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Emotion recognition plays an important role in the field of human-computer interaction (HCI). Automatic emotion recognition
based on EEG is an important topic in brain-computer interface (BCI) applications. Currently, deep learning has been widely used
in the field of EEG emotion recognition and has achieved remarkable results. However, due to the cost of data collection, most
EEG datasets have only a small amount of EEG data, and the sample categories are unbalanced in these datasets. These
problems will make it difficult for the deep learning model to predict the emotional state. In this paper, we propose a new
sample generation method using generative adversarial networks to solve the problem of EEG sample shortage and sample
category imbalance. In experiments, we explore the performance of emotion recognition with the frequency band correlation
and frequency band separation computational models before and after data augmentation on standard EEG-based emotion
datasets. Our experimental results show that the method of generative adversarial networks for data augmentation can
effectively improve the performance of emotion recognition based on the deep learning model. And we find that the frequency
band correlation deep learning model is more conducive to emotion recognition.

1. Introduction

Emotions are fundamental in the daily life of human beings as
they play an essential role in human cognition, namely, in
perception, rational decision-making, human interaction,
and human intelligence [1]. With the development of artificial
intelligence technology and deep learning, emotion recogni-
tion has broad prospects in human-computer interaction
and clinical treatment, which has been widely concerned by
researchers [2].

Human emotions can be recognized by speech, eye blink-
ing, facial expressions [3–5], and physiological signals [6].
However, the first three methods are unstable and easily
affected by subjectivity. Subjects can deliberately conceal
their emotions and lead to recognition errors. Physiological
signals such as electrooculogram (EOG), electroencephalo-
gram (EEG), and blood pressure (BVP) are produced sponta-
neously by the human body. Therefore, physiological signals
can more accurately reflect the emotional state of people.
Among all these physiological signals, electroencephalogram

(EEG) is the overall reflection of the electrophysiological
activities of brain nerve cells on the cerebral cortex or scalp
surface, which indicates that changes in EEG signals can be
used to characterize human emotional changes.

Due to the advantages of EEG in reflecting emotions,
an EEG signal has been widely used for the research on
emotion recognition [7–10]. The changes in scalp potential
are captured by multiple electrodes. Once the subject is
stimulated, the brain electrodes can immediately capture
the potential changes to identify the emotional state. There
are two general rules to classify human emotions, namely,
the discrete basic emotion description and the dimensional
method. According to the discrete basic emotion description
method, emotions can be divided into six basic emotions,
including joy, surprise, sadness, fear, anger, and disgust
[11]. For dimensional methods, emotions are usually divided
into two dimensions (arousal and valence). Among these
dimensions, arousal describes an emotion’s level of excite-
ment or apathy, and valence describes a person’s level of pos-
itivity or negativity. Compared with discrete basic emotion
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description, the dimensional method is simpler, so the
dimensional method is often used in emotion recognition
[12]. An early work on emotion recognition by analyzing
EEG signals dates back more than 50 years [13]. Recently,
many new feature extraction and classification methods have
been proposed for emotion recognition [14]. In the feature
extraction stage, the time-domain method, frequency-
domain method, and nonlinear dynamic method are often
used to analyze EEG signals. For example, time-domain anal-
ysis can extract the time-dependent features of EEG signals,
including sample entropy, statistical features, and principal
component analysis [15]. In frequency-domain analysis,
EEG signals can be broken down into δ (1-3Hz), θ (4-
7Hz), α (8-13Hz), β (14-30Hz), and γ bands (31-50Hz);
features can be extracted from each frequency band [16, 17].

