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Osteoporosis is a degenerative osteoarthropathy commonly found in old people and postmenopausal women. Many studies
showed that microRNAs (miRNAs) can regulate the expression of osteoporosis-related genes and are abnormally expressed in
patients with osteoporosis. miRNAs therefore have the potential to serve as biomarkers of osteoporosis. In this study, the
limma package was used for the differential expression analysis of mRNA expression profiles and 357 significantly differentially
expressed genes (DEGs) were obtained. Metascape was used for functional enrichment analysis of DEGs. The result revealed
that DEGs were mainly enriched in signaling pathways like MAPK6/MAPK4. Based on the STRING database, the protein-
protein interaction (PPI) network of DEGs was constructed. MCODE was used to analyze the functional subsets, and a key
functional subset composed of 9 genes was screened out. In addition, the miRNA-mRNA regulatory interaction network
(RegIN) was analyzed by the CyTargetLinker plugin, which generated 55 miRNA-mRNA regulatory interactions. Through
literature searching, the osteoporosis-related gene FOXO1 in the key functional subset was determined to be the main object of
the study. In qRT-PCR assay, the expression of the predicted miRNAs was tested in peripheral blood mononuclear cells of
mice with osteoporosis, in which 13 miRNAs were remarkably highly expressed. All in all, this study, based on bioinformatics
analysis and testing assay of miRNA expression, determined the potential biomarkers of osteoporosis.

1. Introduction

Osteoporosis, characterized by low bone mass and deteriora-
tion of the bone architecture, is a systemic skeletal disease
resulting in an increased risk of bone brittleness and frac-
ture. It is commonly found in old people and postmeno-
pausal women. Most of the studies pointed out that the
dynamic unbalance between osteoblasts and osteoclasts led
to bone loss, thus causing osteoporosis [1]. Early prediction
of osteoporosis can help the high-risk group avoid fragility
fracture [2]. By drawing the receiver operating characteristic
(ROC) curve, some studies evaluate the osteoporosis predic-
tion model based on bone mineral density (BMD) and mul-
tiple clinical characteristics, and the result revealed bad
prediction performance of the model [3]. It is necessary,
therefore, to develop more efficient prediction biomarkers
for osteoporosis.

As noncoding small RNAs, miRNAs can posttranscrip-
tionally modulate the expression of specific genes, thus
affecting various kinds of biological processes [4]. A number
of studies on miRNAs affecting osteoporosis exhibited that
miRNAs can regulate various genes and inhibit proliferation
and differentiation of osteoblasts, thereby causing osteopo-
rosis [5–7]. Meanwhile, works of literature also reported that
predictive models for fracture risk due to osteoporosis can be
constructed via miRNAs [8]. Hence, the excavation of
osteoporosis-related miRNA biomarkers can offer more
options for the research and development of osteoporosis
biomarkers.

Differentially expressed genes (DEGs) were analyzed and
screened out based on gene expression matrices. At the same
time, based on multiple bioinformatics analyses and assays,
the biomarkers of various diseases can be further screened
from DEGs. In the field of osteoporosis study, many studies
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have used expression matrices for research and screened
out key genes through bioinformatics analysis [9–11]. For
example, Gong et al. [12] published their studies in 2019,
in which they pointed out that ATF2, FBXW7, and RDX
play important roles in the occurrence of postmenopausal
osteoporosis through enrichment analysis, protein-protein
interaction (PPI) network analysis, and the qRT-PCR test,
based on DEGs of expression gene microarray in women
with postmenopausal osteoporosis and normal females. The
studies above showed that bioinformatics analysis based on
gene expression matrices, combined with the expression level
test, could effectively screen out the key genes associated with
osteoporosis.

In this study, we made use of gene expression microar-
rays of mononuclear cells in women with high and low
BMD from the Gene Expression Omnibus (GEO) database.
Besides, we performed functional enrichment analysis, PPI
network analysis, the miRNA-mRNA regulatory interaction
network (RegIN), and the miRNA expression test. Finally,
we successfully screened out the potential miRNA bio-
markers of osteoporosis.

2. Materials and Methods

2.1. Expression Profile Data and Study Design. Expression
profile data (GSE56815) from the GPL96 platform were
downloaded from the GEO database (https://www.ncbi.nlm
.nih.gov/geo/). The data included the expressed genes of
peripheral blood mononuclear cells (PBMC) in 80 Caucasian
women who were divided into two groups (high-BMD group:
ZBMD > +0:84; low-BMD group: ZBMD < −0:52) according to
the median of ZBMD of their femurs: ZBMD = ðmeasured
bonemineral density −mean bonemineral density of peers of
the same race and genderÞ/standard deviation of bonemineral
density of peers of the same race and gender. With 40 women
in each group, both of the two groups involved 20 premeno-
pausal women and 20 postmenopausal women. Based on
annotation files of the platform, the probe ID was mapped to
corresponding gene symbols and the probes without the sym-
bols were removed. A gene symbol was matched with multiple
probes whose average expression value was determined to be
the final gene expression value. The missing expression data
was filled via the K-Nearest Neighbor (KNN) [13], followed
by log 2 scaling. Finally, the limma package [14] was used
for standardized processing. Based on the expression profile
data, we designed the following bioinformatics analyses and
assays (Figure 1).

