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Carotid plaque echogenicity in ultrasound images has been found to be closely correlated with the risk of stroke in atherosclerotic
patients. The automatic and accurate classification of carotid plaque echogenicity is of great significance for clinically estimating the
stability of carotid plaques and predicting cardiovascular events. Existing convolutional neural networks (CNNs) can provide an
automatic carotid plaque echogenicity classification; however, they require a fixed-size input image, while the carotid plaques are
of varying sizes. Although cropping and scaling the input carotid plaque images is promising, it will cause content loss or
distortion and hence reduce the classification accuracy. In this study, we redesign the spatial pyramid pooling (SPP) and
propose multilevel strip pooling (MSP) for the automatic and accurate classification of carotid plaque echogenicity in the
longitudinal section. The proposed MSP module can accept arbitrarily sized carotid plaques as input and capture a long-range
informative context to improve the accuracy of classification. In our experiments, we implement an MSP-based CNN by using
the visual geometry group (VGG) network as the backbone. A total of 1463 carotid plaques (335 echo-rich plaques, 405
intermediate plaques, and 723 echolucent plaques) were collected from Zhongnan Hospital of Wuhan University. The 5-fold
cross-validation results show that the proposed MSP-based VGGNet achieves a sensitivity of 92.1%, specificity of 95.6%,
accuracy of 92.1%, and F1-score of 92.1%. These results demonstrate that our approach provides a way to enhance the
applicability of CNN by enabling the acceptance of arbitrary input sizes and improving the classification accuracy of carotid
plaque echogenicity, which has a great potential for an efficient and objective risk assessment of carotid plaques in the clinic.

1. Introduction

Ischaemic heart disease and stroke are the leading causes of
mortality and morbidity in upper-middle-income and high-
income countries [1]. Most strokes and acute coronary syn-

dromes are caused by the rupture of vulnerable atheroscle-
rotic plaques [2], commonly due to the accumulation of
fatty deposits at arterial bends and bifurcations. When
carotid plaques rupture, atherothrombotic emboli consisting
of clumps of platelet aggregates or plaque fragments may
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travel into the brain, occluding smaller arteries and resulting
in a transient ischaemic attack (TIA) or stroke [3]. Ultra-
sound (US) imaging is a preferred modality for detecting
carotid atherosclerotic plaques due to its advantages of being
nonionizing, low cost, and convenient for monitoring plaque
regression and progression in response to medical therapy [4,
5]. Recent studies have shown that the echogenicity of carotid
plaques is associated with their vulnerability [6, 7]. Echolu-
cent plaques are more vulnerable due to their large lipid cores
and thin fibrous caps, while echo-rich plaques are stable
because they mainly consist of calcifications and fibrotic tis-
sue [8, 9]. The classification of US carotid plaque echogeni-
city can provide valuable information regarding vulnerable
plaques and their risks of causing cerebrovascular events
[10–13]. Thus, it is of great significance to identify the echo-
genicity of carotid plaques, which may contribute to the risk
assessment of carotid plaques and be helpful for the risk pre-
diction of cerebrovascular events. However, due to carotid
plaques coupled with US image speckles, the complexities
of tissue appearances, and the visual similarities of different
carotid plaque echogenicities, it is tedious and operator-
dependent for expert observers to identify the echogenicity
of carotid plaques, and accurate classification is challenging.

Researchers have made some attempts to classify carotid
plaque echogenicity using traditional methods based on one
or more handcrafted features to tackle this challenge. Irie
et al. showed that the greyscale median (GSM) was a useful
and objective metric for the assessment of carotid plaque
echogenicity for the prediction of cardiovascular events in
diabetic patients [14]. GSM was also used as an important
feature for the identification of patients with histologically
unstable carotid plaques [15]. Prahl et al. used a semiauto-
mated method to evaluate echogenicity (SAMEE) based on
a percentage white (PW) feature metric [16]. In [17], a
method that combines texture features and morphological
characteristics for the assessment of carotid plaque echogeni-
city was proposed. In [18], a bimodal gamma distribution
was proposed to model the pixel statistics in the greyscale
images of carotid plaques; the most discriminative features
(MDFs) were extracted from the discrete Frechet distance
features (DFDFs) of each carotid plaque based on the statis-
tical model to classify the carotid plaques into three types,
and a classification accuracy of 77.5% was achieved. In [19],
the integral value obtained by calculating the area under the
cumulative probability distribution curve (AUCPDC) was
adopted to evaluate carotid plaque echogenicity. The classifi-
cation accuracy for 125 plaques (43 echo-rich, 35 intermedi-
ate, and 47 echolucent plaques) was 78.4%, whereas the GSM
was 64.8%. All these methods have shown great potential for
carotid plaque classification. However, the classification
accuracies of the above methods were not high because they
used handcrafted features that cannot fully and accurately
reflect the complicated intrinsic features of carotid plaques.