In recent years, many researchers have built emotion
recognition models based on machine learning. Chanel and
others used EEG signals. Time-frequency information was
extracted as the feature, and a Support Vector Machine
(SVM) was used as the classifier to distinguish three kinds
of emotional states [18]. Heraz and Frasson used the ampli-
tude of the EEG signal as the feature and divided human
emotional states into eight categories by k-Nearest Neigh-
bors (KNN) [19]. Currently, deep learning has been widely
used in the field of EEG emotion recognition. Zheng and
Lu studied the influence of various frequency bands on emo-
tion recognition through neural networks and concluded
that the β and γ frequency bands are more suitable for
EEG emotion recognition tasks [6]. A recent study also
confirmed that the high-frequency band can better distin-
guish emotional states [20]. Tang et al. used recurrent
neural networks and autoencoders to classify emotional
states, which greatly improved the accuracy of EEG emo-
tion recognition and achieved an average accuracy of
83.25% [21]. Xiang et al. adopted a new preprocessing
method, instead of using one-dimensional data like tradi-
tional methods, but converting EEG signals into 2D frames
and combining convolutional neural networks (CNN) and
recurrent neural networks for emotional state recognition
[22]. Li et al. extracted the Power Spectral Density (PSD)
feature and mapped its one-dimensional feature vector to a
two-dimensional plane to construct a feature map using
convolutional neural networks and long-short-term memory
networks to identify human emotional states [23]. Generally
speaking, researchers of EEG emotion recognition based on
deep learning mostly map EEG signals into pictures to facil-
itate input into neural networks. They encapsulate the data
into a similar image and then use a convolutional neural
network to obtain higher accuracy [24–28].

Based on the excellent performance of deep learning in
the EEG emotion recognition task, it is necessary to use
the deep learning model to promote the exploration of
EEG-based emotion recognition. However, the deep learning
model is data-driven, and only when there are many data
can it have good performance, which makes the training of
a deep learning model need a large number of labeled train-
ing samples. However, due to the high cost, most public EEG
datasets have only a small number of samples, and these
sample categories are extremely unbalanced. Insufficient

sample size and unbalanced categories will lead to overfitting
and seriously affect the performance of the deep learning
model. Therefore, if we try to further explore the deep learn-
ing model of emotion recognition based on EEG signals,
obtaining enough effective marker training data is the main
problem.

In this paper, we focus on generating more EEG train-
ing samples through the data augmentation method of
generative adversarial networks to solve the imbalance
between sample categories. After that, we explore the per-
formance of emotion recognition with the frequency band
correlation and frequency band separation computational
models before and after data augmentation on standard
EEG-based emotion datasets.

2. DEAP Dataset

DEAP [29] (Database for Emotion Analysis using Physiolog-
ical Signals) is the database collected by Koelstra from Queen
Mary University of London; the University of Twente; the
University of Geneva, Switzerland; and the Swiss Federal
Institute of Technology. Multichannel data are for studying
human emotional states. At present, the DEAP dataset has
been widely used in emotion recognition research. Therefore,
in this paper, we use this dataset to test our method. The
database is based on the physiological signals generated by
the stimuli induced by music video materials. It recorded
32 subjects who watched 40 minutes of music videos (1 min-
ute for each music video) of physiological signals and the
subjects’ self-assessment on valence and arousal. Arousal
and valence scales are from 1 to 9 (1 represents sad/calm
and 9 represents happy/excited). The sampling rate of phys-
iological signals is 512Hz. For researchers to quickly verify
their proposed emotion recognition method, the creator of
the DEAP dataset provided a preprocessed version of the
dataset. In the preprocessed dataset, the original EEG signal
is downsampled from 512Hz to 128Hz, only the signal in
the 4–45Hz frequency bandwidth is preserved, and the
EOG is also removed. The data collected in each trial was
segmented into 3-second pretrial baseline signals (relax state)
and 60-second experimental signals (recorded while watch-
ing a video). The EEG data for each participant includes
two arrays: data and labels. Tables 1 and 2 show a summary
of the DEAP dataset (preprocessed version).

3. Methods

3.1. Data Preprocessing. Based on the in-band correlation
with different behavioral states, the original EEG signal can
be divided into several different frequency modes [30–32].
According to Zhang et al. [33], the EEG frequency, mode,
and corresponding characteristics are shown in Table 3. It
can be found from the table that the recognition increases
with the increase in the frequency band. Therefore, to iden-
tify emotions more accurately, we only use θ, α, β, and γ,
which represent the frequency band when human thinking
is active.

