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Purpose. Heart failure (HF) is a clinical syndrome caused by ventricular insufficiency. In order to further explore the biomarkers
related to HF, we apply the high-throughput database. Materials and Methods. The GSE21610 was applied for the differentially
expressed gene (DEG) analysis. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) was
performed to assess Gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The Gene Set
Enrichment Analysis (GSEA) was used for gene expression profile GSE21610. The Protein-Protein Interaction (PPI) network
and modules were also constructed for research. These hub gene function pathways were estimated in HF progression. Result.
We have identified 434 DEGs in total, including 304 downregulated DEGs and 130 upregulated DEGs. GO and KEGG
illustrated that DEGs in HF were significantly enriched in G protein-coupled receptor binding, peroxisome, and cAMP
signaling pathway. GSEA results showed gene set GSE21610 was gathered in lipid digestion, defense response to fungus, and
intestinal lipid absorption. Finally, through analyzing the PPI network, we screened hub genes CDH1, TFRC, CCL2, BUB1B,
and CD19 by the Cytoscape software. Conclusion. This study uses a series of bioinformatics technologies to obtain hug genes
and key pathways related to HF. These analysis results provide us with new ideas for finding biomarkers and treatment
methods for HF.

1. Background

Heart failure (HF) is generally a syndrome in which the heart
cannot pump out the same venous return and the blood sup-
ply needed for body tissue metabolism [1]. Data for 2020
showed that there were approximately 22.5 million HF
patients worldwide, with a mortality rate as high as 50%
[2]. Clinically, HF is divided into two types: acute and
chronic. Chronic HF has a slow onset, usually manifested
as an enlarged or thickened heart, and acute HF manifests
as severe myocardial damage and arrhythmia [3]. Cardiomy-
opathy, heart overload, myocardial inflammation, and other
cardiovascular diseases can induce the occurrence of HF,
especially in patients with a history of coronary heart disease
and hypertension [4]. Generally, different treatment methods
are adopted according to the different severities of the

patients, including not only drug treatments, such as RAAS
inhibitors, β-receptor antagonists, and nitrate drugs, but also
surgery and traditional Chinese medicine treatments [5].
However, because HF is a progressive disease, only 50% of
patients have a good prognosis after targeted treatment,
and many advanced patients still have a poor prognosis [6].
Therefore, the discovery of effective biomarkers for the treat-
ment of HF is very important.

High-throughput gene microarray analysis is the latest
technology, which can detect multiple chips at the same time
and minimize system errors and has extremely high sensitiv-
ity [7]. At present, this technology has been widely used in
the research of diseases, which has opened up a milestone
in the field of genomics research on human diseases, making
whole-genome resequencing possible [8–11]. In the process
of this research on HF, based on this technology, we can
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detect and explore the gene expression of HF at the molecu-
lar level.

In this study, we downloaded GSE21610 based on the
Gene Expression Omnibus (GEO) database and selected 68
samples as the basis for analysis. First, differentially
expressed genes (DEGs) were analyzed from the samples
by GEO2R, and then, the functional enrichment of DEGs
in Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) was analyzed with the help of Data-
base for Annotation, Visualization, and Integrated Discovery
(DAVID). Subsequently, the entire sample was analyzed by
Gene Set Enrichment Analysis (GSEA) for biological process
(BP) enrichment. Next, Search Tool for the Retrieval of
Interacting Genes (STRING) and Cytoscape were used to
construct a Protein-Protein Interaction (PPI) network and
screen out the hub genes. Finally, in order to clarify the roles
of the hub genes in HF, the levels of the two groups of 68
samples were compared and analyzed. The above bioinfor-
matics results will deepen our understanding of HF and find
new treatment options.

2. Materials and Methods

2.1. Microarray Data Processing. The GEO database contains
storage chips, next-generation sequencing, and other high-
throughput sequencing data, which can be used to retrieve
experimental sequencing data uploaded by others [12]. We
downloaded GSE21610 data set from the GEO (https://
www.ncbi.nlm.nih.gov/geo/) database. The data set contains
a total of 68 sample data, from which 8 groups of disease-
free control myocardium and 30 paired samples of VAD
(ventricular assistance device) support myocardium with
previous HF were collected as the sample data for this study.