Compared to handcrafted features, conventional convo-
lutional neural networks (CNNs), such as VGGNet [20],
GoogLeNet [21], and ResNet [22], have been shown to be
powerful tools for automatically extracting intrinsic features
from medical images [23–25]. A deep convolutional neural
network was trained using 129,450 clinical images of skin

disease to classify skin lesions in [26]. A multiorgan CAD
system based on CNNs was developed for classifying both
thyroid and breast nodules and investigating the impact of
this system on the diagnostic efficiency of different prepro-
cessing approaches [27]. A deep residual network was
applied to automatically extract features of carotid ultra-
sound images and identify the carotid plaques in the images
[28]. A convolutional neural network was built to automati-
cally extract features from carotid ultrasound images for the
identification of different plaque components in [29]. The
conventional CNN classification tasks require input images
of fixed size (e.g., 224 × 224), which contradicts the varying
sizes of carotid plaques. Although it is promising to trans-
form carotid plaques of arbitrary sizes to a uniform size by
cropping and scaling, as shown in Figure 1, this will result
in geometric distortion or changes in the spatial texture fea-
tures, which may negatively impact the classification accu-
racy of the utilized model. Although He et al. [30] proved
that spatial pyramid pooling- (SPP-) based CNNs could
remove the imposed fixed-size constraint and achieve out-
standing accuracy in classification and object detection tasks,
the limitation of SPP is that it pools the input feature maps
with square windows, which is suitable for symmetrical
structure, such as the lumen of the artery. While this limits
the flexibility in capturing the anisotropy context that widely
exists in carotid plaques, because carotid plaques are mainly
formed by an accumulation of lipid and inflammatory
deposits in the subintimal space of the arterial wall, during
this process, affected by the hemodynamics in the vascular
lumen, most of the carotid plaques are long strips in the lon-
gitudinal section of carotid ultrasound (e.g., the carotid pla-
ques in Figures 2(e) and 2(f)). The pooling operation using
square windows in SPP cannot overcome the aforemen-
tioned limitation efficiently because it will inevitably contain
information about contamination from irrelevant areas.

To this end, in this study, we considered that most
carotid plaques ultrasound images in the longitudinal view
are stripe-like structure, and MSP was proposed for the clas-
sification of carotid plaques, which pools the feature maps
using multilevel stripped shape windows and obtains fixed
length outputs, which are then fed into the fully connected
layers. MSP not only inherit the merits of SPP, which can
accept input images of any size, but also enlarge the receptive
field and maximum effectively capture the long-range
context in the longitudinal view to improve the accuracy
for the classification.

The main contributions of our work can be generalized as
follows.

We investigate the design of the SPP module and propose
an MSP module, which inherits the advantage of SPP that
can accept input images of arbitrary size and overcomes the
limitation of SPP to more effectively capture long-range con-
text to improve the classification performance.

Furthermore, we present an MSP-based CNN for the
automatic and reliable classification of carotid plaque echo-
genicity, which achieves significant improvements over the
baseline VGG16, SPP-based CNN, and other popular CNNs
and enables efficient stability estimations of carotid plaques
so that clinicians can make suitable diagnostic schemes.
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A large-scale clinical carotid US dataset was established
for carotid plaque classification. The dataset includes 1463
carotid plaque US images, which consist of three different
carotid plaque types according to their echogenicity. Each
carotid plaque in this dataset has a classification label and
its corresponding region of interest (ROI).

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the preparation of the dataset and the struc-
tures of the SPP module, the proposed MSP module, and the
MSP-based CNN. Section 3 describes the experimental setup
and utilized classification metrics and presents the experi-
mental results and discussion, and conclusions are given in
Section 4.

2. Materials and Methods

2.1. Data Acquisition and Preparation

2.1.1. Data Acquisition. In this study, a total of 1463 US
images of carotid plaques were acquired from 925 patients
in Zhongnan Hospital of Wuhan University by expert sono-
graphers who have decades of experience in vascular imag-
ing. An Acuson SC2000 (Siemens, Erlangen, Germany) US
system equipped with a 5-12MHz linear array probe (9L4)
was used to acquire carotid US images. This study was
approved by the Institutional Review Board (IRB) of the
Medical School, Wuhan University, and written informed
consent was obtained from all patients. During the acquisi-
tion process, the subjects were supine, and their heads were
tilted back. The probe was positioned perpendicular to each
patient’s neck, moving slowly along the carotid arteries. After
a carotid plaque was identified, longitudinal images of the
carotid plaque in the common and internal carotid arteries
were acquired.

2.1.2. Data Preparation

(1) Image Normalization. The appearances of carotid US
images vary due to different image acquisitions depending
on the equipment, operator, patient, and US machine set-
tings. Consequently, it is important to develop methods that
can address the variability in the appearances of tissues in
US images. Traditionally, image normalization is used to
overcome this limitation, i.e., by transforming the image
data such that the same tissues have approximately similar
intensity values. In this paper, the proposed deep learning

network can extract high-level features from carotid US
images; therefore, these features are less sensitive to image
normalization. To improve the comparability of the images
and the reliability of our results, we applied a linear scaling
operation between the minimum and maximum values of
the images as a standard processing method for normaliza-
tion (without the need for any user interaction). The nor-
malization formula is defined by ðx − xminÞ/ðxmax − xminÞ,
where x is the pixel value of a carotid plaque US image
and xmin and xmax are the minimum and maximum pixel
values of this carotid plaque US image, respectively.

