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In end-stage renal disease (ESRD), vascular calcification risk factors are essential for the survival of hemodialysis patients. To
effectively assess the level of vascular calcification, the machine learning algorithm can be used to predict the vascular
calcification risk in ESRD patients. As the amount of collected data is unbalanced under different risk levels, it has an
influence on the classification task. So, an effective fuzzy support vector machine based on self-representation (FSVM-SR)
is proposed to predict vascular calcification risk in this work. In addition, our method is also compared with other
conventional machine learning methods, and the results show that our method can better complete the classification task
of the vascular calcification risk.

1. Introduction

Cronic kidney disease-mineral bone disease (CKD-MBD) is
one of the most serious complications in patients with end-
stage renal failure, including an abnormal metabolism of cal-
cium, phosphorus, parathyroid hormone, vitamin D, abnor-
mal bone transformation, vascular calcification, and
ultimately cardiovascular disease.

In recent years, fibroblast growth factor (FGF23) has
been recognized as a protein that plays an important role in
phosphate regulation. Klotho protein is the receptor protein
of FGF23. It participates in regulating the body’s bone metab-
olism, calcium and phosphorus metabolism, protecting the
integrity of blood vessels, and inhibiting vascular calcification
through the formation of FGF23-klotho complexes. There-
fore, FGF23 and klotho are key participants in CKD-MBD,
and they are closely related to the occurrence of vascular cal-
cification and cardiovascular disease. Existing evidence
shows that there is a clear correlation between FGF23 and
the occurrence of vascular calcification and cardiovascular

disease (CVD). The increase of FGF23 can be used as a risk
factor for CVD in patients with end-stage renal disease
(ESRD) [1].

Fetuin-A is considered to be an inhibitor of the progres-
sion of vascular calcification and can delay the progression of
abdominal aortic calcification [2]. Studies have shown that
there is a close correlation between fetuin-A and the
malnutrition-microinflammatory state of ESRD patients
[2]. It is currently believed that low serum fetuin-A levels in
ESRD patients is an independent risk factor for vascular
calcification.

Malnutrition is a common complication in ESRD
patients, and it is closely related to vascular calcification, car-
diovascular events, and all-cause mortality. Factors affecting
the nutrition of ESRD patients include protein-energy expen-
diture, digestion and absorption, inflammation, and endo-
crine hormone level disorders [3].

There are a variety of tools available to assess the nutri-
tional status of dialysis patients. Among them, the geriatric
nutrition risk index (GNRI) is considered to be an important
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predictor of cardiovascular death [4]. The latest research also
shows that there is a certain positive correlation between
GNRI and the degree of aortic calcification in CKD patients
[5].

Vascular calcification (VC) scores of the artery or aorta
on plain radiographs are associated with CVD events and
may be predictive of CVD in dialysis patients [6]. Many
research results show that abdominal aortic calcification as
assessed on a lateral lumbar X-ray is predictive for the pres-
ence of significant coronary artery disease in asymptomatic
dialysis patients [7].

The previous research results of our work show that
patients with end-stage renal failure have abnormal levels of
FGF23 and klotho and microinflammatory states. Their
interaction and mutual influence are involved in the occur-
rence and development of vascular calcification and CKD-
MBD [8].

Therefore, in order to further explore the risk factors of
vascular calcification in patients with ESRD, this article stud-
ies the scientific and accurate prediction of vascular calcifica-
tion risk factors in ESRD patients with different forecasting
model, so as to help clinicians to detect and intervene early,
thereby delaying the occurrence and development of CKD-
MBD, reducing the incidence of CVD, and improving the
prognosis. Machine learning (ML) has been widely used in
the dry weight (DW) [9] of hemodialysis patients and has
achieved good results. Lots of ML-based models also have
been well used in drug discovery [10–12], protein function
[13–16], and disease analysis [17, 18].