The brain-computer interface system for capturing brain
electrical signals uses a wearable headset device with
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multiple electrodes. The 10-20 system electrode placement
method is the standard electrode placement method pre-
scribed by the International Electroencephalography Soci-
ety. In addition, the “10” and “20” in the international
10-20 system refer to the distance from the midpoint of
the frontal pole to the root of the nose and the distance
from the occipital point to the extra occipital tuberosity
accounting for 10% of the total length of the line. Points
are separated by 20% of the total length of this line. The
left picture of Figure 1 is a plan view of the international
10-20 system, in which the yellow-filled EEG electrodes are
the test points used in the DEAP dataset. In the EEG elec-
trode map, there is a spatial position connection between
the electrodes. To reflect the spatial position information
between the electrodes, we map the one-dimensional EEG
data to a two-dimensional plane according to the spatial
position relationship of the electrodes. At the same time,
the unused electrodes are filled with 0. The right image of
Figure 1 shows the two-dimensional plane after mapping.

For the original 63-second EEG data, we removed the
baseline part of the first 3 seconds and only retained the 60-
second experimental data. EEG data of a participant were
converted from 40 × 32 × 8064 to 40 × 32 × 7680. To increase
the amount of training data, we divide the EEG data segment
into multiple samples, each of which has a length of 2 sec-
onds, of which 1 second overlaps, and assign every sample
with the label of the original trial (step 1). Next, feature
extraction is performed on all samples. First, we use the
Butterworth filter to decompose each sample into three
frequency bands θ, α, β, and γ (step 2). Secondly, we extract
PSD features and normalize each PSD vector with Z-score
normalization (step 3). Thirdly, we organize the PSD feature

of each frequency band as a 2D map (step 4) and stack them
(step 5). The whole process is described in Figure 2. PSD is
widely applied in most EEG-based tasks and is considered
one of the most commonly used features, which is defined as

P ωið Þ = 1
N

X ωið Þj j2: ð1Þ

The discrete Fourier transform XðωiÞ of the signal can
be obtained by FFT, where ωi is the frequency point of the
number i.

3.2. Data Augmentation Method. In EEG emotion recogni-
tion tasks, most methods rely on sufficient sample data and
the balance between sample classes. However, in actual
experiments, many datasets do not meet such requirements.
For example, after the DEAP dataset used in this experiment
is processed in Figure 2, the ratio of high arousal to low
arousal is 4 : 1 or 4 : 3 for most individuals, but only a small
proportion is 1 : 1, and the overall data sample is unbalanced.
The traditional methods that are used to solve the problem
of sample imbalance can be classified into sample sampling
and improved recognition models. Among them, sample
sampling is divided into two types: oversampling [34] and
undersampling [35]. Oversampling generates duplicate sam-
ples through copy operation, which will cause the classifier
to overfit; undersampling technology eliminates some large
samples, and the information may be serious. The loss leads
to the distortion and incompleteness of the information
space. The way to improve the recognition model starts from
the recognition model itself and often improves the recogni-
tion accuracy by adjusting the sensitivity of the classifier.

Table 1: DEAP dataset general description.

Overall
Subjects Video Channels Sampling rate Rating scale Rating values

32 40 32 128Hz Arousal valence Continuous scale of 1-9

Table 2: DEAP dataset subject description.

Subject
Array Array shape Array content

Data 40 × 32 × 8064 384 base + 7680 trialð Þ Video/trial × channels × data
Labels 40 × 32 Video/trial × label (valence, arousal)

Table 3: EEG patterns and corresponding characters.

Patterns Frequency Brain state Awareness

Delta (δ) 1-3Hz Deep sleep pattern Lower

Theta (θ) 4-7Hz Light sleep pattern Low

Alpha (α) 8-13Hz Closing the eyes, relax state Medium

Beta (β) 14-30Hz Active thinking, focus, high alert, anxious High

Gamma (γ) 31-50Hz During cross-modal sensory processing Higher
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The degree of improvement is often limited, and it is difficult
to obtain the optimal weight.