(2) Groundtruth Data. Our groundtruth data were generated
according to the criteria of the European carotid plaque
study group, which classified carotid plaque echogenicity
into three different types: echo-rich, intermediate, and
echolucent [31]. This classification was performed by an
expert clinician (coauthor F.W.) with at least a decade of
experience in the assessment of atherosclerosis using
carotid US images, who first classified 1463 plaques into
three categories based on their echogenicity (echo-rich,
intermediate, and echolucent) and reclassified them three
months later. The kappa value (κ = 0:747) was calculated
to demonstrate that the two classifications had high
intraobserver agreement. For the 232 controversial plaques,
Dr. Wang classified them for a third time and then took
two of the three results that were consistent with the final
results. Ultimately, the groundtruth data included 335
echo-rich plaques, 405 intermediate plaques, and 723 echo-
lucent plaques among all 1463 plaque images.

(3) Manual Segmentation of Plaques. Due to the large sizes
of the acquired images and the fact that the area outside
each plaque did not contain critical related information,
the boundaries of the plaque were manually delineated
for each image by the same expert clinician, and then,
the ROI containing the segmented plaque was saved, as
shown in Figure 1. An automatic segmentation method
for carotid plaques is being studied by another member
of our laboratory [32]. Because segmentation is not the
focus of this study, the manual segmentation results were
used as the ROIs. These ROIs containing plaques vary in
size, with the largest size being 134 × 564 (h ×w) and the
smallest one being only 19 × 29 (h ×w). Table 1 shows
the statistical distribution and sizes of the samples per
class for training and testing obtained from one of the
conducted 5-fold cross-validation.

2.2. Spatial Pyramid Pooling (SPP) Module. Before describing
the design of MSP, as depicted in Figure 3, we first briefly
review the structure of the SPP module. In this module,
the pooling operations are performed with a pyramid level
of an × an bins for the k feature maps obtained after the
last convolutional layer and a size of mh ×mw. The size
of the sliding pooling window is dmh/an,mw/ane, and the
stride is bmh/an,mw/an c, where d·e and b·c denote the
ceiling and floor operations. The outputs of the j-level
pyramid pooling layer can be calculated by k∑j

n=1a
2
n, where

k is the number of filters in the last convolutional layer,

Plaque (49⨯234)

Scale

Plaque (224⨯224)

Figure 1: A plaque with a size of 49 × 234 was transformed to a
uniform size of 224 ∗ 224.
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and a2n denotes the bins of level n of the pyramid pooling
layer. As an example, a 3-level pyramid pooling layer f3
× 3, 2 × 2, 1 × 1g results in 14 bins. Finally, the outputs
of the 3-level pyramid pooling layer are concatenated to
obtain k∑3

n=1a
2
nða1 = 1, a2 = 2, a3 = 3Þ14k fixed-dimensional

vectors and input them into the fully connected layer to
obtain the classification results.

2.3. Multilevel Strip Pooling (MSP) Module. SPP can generate
a fixed-length representation that does not depend on the
size of the input image. However, it pools the feature maps
using square windows to collect context, which would inevi-
tably contain contaminating information from irrelevant
regions. This is especially true for long-strip targets such as
carotid plaques in the longitudinal section of the carotid
ultrasound images. Thus, inspired by [33], we designed a
novel MSP module to alleviate the above problem. It uses
multilevel strip-shaped window to enlarge the receptive field
and perform strip pooling to allow the collection of long-
range contexts, as shown in Figure 4.

Let the size of the k feature maps obtained from the
previous convolution layer be mih ×miwði = 1, 2,⋯NÞ (N is
the sample size of the dataset). In the nth level strip pooling
of an × bn strips, we adopt adaptive average pooling with a

kernel ðkh, kwÞ and stride ðsh, swÞ to obtain the output. The
kernel ðkh, kwÞ and stride ðsh, swÞ can be calculated as follows:

sh =
mih

an

� �
,

kh =mih − an − 1ð Þsh,

sw =
miw

bn

� �
,

kw =miw − bn − 1ð Þsw:

ð1Þ

Then, j-level strip pooling operations are performed on
each feature map (the response of each filter) using a strip-
shaped window in the horizontal or vertical dimension.
Similar to those obtained with spatial pyramid pooling, the
output vectors vo after j -level strip pooing can be written as

vo = k〠
j

n=1
an × bn: ð2Þ

Here, j is the number of levels, and k denotes the number
of filters of the last convolutional layer in the backbone net-
work. Thus, the number of output vectors obtained after

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2: Three examples of manually segmented carotid plaques. (a–c) Three US images of three types of plaques: echo-rich, intermediate,
and echolucent, respectively. (d–f) Images of the plaques that were manually segmented by an experienced clinician. (g–i) The ROIs that
contain the plaques.

Table 1: Statistics distribution and sizes of our collected dataset.

Types of plaques Images Training set MaxSize MinSize Testing set MaxSize MinSize

Echo-rich 335 266 99 × 259 19 × 29 69 84 × 285 28 × 44

Intermediate 405 315 134 × 564 37 × 67 90 129 × 549 40 × 108

Echolucent 723 588 93 × 569 29 × 69 135 116 × 563 27 × 87

Total 1463 1169 134 × 564 19 × 29 294 129 × 549 28 × 44
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the above strip pooling operation is fixed for all feature maps.
The MSP layer pools the features and generates fixed-length
vectors, which are then fed into the fully connected layers for
the classification of carotid plaques. As an example, a 3-level
strip pooling layer with strips of f1 × 1, 2 × 1, 3 × 1g in hori-
zontal dimension results in 6 strips. Then, we concatenate the
outputs of the 3-level strip pooling layer to obtain k∑3

n=1an ×
bnða1 = 1, a2 = 2, a3 = 3 ; b1, b2, b3 = 1Þ6k fixed-dimensional
vectors and input them into the fully connected layer for the
classification.