In this study, we employ a support vector machine
(SVM) to build a predictive model. SVM has the following
advantages: (1) Nonlinear mapping is the theoretical basis
of the SVM method. SVM uses the inner product kernel
function to replace the nonlinear mapping to high-
dimensional space. (2) The optimal hyperplane to divide
the feature space is the goal of SVM, and the idea of maximiz-
ing the classification margin is the core of the SVM method.
(3) A small number of support vectors determine the final
result, which can not only help us capture key samples but
also “remove” a large number of redundant samples. For
imbalanced datasets, the standard SVM is not good at classi-
fying a small number of categories. In this work, we propose a
fuzzy support vector machine based on self-representation
(FSVM-SR) to identify vascular calcification of hemodialysis
patients under imbalanced data. FSVM can estimate a weight
for each training sample. When constructing the hyperplane
of classification, FSVM avoids some low-weight samples
(noise samples) to alleviate the influences of imbalanced
datasets.

2. Materials and Methods

2.1. Materials. This work employs 29 features to describe the
patient’s information, which includes gender, age, body mass
index (BMI), diabetes mellitus (DM), cerebral infarction
(CI), and coronary heart disease (CHD). Table 1 shows the
details of our dataset. The mean and standard deviation of
samples is also list in it.

During the data collection process, we classified 59
patients into risk levels. We roughly classify the 7 risks
according to two classification methods. Some adjacent levels
will be grouped into one category. The classification results
are shown in Table 2. In the first classification scheme
(CS1), levels {0, 1, 2} and levels {3, 4, 5, 6} are classified into
classes 1 and 2, respectively. In addition, the levels {0, 1},
{2, 3}, and {4, 5, 6} are classified into classes 1, 2, and 3 (in
CS2), respectively.

2.2. Methods

2.2.1. Abdominal Aortic Calcification. All patients need to
undergo lateral lumbar X-ray examination within 1 week of
blood biochemical examination to assess the calcification of
the abdominal aorta corresponding to levels 1-4 [7]. Accord-
ing to the length of the calcified plaques on the anterior and
posterior walls of the abdominal aorta, for scores of 0 to 3:
no calcification is 0 points, calcification range<1/3 arterial
wall length is 1, calcification range 1/3-2/3 arterial wall length
is 2, calcification range>2/3 arterial wall length is 3, and total
score is between 0 and 24. Two radiologists separately scored
and averaged. The calculation of geriatric nutrition risk index
(GNRI) [19] can be estimate by

GNRI = 14:89 × serum albumin½ � + 41:7 +
actual body weight
ideal body weight

� �� �
:

ð1Þ

Serum levels of intact FGF23, soluble Klotho, Fetuin-A,
and interleukin-6 were received by using two-site enzyme-
linked immune assays (reagents from Elabscience Biotech,
Wuhan, China).

2.2.2. Fuzzy Support Vector Machine. SVM is a robust
machine learning method based on statistical learning, which
considers empirical risk and adds a regularization term to
reduce structural risk. It is a sparse and robust classifier
[20]. SVM also can perform nonlinear classification through
the kernel method, which is one of the common kernel learn-
ing methods. In many practical classification tasks, the num-
ber of samples in different categories is often different. Under
the imbalanced dataset, the SVM model will produce a large
deviation. In order to avoid the above situation, Lin and
Wang proposed fuzzy SVM (FSVM) [21]. Different from
SVM, FSVM uses membership value to describe the weight
of the training sample. In general, the membership value of
outlier samples is lower, and it is easier for the algorithm to
weaken the contribution to the decision hyperplane during
the training process.

For FSVM, a training sample can be defined as fxi, yi, si
g, i = 1, 2,⋯,N , where N is the number of training samples,
xi ∈ Rd×1, yi and si ∈ ½0, 1� are feature vector, label, and mem-
bership value of sample i, respectively. The feature vector
dimension of the model is d. The objective optimization
function of FSVM is
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Table 1: The information of dataset.

