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Coronavirus disease 2019 (COVID-19) arising from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted
in a global pandemic since its first report in December 2019. So far, SARS-CoV-2 nucleic acid detection has been deemed as the
golden standard of COVID-19 diagnosis. However, this detection method often leads to false negatives, thus triggering missed
COVID-19 diagnosis. Therefore, it is urgent to find new biomarkers to increase the accuracy of COVID-19 diagnosis. To
explore new biomarkers of COVID-19 in this study, expression profiles were firstly accessed from the GEO database. On this
basis, 500 feature genes were screened by the minimum-redundancy maximum-relevancy (mRMR) feature selection method.
Afterwards, the incremental feature selection (IFS) method was used to choose a classifier with the best performance from
different feature gene-based support vector machine (SVM) classifiers. The corresponding 66 feature genes were set as the
optimal feature genes. Lastly, the optimal feature genes were subjected to GO functional enrichment analysis, principal
component analysis (PCA), and protein-protein interaction (PPI) network analysis. All in all, it was posited that the 66 feature
genes could effectively classify positive and negative COVID-19 and work as new biomarkers of the disease.

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is a positive-sense single-stranded RNA virus
(+ssRNA virus) that triggered the global coronavirus disease
2019 (COVID-19) epidemic [1]. Most α and β coronaviruses
can cause mild flu-like symptoms, while SARS-CoV-2 infec-
tion can lead to severe acute respiratory syndrome [2].

COVID-19 diagnosis is a vital step for antiepidemic
affairs. To date, several commercialized SARS-CoV-2 detec-
tion kits have acquired the Emergency Use Authorization
(EUA) of the Food and Drug Administration (FDA), such
as qRT-PCR assay (detection of specific sequences of the
virus), antibody assay (detection of serum antiviral antibod-
ies IgG and IgM), and lateral flow assay (detection of viral
antigens). qRT-PCR assay is well-accepted as the most reli-
able method and serves as the golden standard for
COVID-19 diagnosis. However, the assay is not perfect. Sen-
sitivity of qRT-PCR often relies on the virus load in samples,

thus easily causing false negative results. For instance, inap-
propriate preservation of samples causes virus RNA degra-
dation; inappropriate sample collection results in
insufficient virus RNA; or the virus load is insufficient in
samples of patients in the early stage of SARS-CoV-2 infec-
tion [1]. Therefore, it is urgent to come up with a novel
COVID-19 diagnostic method to increase specificity and
sensitivity. Due to various complex biological reactions
occurring in the patient’s infection site during SARS-CoV-
2 infection, it could be a novel idea for COVID-19 diagnosis
to detect several key genes in samples meanwhile combining
the expression of diversified genes.

Machine learning can predict unknown data based on
known data and has been widely applied in the life science
field [3]. Support vector machine (SVM), as a machine
learning method, determines the patient’s prognosis, drug
efficacy, and tumor classification based on a known gene
expression profile [4]. The basic principle of the algorithm
is to create the decision boundary from the known data
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and classify the unknown data based on the decision bound-
ary. In 2017, Xu et al. [5] established a 15-gene-based classi-
fier and effectively predicted postoperative occurrence of
colon cancer using the classifier. Altogether, SVM is a highly
efficient bioinformatics method for classification. In this
study, bioinformatics analysis was applied to mine main fea-
ture genes from expression profiles of COVID-19 positive
and negative samples. The expression profile genes were
ranked by feature importance via the minimum-
redundancy maximum-relevancy (mRMR) method. SVM
classifiers of different feature gene sets were constructed,
and 66 optimal feature genes were screened by the incre-
mental feature selection (IFS) method. Finally, principal
component analysis (PCA) and functional enrichment anal-
ysis were used to determine whether these feature genes
could be used as novel biomarkers of COVID-19.

2. Materials and Methods

2.1. Expression Profiles and Research Design. In the present
study, the expression profile (GSE152075) was downloaded
from the Gene Expression Omnibus (GEO) database
(https://www.ncbi.nlm.nih.gov/geo/). The expression data
was obtained through GPL18573 Illumina NextSeq 500
(Homo sapiens) platform sequencing, including mRNA
sequencing results of throat swab samples of 54 negative
and 430 positive COVID-19. In the expression matrix, genes
with average value < 1 and maximumvalue < 5 were deleted.
The other genes were standardized by using the edgeR pack-
age, and 16,032 genes were obtained [6] (Supplementary
Table 1). A bioinformatics analysis flow chart was designed
as follows in Figure 1.