It should be noted that Figure 4 only shows multilevel
strip pooling in the horizontal dimension. In fact, each fea-
ture map can be pooled by the MSP module using a multi-
level strip window to average all the feature values in the
horizontal, vertical, or both dimensions. In image classifica-
tion, we can flexibly choose horizontal, vertical, or both
dimensions multilevel strip pooling according to the struc-
tural characteristics of the target object in the image. The out-
puts of the multilevel strip pooling operations are fixed-
dimensional vectors, which contain global and local informa-
tive contexts. In this study, since we collected carotid plaques
in the longitudinal section of carotid US images, the long-
range context in the horizontal dimension is more informa-
tive. According to the results of the preliminary experiment,
to take efficiency into account and to make the MSP module
lightweight, in this work, we adopt MSP operations only in
the horizontal dimension to capture multilevel long-range
context of carotid plaques. For example, in Figure 4, the vec-
tor bounded by the red box in the outputs is obtained by
pooling the horizontally long-range area (enclosed by the
red box) of the feature maps using one of 3 × 1 strips in the
3rd-level strip pooling. Compared to SPP, MSP considers
using long but narrow kernel instead of square window for
pooling, which focuses on acquiring long-range context in
horizontal dimension and avoiding some unnecessary con-
nections to be built in vertical dimension. Furthermore, the
module is an add-on building block that can be plugged into

the backbone of any network. In the following, we describe
the structure of the proposed MSP-based CNN for the classi-
fication of carotid plaque echogenicity.

2.4. MSP-Based CNN for the Classification of Carotid Plaque
Echogenicity. The VGG model is one of the most popular
deep learning networks because it reinforces the notion that
CNNs must have a deep network of layers for a hierarchical
representation of visual data to be possible. Although many
follow-up works have improved upon the VGG architecture,
in this work, we used the VGG network with a simple struc-
ture as the backbone to build the MSP-based CNN.

The structure of MSP-based VGGNet, as shown in
Figure 5, consists of two main components. One component
employs the same 5 convolution and pooling blocks as
VGG16, except for the pooling layer after the last convolu-
tion layer, which is mainly used for image feature extraction.
Each block has multiple convolution layers (with rectified
linear unit (ReLU) activation), which use 3 × 3 filters with
strides and paddings of 1, along with 2 × 2 max-pooling
layers with strides of 2. The convolution layers operate in a
sliding window manner to perform feature extraction on
the input carotid plaque images of arbitrary sizes and gener-
ate feature maps of any size. The other component is theMSP
module, followed by the fully connected layer and Softmax
layer. The MSP module can perform multilevel strip pooling
on the acquired feature maps of arbitrary sizes to obtain a
fixed-size feature representation and then input it into the
fully connected layer for carotid plaque echogenicity
classification.

To prevent the model from overfitting, we use publicly
available weights for the VGG16, trained against the
ILSVRC12 challenge dataset and fine-tune them through
transfer learning [34] for our purpose. Meanwhile, a dropout
layer [35] is added to the network before the last fully con-
nected layer. The feed-forward operation in the network with
dropout is shown in Equations (3)–(6). Here, the Bernoulli
function will randomly generate a vector of 0 or 1. zl denotes
the vector of inputs into layer l, and yðlÞ denotes the vector of
outputs from layer l.wðlÞ and bðlÞ are the weights and biases at
layer l [35].

r lð Þ
j ∼ Bernoulli pð Þ, ð3Þ

~y lð Þ = r lð Þ ∗ y lð Þ, ð4Þ

z l+1ð Þ
i =w l+1ð Þ

i ~yl + b l+1ð Þ
i , ð5Þ

y l+1ð Þ
i = f z l+1ð Þ

i

� �
: ð6Þ

3. Results and Discussion

In this section, we implement MSP-based VGGNet for the
classification of carotid plaque echogenicity on the collected
dataset, which was labelled three types (echo-rich, intermedi-
ate, and echolucent).

k features maps

4k-d

4k fixed-dimensional vectors

Fully connected layers

9k-d k-d

Pool1⨯1

SPP

Concat.

Pool2⨯2Pool3⨯3

Figure 3: The structure of SPP module. Here, k is the number of
feature maps.
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3.1. Experimental Setup.We used an open-source deep learn-
ing framework, PyTorch, for training and testing the proposed
network and popular CNNs for comparison purposes. All
training and testing procedures were performed on anUbuntu
64-bit desktop personal computer with an Intel Core i9-
10900K central processing unit (CPU) and 32GB of random
access memory. An NVIDIA RTX 2080 Ti graphical process-
ing unit (GPU) with CUDA 10.1 was used for acceleration.

The cross-entropy function was used as the cost function,
and the stochastic gradient descent (SGD) optimizer was
adopted to minimize the cost function [36]. The number of
iterations was 30, the momentum was 0.9, and the learning
rate was set to 0.001, which was reduced by a factor of 10 after
every 6 iterations.

