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Background. It is important to improve the understanding of the fracture healing process at the molecular levels, then to discover
potential miRNA regulatory mechanisms and candidate markers. Methods. Expression profiles of mRNA and miRNA were
obtained from the Gene Expression Omnibus database. We performed differential analysis, enrichment analysis, protein-
protein interaction (PPI) network analysis. The miRNA-mRNA network analysis was also performed. Results. We identified
499 differentially expressed mRNAs (DEmRs) that were upregulated and 534 downregulated DEmRs during fracture healing.
They were mainly enriched in collagen fibril organization and immune response. Using the PPI network, we screened 10 hub
genes that were upregulated and 10 hub genes downregulated with the largest connectivity. We further constructed the miRNA
regulatory network for hub genes and identified 13 differentially expressed miRNAs (DEmiRs) regulators. Cd19 and Col6a1
were identified as key candidate mRNAs with the largest fold change, and their DEmiR regulators were key candidate
regulators. Conclusion. Cd19 and Col6a1 might serve as candidate markers for fracture healing in subsequent studies. Their
expression is regulated by miRNAs and is involved in collagen fibril organization and immune responses.

1. Introduction

Bone is a complex organ with multiple functions, including
hematopoiesis, regulating and storing key minerals, protect-
ing vital organs for life maintenance, and promoting move-
ment. Bone fractures are the most common large organ
trauma in humans and a major cause of disability in adults
[1]. In the past few years, long bone fractures have become
increasingly common, especially because of road traffic inju-
ries. The Centers for Disease Control and prevention states
that fractures occupy the top 20 in first-line diagnostics in
emergency departments [2]. The management and treat-
ment of fractures substantially increase the costs to the
health care system and affect society due to increased
morbidity and mortality [3].

Fracture healing begins with injury-induced hematoma
and inflammation, which promote condensation of perios-

teal, endosteal, and bone marrow mesenchymal cells, as well
as differentiation into chondrocyte and osteoblast lineages
[4]. In the normal response of fracture healing, the granula-
tion tissue formed gradually stiffens with healing until bone
formation and is accompanied by the generation of massive
callus [5]. The process of fracture healing can be influenced
by many biological factors that may influence the develop-
ment of a fracture. Among them, proper activation of the
immune system is indispensable to maintain tissue integrity
and promote restoration of homeostasis [6]. The majority of
long bone diaphyseal fractures are treated surgically, and
then, with the addition of scaffolds, growth factors, and cell
therapy, more local bioenhancing can be achieved [7].
Recent data on open long bone fractures show that 17%
develop nonunions and an additional 8% develop delayed
union [8]. Delayed union and nonunion of fractures impose
a significant burden on patients and healthcare systems.
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Figure 1: Continued.
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Given the limited therapeutic options, screening for effective
preventive treatments and candidate markers for early treat-
ment is necessary.

Collectively, these events involve a large number of
secreted signaling messengers that activate signaling path-
ways leading to differential expression of a large number of
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Figure 1: Differentially expressed genes in mice after fracture. (a) Principal component analysis of fracture samples from mice at different
time points. (b) Heatmap of mRNA expression in samples at different time points. Red represents upregulation and blue represents
downregulation. Differentially expressed mRNAs between different time points after fracture and 0 day. Intersection mRNAs that were
upregulated (c) and downregulated (d) simultaneously in the three groups of differences.
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Figure 2: Continued.
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genes, ultimately resulting in progenitor cell proliferation
and differentiation leading to repair of fractured bone [9].
Genetic studies on bone healing demonstrate the molecular
complexity of the repair process, with nearly 600 known
genes and more than 100 novel genes [10]. A direct compar-
ison of the fracture healing process with the gene expression
changes without fracture may provide more insight.

MicroRNAs (miRNAs) are small, single stranded, non-
coding RNAs that downregulate target gene expression
mainly through mRNA degradation and transcriptional
repression [11]. There is accumulating evidence that miR-
NAs play crucial roles in regulating various biological pro-
cesses including bone homeostasis [12]. Multiple studies
have shown that miRNAs are involved in fracture repair
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Figure 2: Enrichment results of mRNAs with altered expression during fracture repair. (a) The top ten biological processes of common
upregulated mRNAs. (b) KEGG pathway of common upregulated mRNAs. (c) The top ten biological processes of common
downregulated mRNAs. (d) KEGG pathway of common downregulated mRNAs.
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[13, 14]. The current understanding of how miRNAs regu-
late the expression of genes at the molecular level and
thereby affect fracture healing is not well established. There-
fore, there is an urgent need to understand the underlying
causes of fracture healing and identify new targets for thera-
peutic intervention to promote optimal bone repair after
fracture.