2.2. Feature Gene Selection. Feature genes were ranked with
the mRMR method. mRMR acquires feature values by com-
puting max relevance and minimal redundancy [7]. Max rel-
evance met the following formula:

max D S, cð Þ,D = 1
Sj j 〠xi∈S

I xI ; cð Þ: ð1Þ

High redundancy may exist in the selected genes accord-
ing to the max relevance. Thus, removal of a feature would
not have much influence on the classification results. To fur-
ther screen relatively independent features, minimal redun-
dancy was included into the feature value algorithm. The
minimal redundancy met the following formula:

min R Sð Þ, R = 1
Sj j2 〠

xi ,xj∈S
I xi, xj
� �

: ð2Þ

In the above formulas (1) and (2), S is the feature set, x is
the feature, and c is the classification.

An algorithm which combined max relevance and mini-
mal redundancy was named mRMR and was defined as

max Φ D, Rð Þ, Φ =D − R: ð3Þ

The mRMR algorithm routine was downloaded from
website (http://home.penglab.com/proj/mRMR/). Feature
genes in the expression profiles were scored with the down-
loaded routine and ranked by the score.

2.3. Screening of Optimal Feature Genes. IFS was performed
to further select optimal feature genes from [8]. Feature set F
(F = ½ f1, f2, f3,⋯:,f N �, N ranged from 1 to 500) was first
constructed. Afterwards, the corresponding SVM classifier
for each subset was constructed based on F using python
package sklearn. SVM is an effective method for classifier
construction [4]. The specific method is to create a decision
boundary between two types in order to predict the type of
input samples. Decision boundary, or the hyperplane, is a
definition away from the nearest data sites (called support
vectors) in each class as much as possible. The specific algo-
rithm was shown as follows:

x1, y1ð Þ,⋯, xn, ynð Þ, xi ∈ R
d , y1 ∈ −1,+1ð Þ: ð4Þ

xi is the feature vector and yi is the class in the train set
(negative or positive). The optimal hyperplane was defined
as follows:

wxT + b = 0: ð5Þ

w is the weight vector, x is the input feature vector, and b
is the deviation. Both w and b met the following conditions:

wxTi + b≥+1, ⅈf yi = +1,
wT

xi
+ b≤−1, ⅈf yi = −1:

ð6Þ

w and b were determined by inputting feature vectors
and classes in the training set to classify the prediction set.
Due to sample imbalance, the python package imblearn
was used to amplify the number of small samples to the
same as that of large samples [9]. Different feature sets were
taken as the training set. Model training was undertaken to
construct a SVM classifier for each set. The performance of
the established classifiers was evaluated by leave-one-out
cross-validation (LOOCV) and presented by the Matthews
correlation coefficient (MCC). MCC is a Pearson correlation
coefficient of the actual value and the predicted value com-
puted by the confusion matrix method. The MCC value is
between -1 and +1. The MCC value close to +1 means accu-
rate prediction, close to 0 means no better than random pre-
diction, and close to -1 means disagreement between
prediction and actual observation [10]. A series of MCC
values corresponding to different feature sets were obtained
through IFS. The IFS curve was drawn with MCC value as
the y-axis and the feature set as the x-axis. The training set
with the highest MCC value in the IFS curve was chosen,
and genes in this set were set as the optimal feature genes.

2.4. PCA. PCA is mainly applied for exploratory spatial data
analysis and prediction model construction [11]. This
method can reduce the dimension of high-latitude data.
Simply, each data site was mapped to the latter principal
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components, and different levels of each data site were pre-
served as much as possible. In the present study, the first
and second principal components of optimal feature genes
were the R package FactoMineR [12]. Expression data of
high-latitude feature genes based on the two dimensional-
ities were mapped to a two-dimensional plane consisting of
PC1 and PC2.

2.5. Enrichment Analysis. Gene Ontology (GO) enrichment
analysis was performed on the optimal feature genes
screened by IFS by using the R package clusterProfiler [13].
The classification results were presented by biological pro-
cess (BP), cellular component (CC), and molecular function
(MF).

2.6. Protein-Protein Interaction (PPI) Network Analysis. PPI
network analysis (minimum required interaction score = 0:7;
others were default parameters) was conducted on optimal

feature genes screened by IFS using the STRING (https://
www.string-db.org/) database [14]. The set with the highest
connectivity in the PPI network (main set) was found using
the MCODE plug-in in Cytoscape. GO enrichment analysis
was conducted on the main set in the PPI network by using
GlueGO plug-in in Cytoscape.