During the training and testing phases, we used batch
data to train the network. The batch data needed to be consis-
tent in all dimensions because the batch array was required to
be converted into a tensor during the training and testing
phases. Consequently, the batch size should be set to 1 when
using SPP-based VGGNet andMSP-based VGGNet accepted
images with arbitrary sizes as inputs.

3.2. Evaluation Metrics. The performances of networks in
terms of carotid plaque classification were evaluated using
the accuracy, sensitivity (recall), specificity, precision, and
F1-score metrics, which are defined as follows:

accuracy =
TP + TN

TP + FP + TN + FN
,

sensitivity =
TP

TP + FN
,

specificity =
TN

TN + FP
,

precision =
TP

TP + FP
,

F1

‐score = 2 × precision × recall

precision + recall,
ð7Þ

k features maps

9⨯k-d vectors

MSP

Fully connected layersConcat.

Strip3⨯1

Pool

Pool

Pool

Strip2⨯1

Strip1⨯1

Figure 4: The structure of MSP module. Here, k is the number of feature maps.

64 64 128 128

Conv2d+ReLU

Max pooling

Fully connected

Softmax

256 256256 512 512 512 512 512 512

MSP

Echo-rich

Intermediate

Echolucent
Feature
mapsConv5Conv4

Conv3
Conv2Conv1

Carotid plaques (hi⨯wi)

Figure 5: The structure of MSP-based VGGNet. Here, the number of filters in the last convolutional layer is 512.

Table 2: Different settings and outputs in MSP and SPP.

Name
Level

Total strips/bins Outputs
1st 2nd 3rd 4th

MSP-123 1 × 1 2 × 1 3 × 1 — 6 strips 6k

MSP-124 1 × 1 2 × 1 4 × 1 — 7 strips 7k

MSP-234 2 × 1 3 × 1 4 × 1 — 9 strips 9k

MSP-1234 1 × 1 2 × 1 3 × 1 4 × 1 10 strips 10k

SPP-123 1 × 1 2 × 2 3 × 3 — 14 bins 14k

SPP-124 1 × 1 2 × 2 4 × 4 — 21 bins 21k

SPP-234 2 × 2 3 × 3 4 × 4 — 29 bins 29k

SPP-1234 1 × 1 2 × 2 3 × 3 4 × 4 30 bins 30k

6 Computational and Mathematical Methods in Medicine



where TP, FP, TN, and FN represent the numbers of true
positive, false positive, true negative, and false negative cases,
respectively. Sensitivity measures the ability to correctly rec-
ognize positive cases, while specificity indicates the ability to
correctly classify negative cases. Precision denotes the pro-
portion of positive cases that were classified as positive cases,
and the F1-score represents the harmonic average of preci-
sion and recall and is typically used for the optimization of
a model towards either precision or recall.

3.3. Experimental Results. We designed three experiments to
investigate the effects of various levels and pools in the SPP
and MSP modules and chose the best module to demonstrate
the effectiveness of MSP-based VGGNet for the classification
of carotid plaque echogenicity by comparing it with the base-
line network VGG16 and SPP-based VGGNet, and to com-
pare it with other popular CNNs.

3.3.1. Selection of the Levels and Pools inMSP and SPPModules.
To verify whether the number of levels and pools affects the
experimental results, we explored the effect of a 4-level strip
pooling layer with strips of f1 × 1, 2 × 1, 3 × 1, 4 × 1g, namely,
MSP-1234, and three 3-level strip pooling layers with strips of
f1 × 1, 2 × 1, 3 × 1g, f1 × 1, 2 × 1, 4 × 1g, and f2 × 1, 3 × 1, 4
× 1g, namely, MSP-123, MSP-124, andMSP-234, respectively.
The settings and outputs are described in Table 2, and the
results are presented in Figure 6(a). The accuracy of MSP-123
reached 0.921, which was also slightly higher than that in the
other cases. More levels, such as in MSP-1234, or more strips,
such as inMSP-124 andMSP-234, provided very little in terms
of performance gains. This may be due to sufficient long-range
information being collected with MSP-123.

A similar pooling configuration was applied in SPP-based
VGGNet. A 4-level SPP layer with a pool of f1 × 1, 2 × 2, 3
× 3, 4 × 4g, namely, SPP-1234, and three 3-level SPP layers
with varying pools of f1 × 1, 2 × 2, 3 × 3g, f1 × 1, 2 × 2, 4 × 4
g, and f2 × 2, 3 × 3, 4 × 4g, namely, SPP-123, SPP-124, and

SPP-234, respectively, were verified in SPP-based VGGNet.
The settings used are also shown in Table 2. The results are
depicted in Figure 6(b), which shows that the accuracy of
SPP-123 was also slightly higher than that in the other cases,
especially at the beginning of epochs below 7. There were no
significant differences between the accuracies of the other
two pools in the 3-level spatial pyramid pooling layer and
the 4-level spatial pyramid pooling layer.

