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A key enzyme in human immunodeficiency virus type 1 (HIV-1) life cycle, integrase (IN) aids the integration of viral DNA into the
host DNA, which has become an ideal target for the development of anti-HIV drugs. A total of 1785 potential HIV-1 IN inhibitors
were collected from the databases of ChEMBL, Binding Database, DrugBank, and PubMed, as well as from 40 references. The
database was divided into the training set and test set by random sampling. By exploring the correlation between molecular
descriptors and inhibitory activity, it is found that the classification and specific activity data of inhibitors can be more
accurately predicted by the combination of molecular descriptors and molecular fingerprints. The calculation of molecular
fingerprint descriptor provides the additional substructure information to improve the prediction ability. Based on the training
set, two machine learning methods, the recursive partition (RP) and naive Bayes (NB) models, were used to build the classifiers
of HIV-1 IN inhibitors. Through the test set verification, the RP technique accurately predicted 82.5% inhibitors and 86.3%
noninhibitors. The NB model predicted 88.3% inhibitors and 87.2% noninhibitors with correlation coefficient of 85.2%. The
results show that the prediction performance of NB model is slightly better than that of RP, and the key molecular segments are
also obtained. Additionally, CoMFA and CoMSIA models with good activity prediction ability both were constructed by
exploring the structure-activity relationship, which is helpful for the design and optimization of HIV-1 IN inhibitors.

1. Introduction

Acquired immune deficiency syndrome (AIDS) is a systemic
immune dysfunction syndrome caused by the infection of
human immunodeficiency virus (HIV) infection, inducing the
destruction of CD4+ T lymphocytes [1–3]. HIV can be divided
into two subtypes: HIV-1 (i.e., the main pathogen of AIDS) and
HIV-2. HIV-1 is characterized by strong infection, rapid muta-
tion, and high mortality and can be transmitted through blood,
mother-infant, sexual intercourse, etc. [4–8]. Since the first case
of HIV-1 infection in 1981, the number of AIDS patients has
exploded worldwide [9]. According toWorld Health Organiza-

tion (WHO) data of 2019, more than 38 million people have
been infected, and 7.1 million of them have died [10]. Highly
active antiretroviral therapy (HAART) is the main strategy in
the clinical treatment of AIDS—the combination of drugs inhi-
biting both reverse transcriptase (RT) and the protease (PR),
which can reduce the damage of virus to immune system
[11]. However, the high variability of HIV-1 results in poor effi-
cacy of HAART treatment, leading to the emergence of drug-
resistant virus strains. It is urgent to identify new targets and
develop novel structural inhibitors [12–14].

As such an attractive and important target, HIV-1 integrase
(IN) is an essential enzyme in the HIV-1 lifecycle responsible
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for inserting the reverse-transcribed viral genome into the host
DNA through 3′ processing (3′-P) and strand transfer (ST)
reaction [15, 16]. Unlike PR and RT, there is neither known
functional analog of IN in human cells nor apparent cellular
toxicity for IN inhibitors [17, 18]. Encoded by the pol gene,
HIV-1 IN is composed of 288 residues with molecular weight
of 32kDa, which can be divided into three domains: N-
terminal domain (NTD, residues 1-49), catalytic core domain
(CCD, residues 50-212), and C-terminal domain (CTD, resi-
dues 213-288) [19]. The zinc finger in NTD is conductive to
the stability of the whole IN enzyme; proper chelation of DDE
motif (i.e., Asp64, Asp116, and Glu152) in CCD with two
Mg2+ ions is essential to maintain high enzymatic activity;
CTD serves as the nonspecific binding to viral DNA [20–26].

There are ten main types of HIV-1 IN inhibitors currently
reported: diketoacids, diazonaphthalene derivatives, quino-
lone acids, pyrimidine ketone, sulfur nitrogen thiozapine,
polyhydroxy arylcyclic compounds, disulfoxide compounds,
benzene sulfonamides, coumarin derivatives, salicylhydrazide
derivatives, etc. [27–33]. Diketoacids are the most fully studied
and most promising inhibitors against HIV-1 IN, showing
high efficiency, high selectivity, and low toxicity [34–36]. In
terms of inhibitory mechanism of diketoacid compounds,
the carbonyl and carboxyl groups both are, respectively,
chelated with two different Mg2+ ions, which significantly
weakens ST reaction by destroying metal-DDE recognition.
Raltegravir (RLT) was the first approved IN inhibitor drug
through FDA in 2007, followed by elvitegravir (EVG) and
dolutegravir (DTG) for clinical use [37–39]. Here, all three
belong to diketoacid compounds.