Goodfellow et al. [36] proposed a semisupervised feature
learning algorithm based on game scenes in 2014-Generative
Adversarial Networks (GAN) to improve this limitation.
With the continuous improvement of adversarial learning
ideas, GAN has been applied in the fields of image genera-
tion, image recognition, and style transfer [37] and has
derived variants that implement different functions. GAN
learns the data distribution of training samples through the
game process of generating a network and discriminating
the network, so that the generator can generate very real fake
samples, thereby solving the problem of an unbalanced dis-
tribution of real EEG data samples. Based on GAN, we pro-

pose Power Spectral Density Generative Adversarial
Network (PSD-GAN), whose structure is shown in Figure 3.

PSD-GAN means generating samples with PSD features
through GAN. First, its input is a 1 × 16-dimensional ran-
dom noise. Then, a fake sample is generated by the genera-
tor. The generator consists of three linear layers and three
activation functions, which are two ReLU functions and
one Tanh function. Finally, the real sample and the fake
sample are sent to the discriminator for identification. The
discriminator structure is composed of two linear layers
and two activation functions, that is, a LeakeReLU function
and a sigmoid function. Note that the real sample here is
not a 3D frame but a 1 × 128-dimensional vector that is con-
verted from the 1 × 32 × 4-dimensional vector in step 3 of
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Figure 2. The whole process optimizes the cost function
through continuous repeated training. Details of the cost
function as follows:

min
G

max
D

V D,Gð Þ = Ex~pdata xð Þ log D xð Þð½ �
+ Ez~pz zð Þ log 1 −D G zð Þð Þð Þ½ �:

ð2Þ

In this cost function, DðxÞ represents the discrimination
of real samples and GðzÞ represents the generated samples.
G hopes that DðGðzÞÞ is as large as possible; at this time,
VðD,GÞ will become smaller. D hopes that DðxÞ should be
larger and DðGðzÞÞ should be smaller. At this time, VðD,GÞ
will become larger. Through such continuous alternating
training, a Nash equilibrium will eventually be reached. After
the training is completed, we convert the generated sample
1 × 128-dimensional vector into a 3D frame through steps 4
and 5 in Figure 2.

3.3. Frequency Band Correlation and Frequency Band
Separation Models. CNN has a powerful function of extract-
ing features from images. It has become a common practice
for most researchers to encapsulate EEG data in the form of
3D frames and use the functions of CNN for feature
extraction.

To explore the influence of the correlation features
between frequency bands on the accuracy of EEG signal
emotion recognition, two comparisons Frequency Band
Correlation Convolutional Neural Network (FBCCNN)
and Frequency Band Separation Convolutional Neural
Network (FBSCNN) are designed. The essential difference
between the two models is whether CNN is used to extract
features between frequency bands. The input of FBCCNN
is a 3D frame, and the features extracted by the convolu-
tional neural network contain frequency band correlation
features. The input of FBSCNN is four 1D planes, which
are decomposed by the 3D frames, and FBSCNN merges
the features extracted by multiple 1D plane inputs before
the first fully connected layer. The features extracted in this
way only contain the independent features of each frequency
band without frequency band correlation features. In the

experiment, we keep the total number of features of
FBCCNN and FBSCNN after input passing through the
convolutional neural network. More details of the model
are shown in Figure 4.

Both models consist of seven 2D convolutional layers,
three fully connected layers, and one softmax layer. The
continuous convolution method is selected between the con-
volutional layers; that is, there is no pooling layer between
the convolutional layers. The pooling layer is to reduce the
data dimension, but in the EEG emotion recognition task,
because the data frame is small, the pooling layer is discarded
in our model. In addition, to prevent the loss of information,
a zero-filling method is used in each convolutional layer. For
the size of the convolution kernel of each convolution layer,
we use a 3 × 3 convolution kernel, which reduces the number
of parameters while maintaining a larger receptive field,
which will be more conducive to extracting feature informa-
tion. After each convolutional layer, a batch normalization
layer and a ReLU layer are connected. The former will make
the entire neural network easier to converge, and the latter
will increase the nonlinear conversion capability of the
model. To increase the model expression ability between
the fully connected layers, the ReLU layer is also added.
The output of the fully connected layer is sent to the softmax
layer to obtain the classification result. The number of feature
maps in each layer of the FBCCNN model and the FBSCNN
model is shown in Figure 4. It is worth noting that the num-
ber of features in each layer of the two models is roughly the
same, and the difference is only reflected in the first and last
convolutional layers.