3. Results

3.1. Feature Gene Selection. Gene expression profiles of neg-
ative and positive COVID-19 throat swabs were accessed
from the GEO database. Altogether, 16,032 genes were
acquired by standardization (Supplementary Table 1). To
excavate novel biomarkers of COVID-19 from these genes,
expression profile genes were ranked in terms of the
expression feature by mRMR. Thereafter, the top 500
ranked genes (Supplementary Table 2) were used for the
subsequent screening for optimal feature genes.

�e mRNA expression profile is downloaded from
GEO (430 COVID -19 positive; 54 COVID-19

negative)

mRMR feature selection

500 genes

66 genes 

GO enrichment analysis PPI network analysis

MCODE

Module (18 genes) 

GO enrichment analysis by clue GO 

Principal component
analysis 

IFS method
SVM algorithm 

Normalizing mRNA expression profile data using
edgR

16032 genes

Figure 1: Flow chart of bioinformatics analysis.
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Figure 2: Screening of optimal feature genes. (a) IFS evaluated the performance of SVM classifiers based on different groups of feature
genes. x-axis: feature gene number; y-axis: MCC value. (b) Bubble plot of GO enrichment analysis of optimal feature genes. The
classification results included BP, CC, and CF.
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3.2. Screening Optimal Feature Genes and Enrichment
Analysis. Optimal feature genes were determined by the
IFS method. Feature set F (F = ½ f1, f2, f3,⋯:,f N �, N ranged
from 1 to 500) was constructed with the 500 screened feature
genes, and a SVM classifier corresponding to each set was
also built. An IFS curve was drawn with the MCC value of
the SVM classifier as the y-axis and the feature gene number
as the x-axis (Figure 2(a)). According to the IFS curve, the
MCC value of the top 66 feature genes (Supplementary
Table 3) was taken as the training set. The classification
effects of top 66 feature gene-based SVM classifier were
presented as the MCC value: 0.894, sensitivity: 0.991,
specificity: 0.889, and accuracy: 0.979. Thus, the top 66
feature genes were set as the optimal feature genes. Next,
GO enrichment analysis was performed on the top 66
feature genes. The results were shown as follows: in the BP
module, these genes were mainly enriched in protein
localization to endoplasmic reticulum, SRP-dependent
cotranslational protein targeting to membrane, and
cotranslational protein targeting to membrane. In the CC
module, these genes were mainly enriched in the cytosolic
ribosome, ribosomal subunit, and ribosome. In the MF
module, these genes were mainly enriched in the structural
constituent of the ribosome (Figure 2(b)). Enrichment
analysis exhibited that these feature genes were mostly
relevant to ribosomal protein, protein secretion, and
membrane location.

3.3. PCA. PCA was conducted on samples to testify whether
optimal feature genes can effectively classify negative and
positive samples. Evident separation was found between
positive sample clusters (green triangle) and negative sample
clusters (red circle) in the two-dimensional plane consisting
of PC1 and PC2 (Figure 3). It was illuminated that the opti-
mal feature genes could effectively distinguish positive and
negative COVID-19.

3.4. PPI Network Analysis. To explore the interaction
between optimal feature genes, PPI network analysis was
undertaken on the STRING (https://www.string-db.org/)
database. The maximum set in the PPI network constructed
was chosen using the MCODE plug-in (18 nodes, 153 lines)
(Figure 4(a)). To further explore enriched biological func-
tions by feature genes in the chosen set, GO analysis was
performed on 18 genes in the set. It was discovered that
these genes were mainly enriched in the cytosolic large ribo-
somal subunit, polysomal ribosome, viral gene expression,
and SRP-dependent cotranslational protein targeting to the
membrane. This indicated that these genes were associated
with ribosomal protein-encoding, viral protein translation,
and protein-membrane location (Figures 4(b) and 4(c)).