2.2. Differential Expression Analysis and Enrichment
Analysis. As 40 women with high BMD were taken as the
control group, differential analysis of the expression profile
of mononuclear cells in 40 women with low BMD was con-
ducted by using the limma package (FDR < 0:05), and then
the DEGs were obtained. Furthermore, the Metascape
(http://metascape.org) database [15] was used to perform
functional enrichment analysis for key functional subset
genes of DEGs and the PPI network and the parameters
were set as default.

2.3. PPI Network Analysis.With an interaction score > 0:4 as
the threshold, the STRING (http://string-db.org/cgi/input
.pl) database [16] was used to build a PPI network of DEGs.
The MCODE plugin in Cytoscape v3.7.0 was used to select
the main functional subsets with high connectivity in the
PPI network (parameters were set as Degree = 2, Node
score = 0:2, K‐core = 2, and Max:depth = 100).

2.4. miRNA-mRNA RegIN Analysis. The CyTargetLinker
v4.1.0 plugin in Cytoscape v3.7.0 [17] can visualize the
RegIN between miRNAs and target genes. Based on miR-
TarBase v8.0 and TargetScan v7.2 databases, CyTargetLin-
ker v4.1.0 was used to construct miRNA-mRNA RegIN.

2.5. Osteoporosis Induction and PBMC Sample Collection.
Eight female C57 mice aged 8 weeks were purchased from
Charles River Laboratories (Shanghai, China), and they were
housed in the cage with food and drink, at room tempera-
ture (22 ± 1°C), and with day and night alternation for
12 h/12 h. The mice were randomly divided into the normal
group (n = 4) and osteoporosis group (n = 4). Mice in the
osteoporosis group were treated daily with retinoic acid
gavage (70mg/kg retinoic acid, vegetable oil solvent), while
the mice in the normal group were treated daily with control
solvent gavage (vegetable oil solvent). Fifteen days later, a
heparin sodium capillary tube was used to collect 500μl
whole blood from orbits of all of the mice, and the mice
would be killed after that. Based on the instructions of the
manufacturer, the EasySep™ Mouse Monocyte Isolation Kit
(STEMCELL, Canada) was used to extract PBMC from the
whole blood collected from the mice. All of the mouse-
related assays were approved by the Animal Ethics Commit-
tee of Changshu Hospital Affiliated to Nanjing University of
Chinese Medicine.

2.6. Determination of miRNA Expression in PBMC by qRT-
PCR Assay. QIAzol (QIAGEN, USA) was used to extract
RNA from PBMC according to the instructions of the man-
ufacturer. Afterwards, reverse transcription was performed
by the miRNA Reverse Transcription Kit (QIAGEN, USA)
to obtain the corresponding cDNAs. Finally, the miScript
SYBR Green PCR Kit (QIAGEN, Canada) was used to per-
form qRT-PCR (ABI7500, Thermo Fisher Scientific, USA)
on obtained cDNAs. U6 served as an internal reference in
all PCR reactions. Primers used in the reactions were listed
in Supplementary Table 2. Relative expression was
calculated by using the 2-ΔΔCt method. All samples were
tested in triplicate.

2.7. Data Analysis. GraphPad Prism (GraphPad Software,
USA) was used to process the miRNA expression data of
the mice. One-way analysis of variance was used for differ-
ential comparison between groups. The t-test was used for
the post hoc test. p < 0:05 indicated a significant difference
in statistics.

3. Results

3.1. Differential Expression Analysis and Enrichment
Analysis on Osteoporosis-Related DEGs. PBMC is a cell
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model suitable for the study of osteoporosis [18]. We there-
fore studied osteoporosis-related genes based on PBMC gene
expression profiles. Firstly, we analyzed the differential
expression of the gene profiles of PBMC samples from
women in high- and low-BMD groups using the limma
package and screened 357 DEGs, including 209 upregulated
genes and 148 downregulated genes (Figure 2(a)) (Supple-
mentary Table 1). Based on the 357 DEGs, functional
enrichment analysis was performed by Metascape. The
enrichment results showed that these genes were mainly
enriched in signaling pathways like MAPK6/MAPK4
signaling (Figures 2(b)–2(d)).

