2-1 0.9275 0.965 0.975 0.8825 0.9575 0.845 0.9254

2-2 0.9425 0.9675 0.975 0.9025 0.97 0.88 0.9396

2-3 0.9325 0.955 0.955 0.86 0.9475 0.8175 0.9112

2-4 0.9225 0.955 0.95 0.88 0.94 0.8175 0.9108

2-5 0.91 0.9575 0.95 0.7975 0.9225 0.75 0.8812

2-6 0.93 0.9575 0.965 0.7975 0.9425 0.8425 0.9058

2-7 0.925 0.9275 0.96 0.8625 0.92 0.855 0.9083
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2.3. Classification Results Based on the Convolutional Neural
Network. This section presents the classification results of
the self-learning feature method based on the convolutional
neural network (CNN) for the preceding datasets. Tables 7
and 8 categorize the two datasets at different sampling fre-
quencies. A comparison of Tables 5 and 6 indicates that
our model has more stable classification results and better
classification accuracy.

The results of training and testing for the same sampling
frequency data are listed in Tables 1 to 6. Whether or not
these methods are effective in the case of mixing various fre-
quency data needs further analysis. Moreover, whether or
not a classification model can train the datasets of existing
sampling frequencies and effectively predict the data of
new sampling frequencies should be further discussed. For
example, the model is trained with the 173.61Hz and
163.61Hz data to predict the type of the 153.61Hz data.
Given these problems, the third part of this paper explains

the solutions and further discusses and analyzes these prob-
lems in the fourth part.

3. Methodology

This section first describes the model structure based on
CNN and the training methods for different length sample
data.

3.1. Classification Model Based on CNN. Numerous methods
of feature extraction are based on artificial design. However,
when the data changes, the classification effect based on the
general feature extraction method is not stable. In this study,
the classification model based on CNN can independently
learn and classify data features, including the two steps of
feature extraction and classification (see Figure 4). It
attempts to obtain good and stable classification results
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Figure 3: Generation of new datasets for the two original datasets and the average classification results of 3-, 5-, and 10-fold.

Table 7: Model categorization datasets generated by dataset 1.

k-fold 1-0 1-1 1-2 1-3 1-4 1-5 1-6 1-7

3 0.9832 0.9663 0.9630 0.9764 0.9697 0.9697 0.9596 0.9562

5 0.9800 0.9667 0.9667 0.9500 0.9733 0.9700 0.9700 0.9833

10 0.9700 0.9833 0.9800 0.9633 0.9867 0.9800 0.9700 0.9800

Table 8: Model categorization datasets generated by dataset 2.

k-fold 2-0 2-1 2-2 2-3 2-4 2-5 2-6 2-7

3 0.9318 0.9192 0.9040 0.9091 0.8813 0.8990 0.9015 0.9192

5 0.9325 0.9475 0.9200 0.9150 0.9275 0.9400 0.9300 0.9375

10 0.9350 0.9450 0.9100 0.9275 0.9325 0.9325 0.9250 0.9525
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when facing different sampling frequencies or different
lengths of the sample data.

The left side is a classification process based on artificial
design features, which requires two steps. The right side is to
input data into the network model and output the classifica-
tion results directly, as shown in Figure 4.

CNN is a feedforward neural network that improves the
classification ability of patterns by posterior probability. The
network mainly includes convolutional, pooling, fully con-
nected, and softmax layers. The convolution layer convo-
lutes the input signal data through different convolution
kernels to obtain the feature map (i.e., number of convolu-
tion kernels equals the number of feature maps). The pool-
ing layer is the process of downsampling the feature map
obtained from the convolution operation of the upper layer.
The network often increases the network depth by iterating
the convolutional and pooling layers. Meanwhile, the fully
connected layer connects all feature maps from the upper
layer to the hidden layer of a common neural network and
eventually outputs the classification results through the soft-
max layer. This study proposes a multilayer network with
cubic iterative convolutional and pooling layers, fully
connected layer, and softmax layer to classify EEG data
(hereinafter referred to as CNN-E). The model classifies
the one-dimensional EEG data of a single channel and
makes the input sample data X. The convolutional layer is
equivalent to the feature extractor. This layer uses multiple
convolution kernels to convolute x and obtains several fea-
ture maps that can keep the main components of the input
signal. The convolution calculation formula is as follows:

f kn = gk 〠
∀m

f k−1m ∗wk
m,n

� �
+ bkn

 !
, ð1Þ

where f kn represents the feature map of layer k, f k−1m is the
feature map of the upper layer, wk

m,n represents the convolu-
tion kernels of the mth feature map of layer k − 1 to the nth
feature map of layer k, bkn is the neuron bias, and gkð⋅Þ is the
activation function. When k = 1, that is, the first convolution

operation on sample data, f k−1m = x and M = 1, because only
one feature map in the upper layer is x and N is the number
of convolution kernels. Given that the input data X is one-
dimensional, the feature map f kn output by convolution
operation is also one-dimensional. In this model, the pooling
operation divides f kn with length l into J regions of equal
length without overlap, and each region has i/j elements
and extracts the maximum value from each region. Hence,
the size of the feature map can be reduced to a downsam-
pling. In this way, the strongest features in each region can
be selected, and the ability to distinguish the overall features
of the model can be enhanced. After the pooling operation,
f kn changes from the original length l to j, where the maxi-
mum pooling operation is pkð f k−1n , iÞ, and i = l/j is the reduc-
tion ratio of the feature map. Thereafter, the pooling
operation is as follows:

skn = pk f k−1n , i
� �

: ð2Þ

Each neuron in the fully connected layer connects to all
neurons in the upper layer f k−1n . The output of all neurons in
the upper layer f k−1n is mapped to a dimension array V by
reshape operation, and V is input to the fully connected
layer. Thereafter, the fully connected layer can be expressed
as follows:

c = gc v ∗wc + bcð Þ, ð3Þ

where wc and bc are the weights and biases, respectively, of
the fully connected layer and c is the output of the fully con-
nected layer. Lastly, the final result is output via softmax,
and the operation is as follows:

y = softmax cð Þ: ð4Þ

The classification result y is obtained.
Assuming that there are N training samples, xðiÞ repre-

sents a sample labeled lðiÞ. Sample xðiÞ is calculated by the
model to obtain yðiÞ. Thereafter, cross-entropy is used as
the loss function of the model. The formula is as follows:

Loss xð Þ = −〠
i

l ið Þ log y ið Þ
� �

: ð5Þ

The loss function of the network model is optimized by
the SGD [26] optimizer.

3.2. Model Training. Section 3.1 explained the basic structure
and principle of the CNN-E model. This section further
introduces the parameter setting and model training of the
model.

Figure 5 shows the CNN-E frame diagram of the neural
network model used in this research. Given that a sample
signal is stored in an array, each small rectangle in the graph
represents the elements of the signal, and numerous small
rectangles constitute a sample signal. The length of the input
sample signal is 4096. After the calculation of three

Class scores

Feature
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Raw input

Features
vector

Trainable
classifier

Neural
network

Figure 4: Process diagram of the artificial design features and
network learning model.
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convolution layers, the number of convolution kernels in the
first, second, and third convolution calculations are 16, 32,
and 64, respectively. After each downsampling, the signal
length changed to half of the original length, and the number
of neurons in the fully connected layer was 64. In the first

convolution operation, the sigmoid function is used as the
activation function, while the ReLU function is used as the
other activation functions.

After determining the model, we input training samples
to train the model. We know that the length of each sample
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Figure 5: CNN-E framework diagram of the neural network model.
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Figure 8: Classification of the F and S features in dataset 1 in 1-0 and 1-7.
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in datasets 1-0 and 2-0 is 4096, and the length of the new fre-
quency data obtained by resampling changes. The resam-
pling method is operated using the Fourier resampling
method in the signal processing toolkit of SciPy. In
Figure 6(a), one sample in dataset 1-0 and four new samples
(i.e., 1-1, 1-2, 1-3, and 1-4) generated by the sample at differ-
ent sampling frequencies are presented. With the decrease in
sampling frequency, the sample length becomes consider-
ably short. However, the length of input data acceptable to
the model is fixed. This study used the complementation
method to cut a certain length of data from the head of the
sample and supplement it to the tail. Thus, the length of
the sample data reaches 4096. Figure 6(b) shows that the
data in the red rectangle is replicated and supplemented to
the blue rectangle. In this way, the model can be adapted
to different length data. If the sample data is above 4096,
then the 4096-length data is input into the model.