No. Feature Value r∗

1 Gender (males/females) 32/27 -0.0455

2 Age (years) 55:83 ± 15:60 0.4010

3 Smoking (yes/no) 1/58 -0.0847

4 BMI (kg/m2) 23:56 ± 3:12 0.1639

5 DM (yes/no) 24/35 0.4847

6 CI (yes/no) 3/56 0.0025

7 CHD (yes/no) 5/54 0.0433

8 Systolic blood pressure (mmHg) 155:69 ± 23:63 -0.1150

9 Diastolic blood pressure (mmHg) 88:11 ± 13:71 -0.2043

10 Phosphate binder (yes/no) 36/23 -0.2141

11 Hemoglobin (g/L) 85:38 ± 18:12 -0.2584

12 C-reactive protein (mg/L) 11:74 ± 35:61 0.3016

13 Serum creatinine (μmol/L) 785:09 ± 368:62 -0.4252

14 Serum glucose (mmol/L) 5:48 ± 2:28 0.2608

15 Serum calcium (mmol/L) 2:08 ± 0:24 0.0520

16 Serum phosphorus (mmol/L) 1:81 ± 0:38 -0.0862

17 Total glyceride (mmol/L) 1:69 ± 1:08 -0.0542

18 Total cholesterol (mmol/L) 4:53 ± 1:42 -0.0466

19 Low-density lipoprotein-C (mmol/L) 2:45 ± 0:96 -0.0252

20 High-density lipoprotein-C (mmol/L) 0:97 ± 0:55 0.0866

21 HbA1c (%) 5:82 ± 1:03 0.2151

22 Serum albumin (g/L) 34:31 ± 6:61 -0.1308

23 25-OH vitamin D3 (ng/mL) 7:86 ± 4:55 0.3850

24 iPTH (pg/mL) 274:50 ± 306:31 -0.0225

25 GNRI 96:06 ± 12:76 -0.0078

26 FGF-23 (pg/mL) 32:21 ± 53:02 -0.0966

27 Klotho (ng/mL) 2:38 ± 2:33 0.0443

28 Interleukin-6 (pg/mL) 25:37 ± 53:69 0.2634

29 Fetuin-A (pg/mL) 3:0320e + 05 ± 2:0606e + 05 -0.0234
∗Denotes that each feature correlated with ascular calcification level using the Pearson correlation coefficient (r).

Table 2: The information of patient risk classification scheme.

Risk level Number of patients CS1 CS2

0 10

Levels 0, 1, and 2 are class 1 (42 samples)
Levels 0 and 1 are class 1 (25 samples)

1 15

2 17
Levels 2 and 3 are class 2 (23 samples)

3 6

Levels 3, 4, 5, and 6 are class 2 (17 samples)
4 6

Levels 4, 5, and 6 are class 3 (11 samples)5 4

6 1

CS: classification scheme.
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min
1
2

wk k2 + C〠
N

i=1
siξi,

s:t:yi wTϕ xið Þ + b
� �

≥ 1 − ξi,

 ξi ≥ 0, i = 1, 2,⋯,N ,

ð2Þ

where C denotes the regularization parameter, ξi is the error
measure of xi. To build a robust model, different training
samples should be given different regularization parameters.
siξi is the error measure, which is weighted by the member-
ship value. Outliers (noise) have a lower weight; on the con-
trary, important sample points will have a higher weight. In
an imbalanced dataset, the type of data with a large number
of samples often contains more outliers. In order to reduce
the deviation, FSVM can well reduce its impact. Equation
(2) also can be rewritten by the Lagrange dual problem:

max 〠
N

i=1
αi −

1
2
〠
N

i=1
〠
N

j=1
αiαj · yiyj · K xi, x j

� �
,

s:t: 0 ≤ αi ≤ siC,

 〠
N

i=1
αiyi = 0, i = 1, 2,⋯,N ,

ð3Þ

where αi is the Lagrange multiplier coefficient for sample xi.
Kðxi, x jÞ is the value of samples i and j in the kernel matrix.
And the kernel matrix can be calculated by the radial basis
function (RBF):

K xi, x j
� �

= exp −γ xi − x j
�� ��2	 


,

i, j = 1, 2,⋯,N ,
ð4Þ

where γ is a Gaussian kernel bandwidth.
The final decision function of classification is

f xð Þ = sign 〠
N

i=1
yiαi · K x, xið Þ + b

" #
: ð5Þ

The basic SVM can only perform binary classification
tasks. In this work, we use the one-against-one strategy to
achieve multiple classifications.

2.2.3. Self-Representation-Based Membership Function. In
this work, we propose a method based on a reconstruction
error to construct the membership function. This method
can measure the consistency between the overall data struc-
ture and a single data point. The reconstruction error can
quantify the outlier degree of the noise sample, which helps
to improve the robustness of the model.