As a result, regarding the runtime cost, we adopted a 3-
level strip pooling layer with a strip of f1 × 1, 2 × 1, 3 × 1g
in MSP-based CNNs, that is, MSP-123 and a 3-level SPP
layer with a pool of f1 × 1, 2 × 2, 3 × 3g in SPP-based CNNs,
that is, SPP-123 as the default settings in the following
experiments.
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MSP-124

MSP-234
MSP-1234

(a) MSP-based VGGNet
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(b) SPP-based VGGNet

Figure 6: The effects of various levels and pools on classification accuracy.
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Figure 7: Accuracy comparison among MSP-based VGGNet, SPP-
based VGGNet, and VGG16.
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Table 3: Sensitivity and specificity comparisons among VGG16, SPP-based VGGNet, and MSP-based VGGNet.

Fold Methods
Performance evaluation (%)

SENER SENIM SENEL SEN SPEER SPEIM SPEEL SPE

1

VGG16 82.6 73.3 92.6 82.8 96.5 92.9 83.1 90.8

SPP-VGG 95.7 91.1 87.4 91.4 97.6 92.5 94.9 95.0

MSP-VGG 98.6 91.1 89.6 93.1 98.1 94.5 94.9 95.8

2

VGG16 84.6 67.5 92.8 81.6 98.0 91.2 82.3 90.5

SPP-VGG 98.5 87.0 93.4 93.0 97.7 96.3 94.3 96.1

MSP-VGG 98.5 90.9 92.8 94.1 98.1 95.8 95.7 96.6

3

VGG16 70.8 66.7 94.3 77.3 98.9 88.5 77.8 88.4

SPP-VGG 91.7 76.5 90.1 86.1 97.9 92.8 86.5 92.4

MSP-VGG 94.4 85.2 92.9 90.9 99.5 94.8 90.7 95.0

4

VGG16 78.8 64.9 96.0 79.9 99.0 92.9 77.3 89.7

SPP-VGG 93.9 81.8 96.0 90.6 97.6 97.2 90.6 95.1

MSP-VGG 95.5 81.8 96.0 91.1 98.6 96.3 91.3 95.4

5

VGG16 73.1 63.4 89.0 75.2 99.5 84.8 76.5 86.9

SPP-VGG 94.0 85.4 89.0 89.5 97.6 92.8 91.7 94.0

MSP-VGG 92.5 89.0 92.4 91.3 98.6 93.8 93.8 95.4

Avg:±Std:
VGG16 78:0 ± 5:3 67:2 ± 3:4 92:9 ± 2:3 79:4 ± 2:8 98:4 ± 1:1 90:0 ± 3:1 79:4 ± 2:7 89:3 ± 1:4

SPP-VGG 94:8 ± 2:2 84:4 ± 4:9 91:2 ± 3:1 90:1 ± 2:3 97:7 ± 0:1 94:3 ± 2:0 91:6 ± 2:5 94:5 ± 1:2

MSP-VGG 95:9 ± 2:3 87:6 ± 3:6 92:8 ± 2:0 92:1 ± 1:3 98:6 ± 0:5 95:0 ± 0:9 93:3 ± 2:0 95:6 ± 0:5
SPP-VGG and MSP-VGG are short for SPP-based VGGNet and MSP-based VGGNet, respectively. The best results are highlighted in bold. The listed metrics
were obtained on the test dataset.

Table 4: Precision and F1-score comparisons among VGG16, SPP-based VGGNet, and MSP-based VGGNet.

Fold Methods
Performance evaluation (%)

PREER PREIM PREEL PRE F1‐scoreER F1‐scoreIM F1‐scoreEL F1‐score

1

VGG16 89.1 82.5 83.3 85.0 85.7 77.7 87.7 83.9

SPP-VGG 93.0 84.5 93.7 90.4 94.3 87.7 90.4 90.8

MSP-VGG 94.4 88.2 93.8 92.1 96.5 89.6 91.7 92.6

2

VGG16 93.2 73.2 86.0 84.2 88.7 70.3 89.2 82.9

SPP-VGG 92.8 89.3 94.7 92.3 95.5 88.2 94.0 92.6

MSP-VGG 94.1 88.6 95.9 92.9 96.2 89.7 94.3 93.5

3

VGG16 96.2 69.2 81.6 82.4 81.6 67.9 87.50 79.7

SPP-VGG 94.3 80.5 86.4 87.1 93.0 78.5 88.2 86.5

MSP-VGG 98.6 86.3 90.4 91.7 96.5 85.7 91.6 91.3

4

VGG16 96.3 76.9 82.9 85.4 86.7 70.4 89.0 82.6

SPP-VGG 92.5 91.3 91.8 91.9 93.2 86.3 93.9 91.1

MSP-VGG 95.5 88.7 92.4 92.2 95.5 85.1 94.2 91.6

5

VGG16 98.0 61.9 80.6 80.2 83.8 62.7 84.6 77.6

SPP-VGG 92.7 82.4 91.5 88.8 93.3 83.8 90.2 89.1

MSP-VGG 95.4 84.9 93.7 91.3 93.9 86.9 93.1 91.3

Avg:±Std:
VGG16 94:6 ± 3:2 72:8 ± 7:0 82:9 ± 1:8 83:4 ± 1:9 85:5 ± 2:4 69:9 ± 4:8 87:6 ± 1:7 81:3 ± 2:3