This study analyzed gene expression profiles during
fracture healing in mice using microarray data from public
databases to better understand the underlying mechanisms
of fracture healing. Using a bioinformatics approach, we
identified the regulatory roles of miRNAs during fracture
healing. Potential targets of action and their biological
functions were explored by enrichment analysis and
protein-protein interaction (PPI) network analysis.

2. Materials and Methods

2.1. Data Collection. The data used for this study were
obtained from the Gene Expression Omnibus (GEO) data-
base. The GSE99388 dataset included mRNA expression
profile of mouse tibial fractures at 0, 5, 10, and 20 days post-
fracture (DPF) on the platform of GPL6246. The whole
diaphyseal bone was used for the time point 0 (prefracture),
the callus after tibial fractures was collected for three time
points (5 days postfracture, 10 days postfracture, and 20
days postfracture). The GSE76197 dataset included miRNA
expression profile of mouse tibial fractures at 1, 3, 5, 7, 11,
and 14 DPF, as well as intact (unfractured bone) on the plat-
form of GPL21265.

2.2. Difference Analysis. Differential expression analysis was
performed using the limma R package between 5, 10, 20
days, and 0 day after fracture, respectively. The mRNAs with
a ∣log 2ðFoldChangeÞ ∣ >1 and false discovery rate ðFDRÞ <
0:05 were assigned as differentially expressed mRNAs
(DEmRs). The miRNAs with a ∣log 2ðFoldChangeÞ ∣ >1 and
P value < 0.05 between 3, 5, 7, 11, 14 days, and 1 day after
fracture were assigned as differentially expressed miRNAs
(DEmiRs), respectively.

2.3. Enrichment Analysis. Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment
analyses of DEmRs were performed using Search Tool for
the Retrieval of Interacting Genes (STRING) (http://string-
db.org/) database. The P value < 0.05 was considered signif-
icantly enriched.

2.4. Construction of Protein-Protein Interaction (PPI)
Network. The PPI network of DEmRs was identified through
the STRING database. The combined score > 0:5 was con-
sidered significant. Gephi software was used to visualize
the PPI network. The hub genes were chosen based on their
degree of connectivity with other genes.

2.5. Prediction of miRNA Regulators for mRNA. The miRNA
regulators of DEmRs were predicted using miRDB online
database (http://mirdb.org/). The expression changes of
DEmRs in the regulatory network were utilized to identify
key target mRNAs.

3. Results

3.1. mRNA Expression Changes in Fracture Healing in Mice.
First, we performed the principal component analysis (PCA)
on samples from mice at different time points after fracture
in the GSE99388 dataset. The distance between the time
point 0 (prefracture) and the samples at other time points,
especially day 10 (Figure 1(a)), was obtained. We then con-
structed a heatmap of gene expression at different time
points, observing gene expression across all samples
(Figure 1(b)). Suggesting differences in the expression of
the genes we acquired at different time points. Using differen-
tial expression analysis, we obtained 1624, 3036, and 1959 dif-
ferentially expressed mRNAs (DEmRs) between 5 (Table S1),
10 (Table S2), and 20 (Table S3) days and 0 days, respectively.
Among them, 499 genes were upregulated and 534 genes were
downregulated simultaneously in the three groups of DEmRs
(Figures 1(c) and 1(d)). These common upregulated or
common downregulated genes may be involved in fracture
healing in mice.
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Figure 3: PPI network of common upregulated or downregulated mRNAs. (a) The top 10 degree in the PPI network of the common
upregulated mRNAs. (b) The top 10 degree in the PPI network of the common downregulated mRNAs. The redder the color, the greater
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3.2. Biological Functions of Fracture Healing. We performed
enrichment analysis for common upregulated mRNAs and
common downregulated mRNAs, respectively. The terms
of enrichment results were ranked by P value. GO enrich-
ment results showed that the upregulated mRNAs were
mainly involved in the biological processes of extracellular
matrix organization and collagen fibril organization
(Figure 2(a)). In KEGG enrichment results, focal adhesion,
ECM receptor interaction, and PI3K-Akt signaling pathway
were significantly enriched by the upregulated mRNAs
(Figure 2(b)). The downregulated mRNAs were mainly
enriched in biological processes of neutrophil activation
induced in immune responses and neutrophil degradation
(Figure 2(c)) and KEGG signaling pathways for hematopoi-
etic cell lineage, platelet activation, and leukocyte transendo-
thelial migration (Figure 2(d)).