Let X = fx1, x2,⋯, xNg ∈ Rd×N , the self-representation
function is defined as follows:

X =XZ + E, ð6Þ

where Z = ½z1, z2,⋯, zN � ∈ RN×N and E ∈ Rd×N are the coeffi-

cient and error matrix. zi is the new representation of sample
i by other training samples. The self-representation formula-
tion can be optimized by

min J Zð Þ = XZ −Xk k2F + λTr ZLZT� �
, ð7Þ

where TrðZLZTÞ is the Laplacian regular term to smooth the
coefficient Z:

Tr ZLZT� �
=
1
2
〠
N

i=1
〠
N

i=1
Wij zi − zj

�� ��2
2, ð8Þ

whereW is the similarity matrix between samples. It also can
be replaced by kernel matrix. L =D−1/2ΔD−1/2 is a normalized
Laplacian matrix and Δ =D −W. TheDii =∑N

j=1Wij is an ele-

ment of the diagonal matrix D ∈ RN×N . In this work, λ
denotes the coefficient of the Laplacian regular term, which
is set as 0.01. Setting ∂JðZÞ/∂Z = 0, the solution of Equation
(7) can be obtained as follows:

∂J Zð Þ
∂Z = 0,

2XT XZ −Xð Þ + 2λZL = 0,

XTXZ + λZL =XTX,

ð9Þ

where XTXZ + λZL =XTX is a Sylvester equation. For each
training sample, the reconstruction error of xi can be calcu-
lated as

ri = Xzi − xik k22: ð10Þ

To map the value of reconstruction error in 0 ∼ 1. We
define the following formula:

si = 1 −
ri − rmin

rmax − rmin
, ð11Þ

where rmin and rmax are the minimum and maximum recon-
struction errors, respectively. The process of our method is
list in Algorithm 1.

3. Results

3.1. Evaluation measurements. In our study, the accuracy
(ACC) is employed to evaluate the predictive performance
of our predictive model. In addition, a 10-fold crossvalida-
tion method [22–25] was used in this work. The calculation
method of ACC is as follows:

Whole ACC =
∑c

i=1TPi

M
× 100%,

ACCi =
TPi

Mi × 100%,

M = 〠
c

i=1
Mi,

ð12Þ
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where TPi is the number true positive (TP) in subclass i. c is
the number of classes.M andMi denote the number of whole
test samples and subclass test samples. ACCi is the accuracy
of subclass i.

4. Selection of Optimal Parameters

In order to obtain the best prediction performance, we use
the grid search method to obtain the optimal parameters C
and γ. The search ranges are from 2-5 to 210 (C), and from
2-10 to 25 (γ), with the step of 21. Figures 1. and 2 show the
average ACC with different C and γ (under CS1 and CS2),
respectively.

As shown in the figures, the model reach ACC of 83.05%
and 64.40%, when the optimal parameters C = 27, γ = 2−6and
C = 210, γ = 2−6, respectively.

4.1. Comparison to Other Classifiers. To further evaluate the
performance of our model, we introduced other similar
machine learning models [26, 27], including logistic regres-
sion, back propagation (BP) neural network, radial basis
function (RBF) neural network, Takagi-Sugeno-Kang fuzzy
system (TSK-FS) [28–30], and standard SVM. Under 2 clas-
ses (Table 3), logistic regression, BP network, RBF network,
and TSK-FS achieve whole ACC of 71.18%, 66.10%,
77.96%, and 76.27%, respectively. The whole ACC of SVM
(79.66%) and FSVM-SR (83.05%) are better than other
models. In particular, FSVM-SR obtains the best prediction
accuracy. In subclasses 1 and 2, FSVM-SR also achieves best
accuracy of 95.23% and 52.94%, respectively. It can be seen
from the results that for small sample learning, the SVM
has more advantages than the neural network models. As
the fuzzy model, FSVM has better performance than TSK-
FS on this dataset. FSVM-SR can effectively suppress the
influence of noise samples on the model. The receiver operat-
ing characteristic curves (ROC) of different models are
shown in Figure 3. It can also be found that our method
obtains the highest area under curve (AUC) value of 0.7955.