SPP-VGG 93:0 ± 0:6 85:6 ± 4:1 91:6 ± 3:7 90:1 ± 2:0 93:9 ± 0:9 85:0 ± 3:5 91:4 ± 2:2 90:1 ± 2:0

MSP-VGG 95:6 ± 1:6 87:3 ± 1:5 93:2 ± 1:8 92:0 ± 0:5 95:7 ± 0:9 87:5 ± 1:9 93:0 ± 1:2 92:1 ± 0:8
SPP-VGG and MSP-VGG are short for SPP-based VGGNet and MSP-based VGGNet, respectively. The best results are highlighted in bold. The listed metrics
were obtained on the test dataset.
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3.3.2. Effectiveness of MSP-Based VGGNet. We demonstrate
the effectiveness of MSP-based VGGNet on the collected
dataset for the classification of carotid plaque echogenicity.
The 5-fold cross-validation procedure was adapted to obtain
more impartial and unbiased results. To evaluate the perfor-
mance of the proposed MSP-based VGGNet, we compared it
with the baseline VGG16 network and SPP-based VGGNet,
and the results are shown in Figure 7 and Tables 3 and 4.
From Figure 7, it can be seen that the proposed MSP-based
VGGNet obtained the highest accuracy, and the testing pro-
cess was stable and converged quickly.

The performance metrics obtained on our dataset other
than accuracy are shown in Tables 3 and 4, where SENER,
SENIM, and SENEL represent the sensitivities of the networks
to the echo-rich plaques, intermediate plaques, and echolu-
cent plaques, respectively, and SPEER, SPEIM, SPEEL, PREER,
PREIM, PREEL, F1‐scoreER, F1‐scoreIM, and F1‐scoreEL
denote the respective specificities, precisions, and F1-scores.
SEN represents the overall mean classification sensitivity,
which combines SENER , SENIM, and SENEL for the three dif-
ferent types of plaques, and SPE, PRE, and F1‐score represent
the corresponding overall mean specificity, precision, and
F1-score, respectively.

Tables 3 and 4 show that our proposed MSP-based
VGGNet performed better than VGG16 and SPP-based
VGGNet in terms of classifying the three types of plaques.
On the echo-rich plaques, the mean sensitivities of MSP-
based VGGNet according to 5-fold cross-validation were
95:9 ± 2:3%, which surpassed those of VGG16 and SPP-
based VGGNet by 17.9% and 1.1%, respectively. The mean
specificities, precisions, and F1-scores were also higher than
those of VGG16 and SPP-based VGGNet. This finding was
also evident for the intermediate plaques. On the echolucent
plaques, although VGG16 provided the best mean sensitivity
(92:9 ± 2:3%), it had relatively low specificity (79:4 ± 2:8%),
precision (82:9 ± 1:8%), and F1-score (87:6 ± 1:7%). By
comparison, our MSP-based VGGNet not only provided
the second-ranked sensitivity (92:8 ± 2:0%), which was very
close to the best sensitivity (92:9 ± 2:3%) with no statistically
significant difference between them (p = 0:4), but also obtained
the best specificity (93:3 ± 2:0%), precision (93:2 ± 1:8%), and
F1-score (93:0 ± 1:2%). Moreover, the overall average sensitiv-
ity of 92:1 ± 1:3%, specificity of 95:6 ± 0:5%, precision of
92:0 ± 0:5%, and F1-score of 92:1 ± 0:8% obtained by our
MSP-based VGGNet are higher than those of VGG16 and
SPP-based VGGNet, which also demonstrates the superiority
of the proposed method.

Finally, comparisons of the training and testing times of
the three tested networks are provided in Table 5. It can be

seen that the least time was spent by ourMSP-based VGGNet
during the training and testing phases due to it having fewer
parameters and reduced computational costs.

3.3.3. Classification Comparison with Popular CNNs. Figure 8
shows a comparison of our proposed network with several
popular CNNs. Obviously, our MSP-based VGGNet achieved
accuracy higher than 0.9, which was much better than those of
all the popular networks. Meanwhile, our proposed network
converged after almost 5 epochs on the test set, which was
faster than other networks, and the training process is more
stable. Among the compared popular CNNs, they had similar
classification performance. ResNet50 had a slightly higher
accuracy, while the latest EfficientNet-b7 had a slightly lower
accuracy. This indicates that it is not that the more complex
the network architecture is, the better is the classification per-
formance. Our specially designed network had a simpler
architecture but should be more suitable for the classification
of specific medical images than the complex heavy-weighted
networks in the case of a small dataset.

Figure 9 shows the confusion matrices of ResNext50 [37],
DRN-d22 [38], MobileNet-v2 [39], DenseNet121 [40],
EfficientNet-b7 [41], and MSP-based VGGNet for the classi-
fication of the three types of carotid plaques using 5-fold
cross-validation. From Figure 9, it is apparent that our pro-
posed network provided the best classification rates for the

Table 5: Training and testing time comparisons among VGG16, SPP-based VGGNet, and MSP-based VGGNet.