3.3. PPI Network of Common DEmRs. Utilizing the STRING
database, we constructed PPI networks for common upregu-
lated mRNAs and common downregulated mRNAs, respec-
tively (Figure S1, S2). In the PPI network of common
upregulated mRNAs, we identified the top 10 mRNAs with
the largest degree of connectivity as hub genes (Figure 3(a)).
Fn1, Col1a1, Col1a2, Col3a1, Lox, Col5a1, Bgn, Col6a1,
Fbn1, and Col5a2 were included. In the PPI network of
common downregulated mRNAs, we similarly identified 10
hub genes (Figure 3(b)), including Itgb2, Syk, Cd19, Mki67,
Gata1, Itgal, Mpo, Sell, Rac2, and Ikzf1.

3.4. miRNA Regulators of Hub Genes. By differential analysis,
we obtained differentially expressed miRNAs (DEmiRs)
between different time points after fracture in mice and con-
trols in the GSE76197 dataset (Figure 4(a)). Fifty-six miR-
NAs were simultaneously present in the six groups of
DEmiRs and were identified as core miRNAs. The expres-
sion of core miRNAs differed at different time points after
fracture (Figure 4(b)). Among them, 44 DEmiRs were
upregulated and 12 DEmiRs were downregulated after frac-
ture compared with the control. Furthermore, to identify the
regulators of hub genes, we predicted their targeted miRNA
regulators using the miRDB database. The upregulated hub

genes predicted 621 miRNA regulators, and the downregu-
lated hub genes predicted 399 miRNA regulators. By com-
paring the predicted miRNA regulators of the upregulated
hub genes with the downregulated DEmiRs, we identified 5
upregulated DEmiR regulators (Figure 4(c)). Similarly, we
obtained upregulated DEmiR regulators regulating 8 down-
regulated hub genes (Figure 4(d)).

3.5. Regulatory Network of miRNAs Targeted mRNAs. Fur-
ther, we showed 13 DEmiR regulators targeted regulation
of 10 hub genes (Figure 5(a)). The upregulated targeted
mRNAs (Col6a1, Col3a1, Col1a1, and Bgn) and downregu-
lated targeted mRNAs (Cd19, Gata1, Ikzf1, Itgb2, Rac2,
and Syk) were included. By constructing an integrated regu-
latory network, we identified the KEGG signaling pathways
involved in these targeted mRNAs (Figure 5(b)). Among
them, Cd19 and Col6a1 showed the biggest differential fold
change and were considered the key target mRNAs, while
miR-206-3p, miR-7235-5p, and miR-574-5p were the key
regulators. Cd19 and Col6a1 showed the most obvious
expression changes on day 10, and miR-206-3p, miR-7235-
5p, and miR-574-5p showed the most obvious changes on
day 7 (Figure 5(c)).

4. Discussion

Scientific advances in a deeper understanding of the molec-
ular processes underlying fracture healing have led to the
identification of key mediators that could be potential targets
to promote bone regeneration. Using transcriptome data
from public databases, we identified potential target genes
during fracture healing in mice. Prior to analysis, we utilized
PCA to examine the distance between samples with respect
to control and postfracture callus. This makes the differential
expression analysis of further genes valid. Between the dif-
ferent time points postfracture and the controls, we found
499 genes upregulated and 534 genes downregulated at the
postfracture. The results of enrichment analysis showed that
these genes were mainly associated with immune response,
inflammatory response, and collagen fibril organization
equal to tissue repair related biological roles. In addition,

391 368
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Figure 4: miRNA regulation of hub genes. (a) Differentially expressed miRNAs between mice at different time points after fracture and
controls. Intersection genes were considered as core miRNAs. (b) Expression heatmap of core miRNAs in different groups. (c)
Intersection between upregulated hub genes predicted miRNA regulators and downregulated DEmiRs. (d) Intersection between
downregulated hub genes predicted miRNA regulators and upregulated DEmiRs.
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we also identified the regulatory network of key mRNAs by
miRNAs.