A lot of experimental and theoretical studies have involved
IN-ligand recognition, inhibition mechanism, and molecular
modification of diketoacid compounds. Two important scien-
tific problems remain unclear: (1) for many IN inhibitors
reported, is there a good classification method to determine
their activity? (2) How to effectively modify the diketoacid
inhibitor by obtaining the key groups that affect molecular
activity and then combining 3-dimensional quantitative
structure-activity relationship (3D-QSAR) results? In this work,
HIV-1 IN inhibitors were first collected to establish a personal-
ized database; the activity prediction model and the key groups
affecting the activity both were obtained with recursive partition
(RP) and naive Bayes (NB) model; finally, based on the struc-
ture and activity data of pyruvic acid inhibitors against HIV-1
IN, a 3D-QSAR model with good predictive ability was pro-
posed [40–42]. In particular, the quantitative relationship
between molecular structure (such as spatial conformation,
electrostatic characteristics, hydrophobicity, and H-bond) and
its inhibitory activity was explored, which will provide theoret-
ical guidance for the design of effective anti-AIDS drugs.

2. Methods

2.1. Preparation of HIV-1 IN Inhibitor Database. The estab-
lished HIV-1 IN inhibitor database contains 682 inhibitors
and 1103 noninhibitors (1785 molecules in total). All data
on the structure and activity of small molecules were obtained
from ChEMBL, Binding Database, DrugBank, PubMed, and
40 recent references. The IC50 value of 4600μm was set as

the criterion for defining an inhibitor. In data processing, 1
and 0 were adopted to characterize inhibitors and noninhibi-
tors, respectively. All the small molecules were generated using
ChemOffice package with Gasteiger-Hückel charge attached
and then optimized by the steepest descent (1000 steps) and
the conjugate gradient (1000 steps) algorithms based on
Tripos force field of SYBYL package [43]. The convergence
criterion is less than 4.182 kJ·mol−1·nm−1 for energy gradient.
The optimized structure is the basis of the subsequent molec-
ular descriptor and molecular fingerprint calculations.

2.2. Calculation of Molecular Descriptors and Molecular
Fingerprints. Molecular descriptors and molecular finger-
prints of personalized database elements both were calcu-
lated with Discovery Studio 3.5 (DS 3.5) package. Here, a
total of 13 molecular descriptors widely used in ADME
prediction were adopted for calculation: apparent partition
coefficient (logD), octanol-water partitioning coefficient
(AlogP), the number of rotatable bonds (nrot), molecular
weight (MW), the number of H-bond donors (nHBD), the
number of H-bond acceptors (nHBA), the sum of oxygen
and nitrogen atoms (nO+N), polar surface area (PSA), the
number of aromatic rings (nAR), the number of rings (nR),
molecular solubility (logS), molecular fraction polar surface
area (MFPSA), and molecular surface area (MSA) [44–46].

The SciTegic extended link fingerprints (i.e., FCFP, ECFP,
and LCFP) and path-based ones (i.e., FPFP, EPFP, and LEFP)
both were calculated using Morgan algorithm [47, 48]. The
first letter of molecular fingerprint, F/E/L, respectively, repre-
sents atomic functional role code, the properties used in the
Daylight atomic invariants rule, and atomic type code of
AlogP. Atomic functional role code (i.e., letter F) mainly
includes the combinations of H-bond acceptor, H-bond
donor, positive ionization, negative ionization, and aromatic
with halogen elements. Letter E consists of the sum of connec-
tion number among atoms, element types, atomic charge,
atomic weight, etc. Letter L is used to characterize the 120
atomic types involved in AlogP calculation. The second letter,
C/P, respectively, stands for extended-connection molecular
fingerprint and path-based one. The third and fourth letters
are derived from the initial capitalization of the “finger print”
word. Four-letter molecular fingerprints are often followed by
Arabic numerals 4 or 6, indicating the maximum distance
between atoms. As an important complement to molecular
descriptors for drug-like compounds, molecular fingerprint
parameters have been widely used in the classification and
prediction of inhibitors and noninhibitors.

2.3. Recursive Partitioning Classifiers. Recursive partitioning
(RP) is a classification statistical method which can directly
predict inhibitors and noninhibitors in the form of decision
tree, on the basis of compound data processing and biological
activity threshold criteria. Depth and node both are two
important parameters of decision tree, respectively, corre-
sponding to the complexity of the whole event and the
judgment process [49–51]. For example, when a compound
is at the logD node, its calculated data can be compared with
the threshold value and partitioned and then recompared
and repartitioned at the next RP node, until the RP is
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infeasible to continue at the bottom of tree. The criterion for
stopping partitioning is that the classification effect cannot be
improved or the remaining samples are too small. As far as
the tree depth is concerned, the larger the value, the better
the classification of the training data, despite the risk of
overfitting; a smaller tree depth indicates that the accuracy
of feature recognition in the training set is slightly lower,
and the tree shows good adaptability to the new dataset;
generally, the tree depth of 3 to 10 is a more appropriate. In
accordance with the golden section ratio, the database was
divided into the training set containing 1485 compounds
and the test set containing 300 compounds. The decision tree
was established based on the training set, and the accuracy of
model prediction was evaluated from the test set data.