3.2. PPI Network Analysis. To analyze the corresponding
protein regulatory network, a PPI network (286 nodes
and 834 lines) was constructed for these DEGs using the
STRING database. Subsequently, MCODE was used to
screen out the top three functional subsets (Clusters 1, 2,
and 3) with the highest score from the PPI network
(Figure 3(a)). By consulting the literature, we found that
EIF3, RPL3, and RPL30 in Cluster 1 are mostly associated
with biological functions such as cell proliferation and cell
cycle monitoring [19–21]. FOXO1, BMP4, WNT1, and
EGFR in Cluster 2 are related to osteoporosis [22–25].
The genes in Cluster 3 are mostly members of the RAB
gene family, which usually encodes GTPase and has a high
diversity in functions. For example, RAB2A plays a role in
the activation of breast cancer stem cells which induces
tumors [26, 27]. Therefore, Cluster 2 was selected for fur-
ther analysis. We took the genes in Cluster 2 as study
objects and performed functional enrichment analysis on

them (Figures 3(b)–3(d)). The analysis results demon-
strated that these genes were mainly enriched in osteoclast
differentiation.

3.3. miRNA-mRNA RegIN. To investigate the miRNAs reg-
ulating the genes above, CyTargetLinker was used to pre-
dict the RegIN of genes in Cluster 2 and miRNAs. The
result showed that a total of 264 miRNAs were predicted
from the miRTarBase v8.0 database and 266 miRNAs were
predicted from the TargetScan v7.2 database. Besides, a
miRNA-mRNA RegIN with 357 nodes and 548 lines was
built (Figure 4(a)). To increase the accuracy of the predic-
tion, we screened the common miRNA-mRNA regulatory
interactions predicted from the two databases and selected
some miRNAs within (Supplementary Table 3) for later
experiments (Figure 4(b)).

3.4. Screening of Osteoporosis-Related miRNAs. By searching
the literature, we first confirmed that FOXO1 had a strong
correlation with osteoporosis. As an important regulatory
gene in bone metabolism, FOXO1 modulates osteoblast dif-
ferentiation and proliferation and osteoclast generation
[28]. Meanwhile, many studies revealed that the upregula-
tion of FOXO1 can restore the osteoblast viability of mice
with osteoporosis [29–31]. We therefore concluded that
FOXO1 expression was negatively correlated with osteoporo-
sis progression. In addition, the relatively accurate miRNA-
mRNA RegIN predicted by CyTargetLinker showed that the
number of miRNAs regulating FOXO1 was the largest
(Figure 4(b)). To further predict the expression of the obtained
miRNAs regulating FOXO1 in mice with osteoporosis, we

Download gene expression microarray 
data from GEO (GSE56815)

Differential gene expression analysis using 
limma package

Functional enrichment analysis for DEGs 
using Metascape

Constructing PPI network in STRING 
database

357 DEGs

Cluster analysis using MCODE Enrichment analysis for the selected 
clusters using Metascape

Constructing miRNA-mRNA RegIN using -
CytargetLinker

Literature review for osteoporosis related 
mRNA

Quantification analysis for osteoporosis- 
related miRNAs using qRT-PCR

Figure 1: Flowchart of analyses and assays.
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firstly constructed a model of mice with osteoporosis. Then,
we used qRT-PCR to test the expression of miRNAs regulating
FOXO1 predicted in PBMC of mice with osteoporosis and
normal mice (Figure 5). The result showed that miR-96-5p
was significantly lowly expressed in the osteoporosis group
compared to the normal group, and miR-27b-3p expression
had no significant difference between the two groups. Apart
from the 2 miRNAs above, all of the rest 13 miRNAs were
markedly highly expressed in the osteoporosis group.

4. Discussion

Conventional osteoporosis-related markers are mostly pro-
tein biomarkers, such as bone formation-related serum total
osteocalcin, bone alkaline phosphatase (ALP), type I procol-
lagen N-terminal propeptide (PINP) and bone resorption-
related type I collagen cross-linked C-terminal peptide,
and serum type I collagen cross-linked N-terminal peptide
(S-NTX) [32]. Although these biomarkers, to some extent,
can reflect bone metabolism, they have some inadequacies.
For instance, (i) the test results of these biomarkers will be

affected by the different clinical characteristics of patients
[33]; (ii) the results of these biomarkers tested in different
laboratories may be greatly different [34]; and (iii) protein,
when used as biomarkers to send diagnostic messages,
may be less efficient than miRNAs [32]. Thus, miRNAs
are hopefully to serve as novel osteoporosis-related bio-
markers and make up for the deficiencies of conventional
biomarkers. Based on bioinformatics analyses and experi-
ments, the study determined potential miRNA biomarkers
related to osteoporosis.