Upregulated mRNAs were significantly enriched in the
collagen fibril organization. There is a strong correlation
between bone collagen production and connectivity with
cortical bone fracture toughness, and collagen is a tool for
fracture prevention and evaluation [15]. Focal adhesion is
essential for bone formation and osteoblast migration during
the physiological process of fracture healing [16]. ECM
receptor interactions are enriched in fracture-related studies
and participate in bone remodelling [17]. Activation of the
PI3K-Akt signaling pathway has been shown to be associ-
ated with osteogenic differentiation [18]. From this, it was
inferred that the upregulated genes might benefit postfrac-
ture repair by promoting bone formation.

The initial cellular components of the fracture milieu
include immune cells such as platelets, erythrocytes, leuko-
cytes, and neutrophils, which form the hematoma and con-
tribute to the optimization of the healing process [6].
Neutrophils play a crucial regulatory role on the immune
response at the fracture site, resolving inflammation, and

inducing downstream responses that are essential for the
success of bone repair [19]. These biological roles related
to fracture healing were enriched by downregulated genes.

Using the PPI network, we identified the top 10 mRNAs
with the largest connections for up- and downregulation,
respectively, as hub genes, and they may have more exten-
sive effects during fracture healing. To identify the regula-
tory mechanism of the expression of these hub genes
during bone fracture, we predicted some miRNA regulators
through online databases. In particular, the differentially
expressed miRNAs were screened. This may further identify
miRNA regulatory networks involved in fracture healing.

The development of effective targets for the treatment of
bone fracture and even the acceleration of the normal phys-
iological repair process are necessary. The results of our
analysis show that Cd19 was downregulated the expression
in fracture healing. The total number of immune cells
increases with time, while B cells (CD19 +) become progres-
sively fewer in fracture healing [20]. There are findings
showing that a subpopulation of CD19 + B cells exacerbates
local joint bone destruction [21]. The upregulated
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Figure 5: Identification of key regulatory pairs in the regulatory network of miRNA targeted mRNAs. (a) Targeted regulatory relationship
between DEmiRs and hub genes. (b) DEmiRs participated in the KEGG signaling pathway by targeting hub genes. (c) Expression levels of
key DEmiR regulators and mRNAs at different time points after fracture in mice.
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expression of miR-206-3p in fracture healing was predicted
to target regulation of Cd19. miR-206 is dysregulated
expressed in osteoporosis and osteonecrosis of the femoral
head and may be involved in the differentiation of osteo-
blasts [22, 23]. Upon deletion of collagen 6A1 (Col6a1), it
affects skeletal development and reduces bone density [24].
Collagen 6 is ubiquitous in articular chondrocyte PCM and
mediates loading-induced chondrocyte proliferation and
expression of chondrogenic genes [25]. miR-574-5p is
involved in osteoblast differentiation and considered a new
potential biomarker for osteoporosis [12, 26]. Therefore,
the downregulated expression of Cd19 and upregulated
Col6a1 in the postfracture callus may contribute to fracture
healing. As predicted from the expression profiles of Cd19
and Col6a1 and their DEmiR regulators at different time
points, the expression changes of genes had a tendency to
gradually recover after day 10 of fracture in mice. The results
showed that it may be possible to judge fracture healing
based on gene expression changes at different times after
fracture. This suggests that Cd19 and Col6a1 may be candi-
date markers and potential therapeutic for the fracture
healing.

There are several limitations in this study. First, the data
of our analysis were obtained from public databases, and the
species was mouse. It remains to be shown whether the can-
didate genes we identified can be used in humans. Second,
the differential expression of candidate genes as well as
miRNA regulatory networks requires validation by molecu-
lar experiments, which is also the focus of our subsequent
studies.

5. Conclusion

Our study showed that the mRNA expression changes dur-
ing fracture healing were regulated by miRNAs. Changes
in these genes affect the immune response and blood cell
accumulation, and these biological effects explain the molec-
ular regulatory mechanisms of the fracture healing process.
We speculate that the expression changes of Cd19 and
Col6a1 may serve as potential therapeutic targets for fracture
healing. The potential of altered expression of miRNAs in
diseases as biomarkers for disease initiation and progression
is also suggested.
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