4. Experiment

4.1. Experimental Setup. In our experiments, all neural net-
works are implemented using the PyTorch framework and
trained from scratch on the Nvidia Titan RTX GPU in a fully
supervised manner. For training using adaptive moment
estimation (Adam), the minimum batch size is 64 EEG
streams. The learning rate is 0.0001, and the number of
training is 150 epochs.
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Figure 3: PSD-GAN structure.
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As mentioned above, we use the DEAP dataset to verify
the performance of the proposed method. In the DEAP data-
set, we select S01, S02, S04, S06, S07, S08, S09, S10, S11, S17,
S18, and S22 as the experimental samples, because the positive
and negative ratios of each of them are not much different. In
the two-category task, for each subject, arousal and valence are
divided into two categories: if the score is greater than five, the
label is set to high; otherwise, it is set to low. In the four-
category task, each subject is divided into four categories
according to the correlation between valence and arousal:
High Valence and High Arousal (HVHA), Low Valence and
High Arousal (LVHA), High Valence and Low Arousal
(HVLA), and Low Valence and Low Arousal (LVLA).

In subject experiments, each subject has a total of forty
EEG experiments. We select the first 32 experiments as the

training dataset and the last 8 experiments as the test dataset.
In the across-subject experiment, all the data were shuffled.
We used 80% of the data as the training dataset and 20% as
the test dataset. In all comparative experiments, we use PSD-
GAN to increase the training dataset samples so that the
number of samples in each category is the same. This number
refers to the category with the largest number in different
categories. The comparison of the number of samples before
and after the data augmentation of the two-category training
dataset is shown in Table 4, and the comparison of the number
of samples before and after the data augmentation of the four-
category training dataset is shown in Table 5.

4.2. Experimental Results and Comparison with Different
Models. To check the influence of PSD-GAN and frequency

Figure 4: Emotion classification model. In the above model, the value of N is 4, which represents the number of input bands (θ, α, β, and γ).

Table 4: Comparison of the number of two-category labels for arousal and valence before and after PSD-GAN data augmentation.

Subject
Data distribution before PSD-GAN Data distribution after PSD-GAN

Arousal Valence Arousal Valence
High Low High Low High Low High Low

S01 1219 811 965 1065 1219 1219 1065 1065

S02 1218 812 1268 762 1218 1218 1268 1268

S04 1218 812 812 1218 1218 1218 1218 1218

S06 862 1168 1522 508 1168 1168 1522 1522

S07 1271 759 1421 609 1271 1271 1421 1421

S08 1218 812 1117 913 1218 1218 1117 1117

S09 1272 758 1066 964 1272 1272 1066 1066

S10 1116 914 1016 1014 1116 1116 1016 1016

S11 1269 761 1217 813 1269 1269 1217 1217

S17 1268 762 1118 912 1268 1268 1118 1118

S18 1269 761 1321 709 1269 1269 1321 1321

S22 1270 760 1015 1015 1270 1270 1015 1015
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band correlation features on the classification results, we
designed two scenarios, conducted experiments on the two
models, and compared their results. Case 1 represents the
case where PSD-GAN is not used to generate samples, and
case 2 represents the case where PSD-GAN is used to gener-
ate samples. We use FBCCNN and FBSCNN to conduct a
controlled experiment in each case to explore the influence
of frequency band correlation features on EEG emotion
recognition. A tenfold cross-validation method was used
for each experiment, and the average value was calculated
as the final result. The experimental result is shown in
Tables 6 and 7.