Functional enrichment analysis showed that DEGs were
mainly gathered in MAPK6/MAPK4 signaling. Stimulated
by various signaling molecules, the MAPK signaling path-
way regulates multiple cell functions, including proliferation,
differentiation, mitosis, and apoptosis [35]. Moreover, a
study revealed that the MAPK signaling pathway is also
involved in the proliferation of osteoclasts [36]. In addition,
studies exhibited that the traditional Chinese medicine-
(TCM-) mediated MAPK signaling pathway modulates bone
metabolism in osteoporosis models treated with TCM
in vivo and in vitro [37–39]. In summary, it could be
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Figure 2: Osteoporosis-related DEGs and enrichment analysis. (a) Volcano plot of osteoporosis-related DEGs. Red represents significantly
upregulated genes, while green represents significantly downregulated genes. (b) Bar chart of DEG enrichment analysis. The functions and
signaling pathways are ordered according to the p value (smaller p value indicates higher ranking). (c) Enrichment analysis network based
on p value. Deeper color means a higher significance of gene enrichment. The bigger the node is, the more genes are included. (d)
Enrichment analysis network based on functions and signaling pathways. Each color represents a specific function or signaling pathway,
and nodes with the same color belong to the same function or signaling pathway.
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concluded that the results of enrichment analysis on DEGs
in this study were consistent with the results of various
studies.

FOXO1 was selected from PPI network Cluster 2 of
DEGs as a key gene to analyze the upstream miRNAs. In
fact, as a member of the FOXO family (including FOXO1,
FOXO3, FOXO4, and FOXO6), FOXO1 plays a significant
role in bone metabolism. A great number of experiments
proved that FOXO1 can activate the proliferation and differ-
entiation of osteoblasts and suppress the differentiation and
viability of osteoclasts at the same time [28]. As a major reg-
ulator of oxide balance and physiological metabolism of
bone cells, FOXO1 provides a favorable intracellular envi-

ronment for bone cell function by resisting the adverse
effects of oxidative stress [40]. A study has shown that acti-
vation of the SIRT1/FOXO1 signaling pathway can promote
bone formation [29]. FOXO1 therefore plays an important
role in the bone metabolism regulation of osteoporosis.
Based on this conclusion, we speculated that osteoporosis-
related miRNA biomarkers could be found in the miRNAs
regulating FOXO1.

Based on the significance of FOXO1 in osteoporosis, we
screened out 15 possible miRNAs regulating FOXO1 in
miRNA-mRNA RegIN. To test the expression of these miR-
NAs in mice with osteoporosis, we firstly constructed
models of mice with osteoporosis and then carried out the
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test by qRT-PCR. The result showed that 13 miRNAs were
remarkably highly expressed in PBMC of mice with osteo-
porosis. Among the 13 miRNAs, the expression trends of
miR-1271-5p, miR-135a-5p, miR-135b-5p, miR-153-3p,
miR-223-3p, miR-27a-3p, miR-370-3p, and miR-9-5p in
the current study were in line with their trends in various

studies [5, 7, 41–46]. Our result revealed that the expres-
sion of the 13 miRNAs was positively correlated with the
progression of osteoporosis. Hence, it could be speculated
that the 13 miRNAs above could serve as the potential
biomarkers of osteoporosis.

In short, this study predicted the potential miRNA
biomarkers of osteoporosis via differential analysis of gene
expression, functional enrichment analysis, PPI network
analysis, and miRNA-mRNA RegIN analysis, and the pos-
sibility of the selected miRNAs being biomarkers of osteo-
porosis was verified by qRT-PCR. Additionally, we found
that there is a certain correlation between female osteopo-
rosis and breast cancer in physiological metabolism. How-
ever, there are no reports about the linkage of the two
diseases in the gene drive, which will be further explored
in our future research. Our experiment results revealed
the potential of miRNAs being biomarkers of osteoporosis
to some degree, but it was not perfect enough. For
instance, this study was a retrospective study. Due to lim-
ited conditions, the experimental samples in this study
were peripheral blood samples from mouse models with
osteoporosis. In the future, we will further verify the con-
clusions of this study by collecting peripheral blood sam-
ples from clinical patients. For another, this study did
not further study the interactions between these miRNAs
and target mRNAs based on the selected miRNAs. In a
future study, we plan to design a series of experiments
for the screened-out miRNAs so as to verify the binding
relationships between these miRNAs and FOXO1 at the
molecular level and the regulatory functions of the
miRNA-mRNA regulatory axis at the cellular and animal
levels.

(a) (b)

Figure 4: miRNA-mRNA RegIN. (a) miRNA-mRNA RegIN based on two databases. Blue and red represent the miRNA-mRNA regulatory
interactions predicted by TargetScan and miRTarBase databases, respectively. (b) RegIN constructed by the common miRNA-mRNA
regulatory interactions predicted by miRTarBase and TargetScan databases.
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