Under CS3, FSVM-SR also compares with these predic-
tors, and the results of comparison are listed in Table 4.
SVM and FSVM-SR achieve the best whole ACC of 64.40%.
In subclass 1, the ACC of RBF neural network and SVM
are 72.00% (best). FSVM-SR and TSK-FS obtain 65.21%,
and FSVM-SR has smaller standard deviation (30.88%) in
subclass 2. In addition, SVM and FSVM-SR have better per-

formance (54.54%) in subclass 3. It can be seen that FSVM-
SR is also more stable and effective in the case of CS3.

Two-sample t-test is employed to evaluate the signifi-
cance differences of average ACC value in CS1 and CS2,
respectively. In our work, the significance level is 0.05.
FSVM-SR is compared with other models via 10-fold cross-
validation (20 times). The results of statistical significance
are shown in Table 5. In CS1, the differences between
FSVM-SR and other models are all significant (P value <
0.05). The max value is 0.0064 (for SVM) and min value is
3.4341e-11 (for BP neural network). Except for SVM (P value
0.1965), the differences with other models are significant in
CS2. It can be seen from the results that the proposed method
(FSVM-SR) outperforms most methods in two patient risk
classification schemes.

5. Discussion

Cardiovascular death is the main cause of ESRD patients.
Studies have confirmed that the occurrence of abdominal
aortic calcification (in ESRD patients) is extremely important
for cardiovascular death [31]. In recent years, the influence of
nontraditional risk factors, such as FGF23, klotho abnormal-
ity, microinflammatory state, and malnutrition on vascular
calcification has attracted much attention from scholars.

As a protein that plays a key role in phosphate regulation,
FGF23 is involved in controlling the metabolism of phos-
phate, parathyroid hormone, and 1,25 dihydroxy vitamin
D. FGF23 can not only regulate phosphate homeostasis but
also further promote disease progression, left ventricular
hypertrophy, and increase the occurrence and death of
CVD [1]. Klotho, as an antiaging gene, has been confirmed
by many studies that it participates in cardiovascular protec-
tion in ESRD patients by inhibiting phosphate-driven vascu-
lar calcification [32]. The results of previous studies of our
center showed that serum FGF23 levels increased, and solu-
ble klotho levels decreased. Moreover, after the combined
abdominal aortic sclerosis, the abnormalities of serum
FGF23 and klotho are more obvious [8]. This study is consis-
tent with the results of previous studies. The levels of FGF23
and klotho are abnormal in ESRD patients. They are risk fac-
tors for vascular calcification. And the analysis results of dif-
ferent risk prediction models all support this conclusion.

Fetuin-A, as a protective factor for vascular calcification,
can inhibit the process of vascular calcification [33]. The

Require: training set fxi, yig, i = 1, 2,⋯,N ; ðX = fx1, x2,⋯, xNgÞ, test setxte = fxtej g, j = 1, 2,⋯,M, the parameters of C and λ; the
Gaussian kernel bandwidth of γ.
Ensure: The predictive values of fytej g, j = 1, 2,⋯,M.

1. Calculate the training kernel (KðX,XÞ), test kernel matrix (Kðxte,XÞ) and Laplacian matrix L by Equation (4) and L =D−1/2ΔD−1/2;
2. Estimate the self-representing coefficient matrix ofZ = ½z1, z2,⋯, zN � ∈ RN×N by Equation (9);
3. Calculate the reconstruction error ri, i = 1, 2,⋯,N for each training sample via ri = kXzi − xik22;
4. Obtain the final membership value of each training sample by si = 1 − ðri − rmin/rmax − rminÞ;
5. Train FSVM-SR (obtaining αi, i = 1, 2,⋯,N) via solving Eq. (3);
6. Predict fytej g, j = 1, 2,⋯,Mby SVM decision function:f ðxÞ = sign ½∑N

i=1yiαi · Kðx, xiÞ + b�.

Algorithm 1: Algorithm of FSVM-SR.
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results of this study show that the serum fetuin-A of ESRD
patients is significantly reduced. In addition, the serum
fetuin-A decreases more significantly in patients with
abdominal aortic calcification. The level of decrease has a cer-
tain early warning effect on vascular calcification. Both
FSVM and traditional prediction models suggest that
fetuin-A is an independent risk factor for abdominal aortic
calcification. Therefore, clinicians should pay close attention
to serum fetuin-A levels in the process of CKD. Once abnor-
malities occur, they should intervene as soon as possible.