2.2. Identification of DEGs. Based on the online analysis soft-
ware of GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/)
in the GEO database, we analyzed 8 groups of control sam-
ples and 30 paired samples of VAD samples. According to
the standard, we used FC > 2 as the screening criterion for
upregulation of DEGs and FC < 0:5 for downregulation of
DEGs. When P < 0:01, it had statistical significance. The
final selected DEGs were displayed through the volcano
map.

2.3. Enrichment Analysis of GO Term and KEGG Pathways
of DEGs. GO is a term used to describe the features of genes
and gene products, including three parts: BP, cellular com-
ponent (CC), and molecular function (MF) [13]. KEGG is
a gene product analysis in cellular metabolic pathways and
often used to analyze metabolic pathways [14]. In this study,
to clarify the biological functions of DEGs, based on the
DAVID (https://david.ncifcrf.gov/), we performed enrich-
ment analysis of DEGs in GO and KEGG. The results
obtained were displayed in histograms and scatter plots.

2.4. GSEA of 68 Samples. GSEA is a calculation method used
to test whether a predefined gene set shows a significant con-
sistent difference between two biological states [15]. In this
study, we tested the enrichment of genes in 8 groups of con-

trols and 30 paired samples of VAD cases in BP through
GSEA and set P < 0:05 as the standard.

2.5. Construction of the PPI Network and Identification of
Hub Genes. In order to find the hub genes in HF, we inte-
grated the cross-correlation of DEGs through the STRING
(https://string-db.org/) database. Later, with the help of the
Cytoscape (http://www.cytoscape.org/) software, a PPI net-
work of DEGs was constructed, which was helpful for sys-
tematic research on the molecular mechanisms of diseases
and therapeutic targets [16]. Finally, for the sake of screen-
ing out the hub genes from the PPI network according to
the degree value. Genes with a degree ≥ 12 were defined as
hub genes.

3. Results

3.1. Screening of DEGs. The samples in this study included 8
groups of control and 30 paired samples of VAD cases.
Based on the GEO2R analysis of these samples and the set
screening conditions, we obtained a total of 434 DEGs, of
which 304 were downregulated DEGs and 130 upregulated
DEGs (Figure 1).

3.2. Enrichment Analysis of GO Term and KEGG Pathways
of Upregulated DEGs. Figure 2(a) is the enrichment analysis
result of upregulated DEGs in GO. It was seen that upregu-
lated DEGs were in BP associated with the regulation of
aldosterone biosynthetic, very long-chain fatty acid cata-
bolic, sterol metabolic, and estrogen biosynthetic processes.
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Figure 1: Analysis of volcano diagrams of 8 groups of controls and
30 paired samples of VAD.
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Figure 2: Continued.
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In CC, the upregulated DEGs were related to Golgi lumen,
intracellular organelle lumen, SCF ubiquitin ligase complex,
mitochondrial outer membrane, etc. In MF, these DEGs
were also related to cell adhesion mediator activity, histone
demethylase activity, G protein-coupled receptor binding,
peptidase inhibitor activity, and cell-cell adhesion mediator
activity. Figure 2(b) shows the top 5 KEGG pathways
enriched by upregulated DEGs, namely, peroxisome, African
trypanosomiasis, primary immunodeficiency, ABC trans-
porters, and regulation of lipolysis in adipocytes.