To enhance the universality of the model, there is no
data preprocessing operation in data training. For example,
the majority of the data in dataset 1 range from −500 to
500, and a small part of the data may be extended to
−2000 to 2000 owing to abnormal or noise fluctuations.

Thereafter, the sigmoid function used in the first convolu-
tion can reduce the impact of these abnormal data on model
training.

Figure 6(a) is the new data generated by using different
sampling frequencies for the original data, and Figure 6(b)
is the sample data after completing the data in Figure 6(a).

4. Discussion

This section compares the classification results of the artifi-
cial design feature method and CNN-E model and different
sampling frequencies.

4.1. Comparative and Characteristic Analyses of the
Classification Results with the Same Frequency. Data were
trained and classified at the same sampling frequency.
Figure 7 shows the classification accuracy of the two
methods for two datasets. Among them, A represents the
average classification result of the classification method
based on artificial design features. B is the classification
result of the current CNN-E model. In datasets 1-0 to 1-7,
we find that the classification accuracy of the CNN-E model
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Figure 9: Spectrum of samples at different sampling frequencies.
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is above 0.95, which has a good classification effect. In data-
sets 2-0 to 2-7, the classification accuracy of only 2-0 and 2-2
is lower than that of the classification method based on arti-
ficial design features. The majority of the others are higher
than those of the classification method based on artificial
design features. Moreover, we find that for the two datasets,
the classification accuracy tends to decline with a decreasing
frequency of adoption. CNN-E continues to maintain rela-
tively stable classification accuracy.

A is a classification method based on artificial design fea-
tures, and B is a classification method based on CNN-E, as
shown in Figure 7.

Figure 8 shows the distribution of the F and S data fea-
tures in datasets 1-0 and 1-7. Under different sampling fre-
quencies, the calculated distribution of features is relatively
different. For example, the two types of features are easy to
distinguish in f1, the two types of features in f6 and f11 are
nearly unchanged, and the feature f5 becomes difficult to
distinguish. These aspects reflect that the artificial design
feature method is considerably dependent on the actual data
signal. When the sampling frequency changes, the feature
distribution also changes. This situation is also the reason
why the classification accuracy decreases with a decrease in
sampling frequency in the preceding experiments. From
the classification results of datasets 2-0 to 2-7 in Figure 3,
the artificial design feature method remains effective. First,
the majority of the features (12) are used. Second, Figure 7
shows that these features change regularly at different sam-
pling frequencies. Lastly, these features are selected from
the existing features with good experimental results. How-
ever, the performance of these features in datasets 1-0 to 1-
7 is poor, which also shows that the classification methods
based on artificial design feature extraction have consider-
able differences in the performance of different datasets.
However, the features obtained by CNN-E have profound
meanings and local features. Although these deep features
are difficult to visualize, they have good adaptability, as
shown in Figure 7.

In the previous section, the classification method based
on artificial design feature design and the classification

results of CNN-E at the same sampling frequency are ana-
lyzed. This section uses the classification results of different
sampling frequency data to show the universality of the
CNN-E model. Figure 9 shows that some characteristic dis-
tributions of the sample data will change at different sam-
pling frequencies. Given that the data resampling method
is based on the Fourier resampling method, the characteris-
tic changes in the frequency domain are relatively small.
Figure 9 shows the spectrum of samples at different sam-
pling frequencies. Figure 9(a) lists the spectrum obtained
by applying different sampling frequencies to the same sam-
ple. This series of spectrum is nearly identical in the blue rect-
angular frame. To ensure that the model can be adapted to
data of different lengths, the length of input samples is supple-
mented by the complementary method (see Figure 6). The
spectrum also changes after completing the sample data of
different sampling frequencies. For example, Figure 9(b)
shows that with the change of sampling frequency, the spec-
trum of the new sample is increasingly different from that of
the original sample.