As shown in Table 6, in the two classification tasks, for a
single subject, the accuracy of the proposed data augmenta-
tion method in valence recognition and arousal recognition
is improved by 5.25% and 6.38% on average and 6.5% and
6.71% on average across subjects. In the four classification

tasks, as shown in Table 7, the data augmentation method
increased by 10.92% for a single subject and 14.47% across
subjects. It can be seen that the recognition accuracy has
been significantly improved in two classification tasks and
four classification tasks, which shows the effectiveness of this
method. The data augmentation method uses the existing
EEG samples in the training dataset to generate new EEG
samples through the PSD-GAN network. The experimental
results show that this method is useful. In addition, we can
also find that before and after data augmentation, the recog-
nition effect of the FBCCNN model is always better than
FBSCNN in two classification tasks and four classification
tasks, which shows that the frequency band correlation
model can extract more useful features for emotion recogni-
tion than the frequency band separation model. In the
experimental results, we found that there are great differ-
ences in the recognition rate of some subjects. For example,

Table 5: Comparison of the number of labels in the four categories of valence and arousal before and after PSD-GAN data augmentation.

Subject
Data distribution before PSD-GAN Data distribution after PSD-GAN

LVLA HVLA LVHA HVHA LVLA HVLA LVHA HVHA

S01 506 305 559 660 660 660 660 660

S02 509 303 405 813 813 813 813 813

S04 557 1067 355 51 1067 1067 1067 1067

S06 306 862 202 660 862 862 862 862

S07 254 505 355 916 916 916 916 916

S08 457 406 456 711 711 711 711 711

S09 557 252 458 763 763 763 763 763

S10 456 458 558 558 558 558 558 558

S11 508 761 305 456 761 761 761 761

S17 355 457 557 661 661 661 661 661

S18 405 356 406 863 863 863 863 863

S22 508 303 609 610 610 610 610 610

Table 6: The recognition accuracy (%) of the two models in two classification tasks before and after data augmentation.

Subject

Case 1 Case 2

Valence Arousal Valence Arousal

FBCCNN FBSCNN FBCCNN FBSCNN FBCCNN FBSCNN FBCCNN FBSCNN

S01 86.04 82.67 86.43 83.16 90.83 89.25 92.25 89.09

S02 77.34 63.15 77.73 63.64 81.36 71.08 82.78 70.92

S04 80.44 62.44 80.83 62.94 85.13 72.39 86.55 72.24

S06 76.65 63.15 77.04 63.64 80.33 70.77 80.75 70.61

S07 90.10 70.05 88.49 70.54 95.10 80.19 95.52 80.03

S08 83.55 75.56 83.94 76.05 87.5 82.11 88.92 81.95

S09 84.58 73.84 84.97 74.33 89.86 79.94 90.28 79.78

S10 86.31 77.29 86.70 77.78 93.67 83.41 94.09 83.25

S11 80.10 66.60 80.49 67.09 86.16 75.89 87.58 75.74

S17 81.82 73.84 82.21 74.33 85.81 79.55 88.23 79.39

S18 79.41 66.94 79.80 67.43 86.05 73.86 87.47 73.70

S22 69.01 66.42 69.40 64.91 76.61 72.10 79.03 71.94

Average recognition accuracy results across subjects on “valence” and “arousal”

Across subjects 82.40 78.65 83.55 77.15 88.90 83.64 90.26 80.55
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the difference between the accuracy of S07 and S22 in the
arousal dichotomous task is 16.49%. These differences are
mainly due to individual differences, resulting in different
EEG signal intensity and responses to environmental stim-
uli. In addition, the improvement effect of the recognition
rate before and after data augmentation in the four catego-
ries is significantly better than that before and after data aug-
mentation in the two categories. This is because there are
fewer samples added in the two categories, and the balance
between samples is higher than that in the four categories,
so the space for the improvement of the recognition accu-
racy of the two categories is less than that of the four catego-
ries. This result also shows that data augmentation is an
effective way to improve the recognition accuracy in EEG
emotion recognition tasks.