3.3. Enrichment Analysis of GO Term and KEGG Pathways
of Downregulated DEGs. After the enrichment analysis of
the upregulated DEGs, we immediately analyzed the down-
regulated DEGs. The results in Figure 3(a) displayed that
the downregulated DEGs were enriched in BP, such as pos-
itive regulation of nitric-oxide synthase biosynthetic process

and T cell activation, regulation of nitric-oxide synthase bio-
synthetic process, and cellular response to fatty acid. In CC,
these DEGs were associated with sodium: potassium-
exchanging ATPase complex, acrosomal membrane, cyto-
plasmic side of endoplasmic reticulum membrane, etc. In
MF, these DEGs were related to 5′-deoxyribose-5-phosphate
lyase activity, androsterone dehydrogenase activity, clathrin
heavy chain binding, etc. The KEGG enrichment results in
Figure 3(b) demonstrated the first 9 pathways enriched by
DEGs were namely malaria, protein digestion and absorp-
tion, graft-versus-host disease, cholesterol metabolism, histi-
dine metabolism, cardiac muscle contraction, proximal
tubule bicarbonate reclamation, cAMP signaling pathway,
and bile secretion.

3.4. GSEA. To explore the function of genes in the sample,
we used GSEA to analyze the enrichment of genes in BP

Regulation of lipolysis in adipocytes

ABC transporters

African trypanosomiasis

Peroxisome
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Count
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(b)

Figure 2: Functional enrichment analysis of upregulated DEGs. (a) GO analysis. Green represents BP, orange represents CC, and purple
represents MF. (b) KEGG pathway. The size of the dot represents the number of enriched genes.
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Figure 3: Continued.
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and set P < 0:05 as the selection condition. Figures 4(a)–4(d)
show that the genes in 68 samples were significantly
enriched in lipid digestion, defense response to fungus,
intestinal lipid absorption, and positive regulation of potas-
sium ion transmembrane transporter activity.

3.5. Screening of Hub Genes from the PPI Network. Accord-
ing to the Cytoscape software on the STRING website, we
constructed a PPI network of DEGs, which contained 215
nodes and 297 edges (Figure 5). The edges between nodes
represented the interactions among these genes. In order to
screen out the hub genes, we screened out 5 hub genes
according to the degrees, namely, CDH1, TFRC, CCL2,
BUB1B, and CD19. Among them, CDH1 had the highest
degree value of 17, and the other four hub genes had degree
values of 12.

3.6. Analysis of Hub Gene Expression. In order to further
clarify the functions of these 5 hub genes in VAD, we drew
a violin chart to compare the levels of hub genes between
the control and the VAD groups. According to the results
in Figure 6, the expression levels of BUB1B, CCL2, CDH1,
and TFRC were higher in the control group. On the con-
trary, CD19 was highly expressed in the VAD group.

4. Discussion

HF is more common in the elderly population, and the prog-
nosis is poor [17]. It causes patients to reduce or lose their
ability to take care of themselves and brings a heavy eco-
nomic burden to patients, family, and society [18]. Accord-
ing to reports, the hospitalization rate of HF patients over
65 years old has risen sharply [19]. As the age of patients

Bile secretion

cAMP signaling pathway
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Cardiac muscle contraction

Histidine metabolism
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Figure 3: Functional enrichment analysis of downregulated DEGs. (a) GO analysis. Green represents BP, orange represents CC, and purple
represents MF. (b) KEGG pathway. The size of the dot represents the number of enriched genes.
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aged 65 to 85 increases every 10 years, the incidence of HF in
men has doubled, while the incidence in women has tripled.
For people 85 years of age or older, the incidence of HF is as
high as 13.01 per 1,000 people per year [20]. Based on different
standards, HF can be divided into different types. According
to the location of HF, it can be divided into left, right, and total
HF [21]. According to the ejection fraction, it can be divided
into low-volume and high-volume HF or systolic HF and dia-
stolic HF [22]. Here, the gene set GSE21610 analyzed the gene
expression patterns of 30 paired samples from VAD sup-
ported and 8 nonfailure control hearts.