Figure 9(a) is listed as the spectrum of samples at differ-
ent sampling frequencies, and Figure 9(b) is listed as the
spectrum of samples after the complementation method.

1–3

k-NN

2-5

2-6

2-7

2-0

2-1

2-2

2-3

2-4

1–2

1–1

1–0

1–7

1–6

1–5

1–4

0.6 0.5

0.6

0.7

0.8

0.9

1

0.7

0.8

0.9

1

LAD
SVM
CNN-E

Figure 10: Tests of the classification accuracy of the current frequency data using other sampling frequency trainings.

Table 9: Changes of dataset 1-0 divided by different lengths of 1 to
5 seconds.

Dataset name Length of time (s) Sample length Sample size

1-0 1 174 6900

1-0 2 348 3300

1-0 3 521 2100

1-0 4 695 1500

1-0 5 868 1200

1-1 1 163 6900

1-1 2 328 3300

1-1 3 491 2100

1-1 4 655 1500

1-1 5 818 1200
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Figure 10 shows that the classification results of the
CNN-E model for different frequency sampled data are bet-
ter than those of the traditional classification methods based
on artificial design features (e.g., k-NN, LAD, and SVM).
Although there are considerable differences in the spectral
characteristics of samples when the input sample signal is
supplemented, the CNN-E model can extract deep features
and reduce the feature dimension of the samples. Hence,
the model achieves a good classification effect.

4.2. Nonequal Length Sample Testing. In practical applica-
tion, the EEG classification model faces different sampling
frequency data and can also process different lengths of sig-
nal data. However, numerous artificial design features have
constraints on data length when extracting features. For
example, when data length is only one second or the sam-
pling frequency is not high, meaningful time-domain, fre-
quency-domain, or nondynamic features cannot be
extracted. Previous classification studies are mostly based
on time windows. All samples are divided into new sample
sets according to a certain length of time windows, and
training and test sets are divided thereafter for training and
testing, respectively, the model. Given that the proposed
model can be adapted to different lengths of the sample data,
we use the experiments in the previous section as bases in

utilizing different lengths of time windows to segment the
sample data without overlap. The window length is 1 sec, 2
seconds to the signal length. If the sample length of dataset
1-0 is 23.6 sec, then its maximum window length is 23 sec.
The sample length of dataset 2 is 16 sec, and its maximum
window length is 16 sec. Table 9 shows that datasets 1-0
and 1-1 are divided into different time lengths of 1 to 5 sec,
respectively, and the changes of the sample length and
sample number are obtained.

Figure 11 shows the classification accuracy of different
datasets divided by different time lengths based on the
CNN-E classification model. From the graph, the model
proposed in this research achieves a good classification effect
(i.e., amount of data in 1 sec can obtain a high classification
accuracy) and has high timeliness on the premise of ensur-
ing high accuracy.

5. Conclusion

In real life, there are diverse types of EEG signals. The cur-
rent research on EEG classification has focused on classifica-
tion accuracy, but the universality of the methods has
seldom been discussed. To solve the problem, this study con-
structed a CNN-E classification model based on CNN. The
model could be applied to classify EEG signals with different
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Figure 11: Secondary classification accuracy of samples based on the CNN classification model.
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sampling frequencies and could be adapted to signals of
different lengths. This study also analyzed the possible prob-
lems in the classification of EEG signals with different sam-
pling frequencies by the traditional feature extraction-based
classification method. Our results showed that the tradi-
tional method has relied heavily on the design of the feature
extraction method, and there were difficulties in feature
design and selection. Moreover, the classification accuracy
fluctuated substantially for EEG data with different sampling
frequencies. These feature extraction methods had length
constraints when processing samples with short data length.
However, the CNN-E model could independently learn the
characteristics of the sample data and could be adapted to
all types of data length because of the use of effective data
completion methods. Our results showed that the CNN-E
model performed well in the classification of EEG data at
the same sampling frequency, at different sampling frequen-
cies, and at different lengths.

Although we only used two different datasets to test the
robustness of the CNN-E model, we would use additional
datasets to validate the reliability of this model in the future.
Moreover, the performance of the CNN-E model, particu-
larly the visual expression of the features learned by the
CNN network, needs further improvement.
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