4. Discussion

In the present study, the mRMR feature selection method
had been applied to screen the top 500 feature genes. The
top 66 optimal feature genes were screened through the
IFS method and worked as biomarkers of COVID-19. Com-
bined with traditional diagnosis approaches, a relatively

novel one was raised here. The traditional approaches usu-
ally detect SARS-CoV-2 nucleic acid, antigens, and antibod-
ies. Notwithstanding, we provided a group of specifically
expressed genes in human infected parts during SARS-
CoV-2 infection, and these genes were taken as biomarkers
of COVID-19. The differences between this diagnosis
method and traditional ones were (I) novel COVID-19
markers were human genes and (II) this diagnosis method
distinguished negative or positive samples through detecting
several genes, while traditional means only detected a single
nucleic acid fragment or antibodies of SARS-CoV-2. The fol-
lowing was a discussion of optimal feature genes.

OAS2 is the top-ranked feature gene. OAS2 belongs to
the human 2′-5′-oligoadenylate synthetase family, which
participates in nonspecific immunity during viral infection
through interferon induction and degrades viral RNA [15].
Meanwhile, OAS2 was reported to be highly expressed in
positive COVID-19 patients and acts as a candidate drug
target for COVID-19 treatment [16–18]. According to refer-
ences and our bioinformatics analysis, it was speculated that
OAS2 may play an important role in SARS-CoV-2 infection.
RPLP0 and RPL15 are also top-ranked optimal feature genes.
They encode different ribosomal proteins in vivo to partici-
pate in synthesizing 60S and 40S ribosomal subunits. Ribo-
somes in vivo consist of a small 40S subunit, a large 60S
subunit, and some ribosome RNAs, with different ribosomal
proteins composing the two subunits [19]. Besides RPLP0
and RPL15, there are still other ribosomal protein-
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Figure 3: PCA. PCA of the optimal feature genes. Green triangles
refer to positive samples. Red circles refer to negative samples.
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encoding genes (RPLP1, RPL10A, RPL3, RPL30, RPL13,
RPL4, RPL18, RPL32, and RPL35) that all participate in syn-
thesizing ribosomal subunits. Several studies suggested that
nonstructural proteins of SARS-CoV-2 (such as NSP1,
NSP16, NSP8, and NSP9) bind ribosomal subunits or ribo-

somal RNA to inhibit nonspecific immunity and mRNA
translation relevant to interferon secreting [2, 20, 21]. Thus,
it was speculated that SARS-CoV-2 infection may largely
affect the expression of ribosome-related genes to interfere
with the translation and secretion of proteins related to
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human immune functions. It could be seen that these feature
genes were associated with biological functions during
SARS-CoV-2 infection, demonstrating that our screened
feature genes were suitable for working as biomarkers of
COVID-19.

GO enrichment analysis on the 66 feature genes and
main set in the corresponding PPI network showed that
these genes were mainly enriched in the large ribosomal
subunit and SRP-dependent cotranslational protein target-
ing to membrane. SARS-CoV-2 may affect ribosome syn-
thesis, protein translation, and protein secretion of cells
in the patient’s affected part on the transcriptome level.
Meanwhile, the analysis results were consistent with what
Banerjee et al. published in Cell Journal in November
2020 [20]. The study suggested that NSP8 and NSP9 pro-
teins of SARS-CoV-2 bind signaling recognition particles
(SRP) of the ribosomal large subunit and suppress the
protein attaching cell membrane. Moreover, feature genes
were mainly enriched in SRP-dependent cotranslational
protein targeting to the membrane and large ribosomal
subunit.

In particular, many studies have adopted analysis
methods similar to this study. For example, Cheng et al.
[22] in 2020 screened 31 possible markers using mRMR
based on single-cell RNA sequencing data from malignant
glioma and used SVM to testify the diagnostic performance
of the 31 genes. Xu et al. [23] built a predictive model for
preoperative lymph node status evaluation in intrahepatic
cholangiocarcinoma using mRMR and SVM. It can be seen
that this method can be widely used for the prediction or
diagnosis of different diseases.

On the whole, 66 optimal feature genes were screened
by multiple feature selection strategies. The validity of
these genes as COVID-19 biomarkers was testified by
enrichment analysis, PPI network analysis, and PCA. At
the same time, some optimal feature genes were reported
to be relevant to biological functions in vivo during
SARS-CoV-2 infection. Hence, our results can be applied
not only to the accurate diagnosis of COVID-19 but also
to treatment guidance. However, limitations still exist in
this study. For instance, we did not use abundant clinical
samples to testify the classification performance of the
classifier. Therefore, the application value of these genes
as COVID-19 biomarkers during actual diagnosis was still
vague. We plan to collect numerous clinical samples and
diagnose them by traditional and novel methods to com-
pare their effects.
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