According to the results of GO and KEGG analysis
results, we found G protein-coupled receptor binding, per-
oxisome, and cAMP signaling pathway were mostly signal
pathways of HF. Gaidarov et al. found that the G protein-
coupled receptor (GPCR) superfamily of integral membrane

proteins was composed of 1,000 members and included 3%
of the human genome. Internalization of agonist-activated
GPCR is regulated by nonvisual arrestins. It binds to clathrin
and is therefore considered an adaptor during endocytosis
[23]. The peroxisome proliferator-activated receptor (PPAR)
is a ligand-activated transcription factor, which converts the
lipid signal into a physiological response by activating the
metabolic target gene [24]. Ishiguro et al. proposed that the
heart cell cycle 3′,5′-adenosine monophosphate (CAMP)
regulates various processes, such as pulsation, contraction,
metabolism, and apoptosis [25]. CAMP is the main second
messenger of many organs; especially in the heart, it regu-
lates calcium and many other physiological processes:
homeostasis, beating frequency, myocardial contractility,
and cell death [26]. This mitochondrial CAMP pathway
may have clinical significance for HF, because mitochondrial

(a) (b)

(c) (d)

Figure 4: Functional analysis of BP using GSEA. (a) Lipid digestion. (b) Defense response to fungus. (c) Intestinal lipid absorption. (d)
Positive regulation of potassium ion transmembrane transporter activity.
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metabolism and CAMP signaling in patients diagnosed with
HF are significantly impaired, which is one of the reasons for
cardiomyocyte dysfunction [27].

GSEA showed that the gene set was gathered in lipid
digestion, defense response to fungus, intestinal lipid
absorption, and positive regulation of potassium ion trans-
membrane transporter activity. Rose et al. proposed that
rabbit’s APD was prolonged in pacing-induced HF due to
a decrease in potassium current densities. Action potential
(AP) prolongation is a sign of myocardial failure. The func-
tional downregulation of potassium current is a distinctive
feature of ventricular failure cells. The specific changes in
potassium expression depend on the type and area of the
heart and the process that induces HF [28].

We built a PPI network of DEGs in HF based on the
Cytoscape software. Finally, we got five hub genes of HF,
and they were CDH1, TFRC, CCL2, BUB1B, and CD19. Pre-
vious studies have found that CDH1 encodes a classic cad-
herin in the cadherin superfamily. The protein is processed
to produce mature glycoprotein [29]. CDH1 mutations are
associated with gastric cancer, breast cancer, colorectal can-
cer, thyroid cancer, and ovarian cancer. The loss of function
of this gene is believed to promote cancer progression [30].
Huang et al. concluded that TFRC was an important partic-
ipant in intracellular iron transport [31]. Several reports
have shown that certain human tumors, such as anaplastic
thyroid cancer and astrocytic brain tumors, have abnormal
TFRC overexpression. TFRC enhances the proliferation
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Figure 5: The PPI network of DEGs and the selection of hub genes. The PPI network of DEGs is established by Cytoscape, and the hub
genes are marked with red nodes.
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and metastasis of cancer, thereby promoting the progress of
cancer, showing the potential of TFRC as a new therapeutic
target for human cancer [32]. The article by Zhang et al. sug-
gested that chemokines were a type of small cytokines that
guided a variety of immune/inflammatory cells into the
tumor site during tumorigenesis [33]. Abnormal expression
of chemokines is related to different types of cancers, includ-
ing prostate cancer. CCL2 is a chemokine of monocytes/
macrophages, B cells, and T lymphocytes and belongs to
the CC subfamily of chemokines. CCL2 is highly expressed
in plasma, synovial fluid, and synovial tissue previously
reported in the literature [34].

5. Conclusion

To sum up, the present study has successfully determined
the hub genes and pathways in HF progression. Functional
and enrichment results show DEGs are significantly
enriched in G protein-coupled receptor binding, peroxi-
some, and cAMP signaling pathway. GSEA suggests that
the gene set GSE21610 is concentrated in lipid digestion,
defense response to fungus, and intestinal lipid absorption.
We also identify that some hub genes (CDH1, TFRC,
CCL2, BUB1B, and CD19) are linked with HF. Meanwhile,
these hub genes and key pathways are independent prognos-
tic factors for HF. Nevertheless, further studies are needed to
confirm the findings in this research.
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