We also compare our model with some existing models
that can identify emotions from EEG signals. Our model
combines PSD-GAN and FBCCNN. We compared eight
studies on emotion recognition from EEG signals, and the
comparison results are shown in Figure 5. They all use the
DEAP dataset for evaluation, so this comparison is meaning-
ful. Among them, the first 4 studies employed handcrafted
features and classical recognition frameworks such as Bayes-
ian network, SVM, and HMM [37–40]. The recent 4 studies
employ deep neural network architectures such as CNN and
LSTM for the recognition framework [41–44]. Through
comparison, it is found that our model is better than the
manual feature model. Compared with other deep learning
models, it also achieves better or equivalent results. How-
ever, some other deep learning models are more complex
than ours. For example, the multicolumn CNN model
proposed by Yang uses multiple CNN models for parallel
computing and then obtains the final result by voting.
Therefore, our model is highly competitive.

4.3. Experimental Results on the MAHNOB-HCI Dataset.
The MAHNOB-HCI dataset is a multimodel dataset for
emotion recognition and implicit marking, including EEG
data recorded by using an EEG cap according to the interna-
tional standard A 10-20 system with 32 channels. The length
of the emotional video as a stimulus is between 34.9 and 117
seconds. In the experiment, we took the EEG fragments
according to the valence divided into three categories, nega-
tive (1-3), neutral (4-6), and positive (7-9). There are a total
of 188 negative samples, 208 neutral samples, and 131 posi-
tive samples. In Section 4.2, we have explored the impact of
improving the imbalance between classes by PSD-GAN on
the DEAP dataset. In this section, in order to verify our pro-
posed PSD-GAN-extended sample and the universality of
the method, we continue to experiment on the MAHNOB-
HCI dataset and compare the performance difference
between FBCCNN and FBSCNN.

In Table 8, we show the emotion recognition rates of
two different models before and after PSD-GAN-expanded
samples. For each model, our training dataset and test data-
set are divided by 4 : 1. Therefore, the number of negative
samples in our training dataset is 150, the number of neutral
samples is 166, and the number of positive samples is 104.
We used the same method of preprocessing EEG segments
in the DEAP dataset for each sample and expanded the num-
ber of samples in each category to 166 through PSD-GAN.

From Table 8, we can know the details of FBCCNN and
FBSCNN before and after PSD-GAN sample expansion on
the MAHNOB-HCI dataset. For FBCCNN, the accuracy
before and after sample expansion is improved from
62.06% to 70.34%. For FBSCNN, the accuracy before and
after sample expansion is improved from 56.78% to
66.50%. In addition, we can also find that the accuracy of
FBCCNN is always higher than that of FBSCNN before
and after sample expansion. In the MAHNOB-HCI dataset,
the results also show that the data augmentation method
proposed by us can effectively improve the accuracy of emo-
tion recognition and also confirm that the frequency band

Table 7: The recognition accuracy (%) of the two models in four
classification tasks before and after data augmentation.

Subject
Case 1 Case 2

FBCCNN FBSCNN FBCCNN FBSCNN

S01 65.08 59.23 76.00 68.87

S02 66.23 60.38 77.16 70.02

S04 59.64 53.79 70.57 63.43

S06 60.10 57.46 71.03 67.10

S07 60.86 55.01 71.78 64.65

S08 66.43 60.58 77.36 70.22

S09 64.90 59.05 75.83 68.69

S10 65.34 59.49 76.27 69.13

S11 66.22 60.37 77.15 70.00

S17 70.18 64.33 81.11 73.97

S18 58.06 52.21 68.99 61.85

S22 60.32 54.47 71.25 64.11

Average recognition accuracy results across subjects

Across subjects 55.87 52.34 70.34 66.90
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correlation model is better than the frequency band separa-
tion model.