Studies have shown that malnutrition is closely related to
vascular calcification, cardiovascular death, and all-cause
death in ESRD patients [4]. In this work, the results of differ-
ent risk prediction models support that malnutrition is an
independent risk factor for abdominal aortic calcification.
Existing studies have shown that malnutrition and microin-
flammatory state, insulin resistance, FGF23/klotho axis
abnormalities, and other factors are interconnected and ulti-
mately jointly promote the occurrence of vascular calcifica-
tion [19]. Therefore, many risk factors for vascular
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Table 3: Comparison on existing models via 10-fold crossvalidation (under 2 classes).

Model Whole ACC (%) ACC1 (%) ACC2 (%)

Logistic regression 71:18 ± 15:14 83:33 ± 19:01 41:17 ± 33:75

BP neural network 66:10 ± 13:70 73:80 ± 26:78 47:05 ± 43:78

RBF neural network 77:96 ± 8:67 88:09 ± 15:47 52:94 ± 36:89

TSK-FS 76:27 ± 15:31 85:71 ± 15:42 52:94 ± 43:78

SVM 79:66 ± 10:40 90:47 ± 14:15 52:94 ± 36:89

FSVM-SR (our method) 83:05 ± 9:71 95:23 ± 10:54 52:94 ± 36:89

ACC1: the accuracy of class 1; ACC2: the accuracy of class 2.
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Figure 3: The ROCs for different models (under CS2).

Table 4: Comparison on existing models via 10-fold crossvalidation (under 3 classes).

Model Whole ACC (%) ACC1 (%) ACC2 (%) ACC3 (%)

Logistic regression 57:62 ± 15:25 64:00 ± 32:20 60:86 ± 32:58 36:36 ± 48:30

BP neural network 55:93 ± 19:62 60:00 ± 32:44 60:86 ± 28:60 36:36 ± 47:43

RBF neural network 59:32 ± 21:99 72:00 ± 29:61 60:86 ± 41:91 27:27 ± 48:30

TSK-FS 62:71 ± 24:21 68:00 ± 28:81 65:21 ± 39:13 45:45 ± 49:72

SVM 64:40 ± 17:39 72:00 ± 21:94 60:86 ± 32:44 54:54 ± 49:72

FSVM-SR (our method) 64:40 ± 17:39 68:00 ± 24:85 65:21 ± 30:88 54:54 ± 49:72

ACC1: the accuracy of class 1; ACC2: the accuracy of class 2; ACC3: the accuracy of class 3.
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calcification are often mixed, and it is difficult for clinicians
to accurately determine the main risk factors and provide
precise treatment intervention. By comparing the accuracy
of different prediction models for predicting the risk of
abdominal aortic calcification, it is found that the FSVM
and SVM models are more accurate in identifying the main
risk factors than the traditional logistic regression model.
Under CS2, FSVM-SR achieves best accuracy of 95.23%
and 52.94%, respectively. Our method (FSVM-SR) is signifi-
cantly better than other methods (P value, logistic regression:
8:4386e − 10, BP network: 3:4341e − 11, RBF network:
7:9770e − 06, TSK-FS: 3:3813e − 08, and SVM: 0.0064).
What is more, FSVM-SR and SVM achieve the best whole
ACC of 64.40% in CS3. Self-representation-based member-
ship function can estimate weight for training sample. The
reconstruction error of outliers is relatively large, and the cor-
responding membership value is low. When constructing the
hyperplane of classification, FSVM avoids some low-weight
samples (outliers) to alleviate the influences of imbalanced
datasets. The fuzzy methods [34] improve the interpretability
and robustness of the model. There are related applications
in the medical fields [35, 36].

6. Conclusions

In this work, we propose a FSVM based on a self- represen-
tation method to filter noise samples, improve the generaliza-
tion ability of the model, and obtain good results. Although
our method has achieved a better accuracy, it still has the fol-
lowing disadvantage: (1) The sample size needs to be further
increased to minimize the prediction bias. (2) There is no
detailed analysis of the various factors of the patient [37,
38]. (3) The interpretability of the model is not as good as
that of the linear model. Based on the above, we will propose
a sparse linear model in the next work to solve the problem of
poor interpretability and factor analysis.
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