Methods
Single time 5-fold time

Training Testing Total Training Testing Total

VGG16 9m 42 s 2m 37 s 12m 19 s 48m 30 s 12m 36 s 61m 6 s

SPP-based VGGNet 7m 30 s 35 s 8m 5 s 37m 28 s 2m 44 s 40m 12 s

MSP-based VGGNet 6m 54 s 30 s 7m 24 s 34m 27 s 2m 30 s 36m 57 s
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Figure 8: Accuracy comparison with popular networks in terms of
carotid plaque classification.
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three types of plaques. All the CNNs achieved similarly high
correct classification rates (ranging from 0.903 to 0.927) for
the echolucent plaques, but the classification rates of MSP-
based VGGNet for the echo-rich and intermediate plaques
are significantly higher than those of popular CNNs. Espe-
cially for the intermediate carotid plaques that are difficult to
distinguish, our proposed network achieves an accuracy of
0.876, while the highest accuracy among popular CNNs is
0.766 obtained by DRN-d22. The accuracy of MobileNet-v2
in this category is lower than 0.700. Although EfficientNet-
b7 achieved the second highest recognition rate of 0.852 for
echo-rich plaques, it was 10.7% lower than our proposed net-
work. Meanwhile, it performed poorly in the classification of

intermediate plaques, which misclassified 30.9% of the inter-
mediate plaques as echolucent plaques, and provided the low-
est recognition rate of 0.582 for the intermediate plaques
among popular CNNs. Overall, our MSP-based VGGNet pro-
vides the best classification results for the classification of
carotid plaques echogenicity.

For a comparison with the traditional methods, the
GSM and AUCPDC values of all 1463 images were calcu-
lated based on the greyscale distribution, and then, they
were used by a support vector machine (SVM) classifier
to classify the plaques according to the three different
types. However, the results obtained were poor and are
not shown here.
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Figure 9: Confusion matrices of the compared networks for the classification of carotid plaques. ER, IM, and EL represent echo-rich plaques,
intermediate plaques, and echolucent plaques, respectively.
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4. Discussion

The accurate and objective classification of carotid plaque
echogenicity is crucial for stroke risk assessment and for the
planning of optimal treatment strategies. In this study, we
proposed MSP-based CNN for the classification of carotid
plaque echogenicity, which differs from the previous work.
In particular, previous classification methods [16–19] identi-
fied different types of carotid plaques using handcrafted fea-
tures, which lacked the ability to achieve a potential higher
performance due to their inability to comprehensively repre-
sent the complicated features of carotid plaque. Meanwhile,
obtaining these handcrafted features required professional
domain knowledge and manual intervention, which limits
the applicability of the method for other classification tasks.
In contrast, the proposed approach can automatically extract
low- and high-level features from the massive carotid plaques
and serve the classification purpose without requiring man-
ual intervention, suggesting the utility in research and clinical
studies. Compared to the popular CNNs, the proposed MSP-
based CNN can accept carotid plaques of arbitrary sizes as
inputs, while popular CNNs need to transform the input
images to a uniform size by cropping and scaling, which will
cause content loss or distortion and hence has a negative
impact on the classification accuracy. Although the widely
used SPP network can also accept input images of any size,
its ability to exploit anisotropy contextual information is lim-
ited since only square kernel shapes are applied. In contrast,
our MSP-based CNN has a couple of advantages. First, it
enlarges the receptive field by strip pooling and has less net-
work parameters that resulted in less computational cost.
Secondly, considering that the ultrasound images of carotid
plaques in the longitudinal section are generally stripe-like
structure and the greyscale distribution is anisotropic, the
proposed MSP-based CNN adopts multilevel strip pooling
in horizontal dimension to capture more accurate context,
which is beneficial to improve the classification accuracy of
carotid plaques. Experimental results show that the proposed
MSP-based CNN is superior in terms of discriminating the
three different types of carotid plaques compared to popular
CNNs and SPP-based CNN.

Although we achieved high classification accuracy as well
as computational efficiency, we must acknowledge a number
of limitations. We note that the recognition rate of interme-
diate plaques is lower than echo-rich and echolucent plaques.
This may be because of the complex morphology and vari-
ability of intermediate plaques. We may consider the novel
attention mechanism to more accurately capture the infor-
mation closely related to the classification task, while elimi-
nating some irrelevant information, so as to improve the
recognition rate. In addition, the groundtruth for this study
was provided by only one expert clinician with decades of
experience working with carotid ultrasound data. In the
follow-up study, the generation of groundtruth datasets by
multiple experts from different institutions would be needed
to evaluate the sensitivities of the proposed networks on the
training dataset and ensure that the results are generalizable.
Furthermore, patients should be followed for at least 5 years
and their carotid plaques should be reclassified to determine

if the plaques are changing and becoming unstable, and
patient outcome data (i.e., TIAs or strokes) should be com-
pared to the classification results to determine if these data
can be used clinically as risk indicators.

5. Conclusions

In this work, we investigated the design of the SPP module,
proposed the MSP module, and presented MSP-based
VGGNet to improve the classification performance with
respect to carotid plaque echogenicity. A 5-fold cross-
validation was used to evaluate the effectiveness of our net-
work on a collected clinical dataset. In a comparison with pop-
ular CNNs, the experimental results demonstrated that our
network is more effective for correctly classifying the echo-
genicity of carotid plaques into three types. Therefore, our net-
workmay potentially assist clinicians in using amore objective
risk assessment metric for carotid plaques to monitor plaque
changes and predict possible cerebrovascular events.
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