5. Discussion

In this paper, we propose a new sample generation method
based on the PSD-GAN network to solve the imbalance
between sample categories and explore the effects of the fre-
quency band correlation model and frequency band sepa-
ration model on EEG emotion recognition. The above
comparative analysis shows that the PSD-GAN data aug-
mentation method proposed by us can significantly improve
the EEG emotion recognition rate, and the frequency band
correlation model is better than the frequency band separa-
tion model. This section discusses several noteworthy issues.

Firstly, we can see from the experiments of the DEAP
dataset and MAHNOB-HCI dataset that the recognition
accuracy has been significantly improved before and after
data augmentation. We believe that there are two main rea-
sons for the improvement of accuracy. On the one hand, the
data augmentation increases the number of samples, and on
the other hand, the data augmentation method we adopt
increases the sample size of each category to the same, so
the balance between categories is achieved. Therefore, the
model can better learn the features between different catego-
ries, to reduce overfitting, improve generalization ability,
and achieve a higher recognition rate.

Second, we can find that FBCCNN is always better than
FBSCNN. In Figure 5, we can see the difference between the
two network structures, which is mainly reflected in the
different input methods. FBCCNN input is the overall input
of four frequency bands to the convolution network. The
FBSCNN input is that four frequency bands are input to
the convolution network separately, and the features of the
four frequency bands are integrated into the final full
connection layer. Because of the characteristics of the convo-
lutional neural network, we can know that FBSCNN can
only extract the features of each frequency band, while
FBCCNN can not only extract the features of individual
frequency bands but also extract the features between
frequency bands. Therefore, we can find that the correlation
between frequency bands has an important impact on EEG
emotion recognition. This correlation may be that the posi-
tive correlation of some features in band θ and band α is the
expression of negative emotion, or the negative correlation
of some characteristics in band θ and band γ is the expres-
sion of positive emotion.

Finally, the data augmentation method proposed by us
can effectively improve the accuracy of the model. Through
the comparative experiments of frequency band correlation
and frequency band separation models, it is found that there
are some correlation features between frequency bands,
which can improve the model recognition rate, but there
are still some problems that need to be further considered.
For example, PSD-GAN network training is difficult and
the quality of generated samples is unstable. In addition,
what frequency band correlation features can effectively
improve the recognition rate has not been revealed. There-
fore, in the future, we will try to establish more stable and
high-quality generation adversarial networks and strive to
reveal the correlation features of key frequency bands to
improve the recognition rate.

6. Conclusions

The work of this paper mainly includes two aspects. First of
all, we propose the generative adversarial network PSD-
GAN based on GAN to generate samples with PSD features.
The proposed method of generating samples is of great sig-
nificance to solve the problem of insufficient samples and
imbalance of samples in the field of EEG recognition, and
the samples generated by PSD-GAN greatly improve the
accuracy of EEG emotion recognition. In the future, we will
also consider other data expansion methods, such as transfer
learning, migrating samples of other datasets, or network
model parameters to achieve a high recognition rate. Sec-
ondly, we designed two different models, FBCCNN and
FBSCNN, to explore the influence of frequency band corre-
lation features on EEG emotion recognition. The final exper-
imental results show that the FBCCNN that can extract the
frequency band correlation feature is better than the
FBSCNN that cannot extract the frequency band correlation
feature in the EEG emotion recognition task. From this, we
can conclude that the frequency band correlation feature
has an important influence on the EEG emotion recognition
task. This will provide a reference for future researchers in
the design of neural networks.

Data Availability

The DEAP dataset data supporting this META-ANALYSIS
are from previously reported studies and datasets, which
have been cited. The processed data are available (https://

Table 8: Comparison results of the recognition rate before and after data augmentation.

Data distribution before PSD-GAN Data distribution after PSD-GAN

Negative Neutral Positive Negative Neutral Positive

Number of samples 150 166 104 166 166 166

Average recognition accuracy (%)

Case 1 Case 2

FBCCNN 62.06 70.34

FBSCNN 56.78 66.50
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github.com/panbo-bridge/eeg-emotion-recognition-base-
gan-and-cnn/tree/master).
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