2.4. Naive Bayesian Classifiers. In addition to RP method,
naive Bayesian (NB) model was also performed to develop
classifiers to distinguish HIV-1 IN inhibitors from noninhi-
bitors [52–55]. Firstly, the f vector (f = <f1, f2,⋯, f n > )
was set, and the component vectors (f1, f2, …and f n) were,
respectively, calculated to obtain the eigenvectors (F1, F2,
… and Fn), which can be used to represent the corresponding
molecular descriptors or molecular fingerprints. According
to Bayes’ theorem, the conditional probability and marginal
probability of two events can be correlated, as shown in
formula (1):

p C ∣ F1, F2,⋯, Fnð Þ = p Cð Þp F1,⋯Fn ∣ Cð Þ
p F1,⋯, Fnð Þ : ð1Þ

Here, C stands for the classification of compounds; p
ðC ∣ F1, F2,⋯, FnÞ is the posteriori probability after classi-
fication; p ðCÞ is the prior probability obtained from the
training set; p ðF1,⋯, Fn ∣ CÞ is for the conditional proba-
bility of compounds having a specific molecular descriptor;
p ðF1,⋯, FnÞ represents the marginal probability (or total
probability) for the occurrence of all particular molecular
descriptors. In NB model, each molecular descriptor is
independent of each other, from which formula (2) can
be obtained:

p F1,⋯, Fn ∣ Cð Þ = p F1 ∣ Cð Þ⋯ p Fn ∣ Cð Þ =
Yn

i=1
p Fi ∣ Cð Þ:

ð2Þ

Based on the data of training set, all the coefficients
required in formula (2) can be calculated by formulae
(3) and (4):

p Fi = f i∣+ð Þ = count Fi = f i ∩ C = +ð Þ
count C = +ð Þ , ð3Þ

p Fi = f i∣−ð Þ = count Fi = f i ∩ C = −ð Þ
count C = −ð Þ : ð4Þ

In this work, all compounds are divided into either
HIV-1 IN inhibitors or noninhibitors. p (+) and p (-),
respectively, represent the prior probability grouped into

inhibitors and noninhibitors. The posterior probability of
the compound being an inhibitor (p) or a noninhibitor
(q) is calculated as follows:

p = p +ð Þ
p F1 = f1,⋯, Fn = f nð Þ

Yn

i=1
p Fi = f i∣+ð Þ,

q =
p −ð Þ

p F1 = f1,⋯, Fn = f nð Þ
Yn

i=1
p Fi = f i∣−ð Þ,

ð5Þ

where the marginal probability pðF1 = f1,⋯, Fn = f nÞ is a
constant, and the sum of p and q is equal to 1.

2.5. Evaluation of Classification Model Quality. The predic-
tion ability of NB and RP models can be evaluated with lots
of parameters, including true positives (TP), true negatives
(TN), false positives (FP), false negatives (FN), sensitivity
(SE), specificity (SP), prediction accuracy of TP (PRE1),
prediction accuracy of TN (PRE2), and Matthews correlation
coefficient (C). Their specific calculation formula is as
follows:

SE =
TP

TP + FN
, ð6Þ

SP =
TN

TN + FP
, ð7Þ

PRE1 =
TP

TP + FP
, ð8Þ

PRE2 =
TN

TN + FN
, ð9Þ

C =
TP × TN − FN × FP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP + FNð Þ TP + FPð Þ TN + FNð Þ TN + FPð Þp : ð10Þ

2.6. Three-Dimensional Quantitative Structure Activity
Relationship. The quinolinone acid compounds—a class of
HIV-1 IN inhibitors—were randomly divided into a training
set (18 molecules in total) and a test set (4 molecules in total),
and their experimental IC50 values were transformed into
negative logarithmic form (i.e., pIC50Þ. According to the
three-dimensional quantitative structure activity relationship
(3D-QSAR) theory, molecules with similar conformations
tend to have similar biological activity. In this work, com-
pound # 2, which has been resolved and has good activity,
is selected as the template molecule [56]. Before constructing
the 3D-QSAR models, all molecules are aligned according to
the principle that common substructures overlap each other,
which is done in SYBYL-X1.3. In addition, comparative
molecular similarity index analysis (CoMSIA) and compara-
tive molecular field analysis (CoMFA) both are currently the
two most widely used 3D-QSAR methods. In order to
establish CoMSIA model, the superimposed inhibitors were
placed in the spatial grid, and a series of sp3-hybridized probe
particles (such as C+, CH4, H

+, and H2O) were rolled to
calculate the interactions between probe and inhibitor. Based
on different spatial coordinates of probes, all the field data of
inhibitors were obtained, including steric field (S),
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electrostatic field (E), hydrophobic field (HD), H-bond
acceptor (A), and H-bond donor (D) [57–61]. Compared
with CoMSIA model, CoMFA only provides information
on S and E fields.

Partial least squares (PLS) method was used for regres-
sion analysis of the training set. Leave-one-out (LOO)
method was adopted for cross validation to gain the optimal
numbers of component (ONC) and determination coefficient
q2. Based on the ONC values, 3D-QSAR models were estab-
lished by noncross validation, and a series of parameters
including correlation coefficient r2, estimated standard error
Es, root mean square error (RMSE), and F-test values were
obtained accordingly. These parameters can be used to
evaluate the stability and predictive ability of the models
and predict biological activity of the molecules in test set
[62–64]. The prediction correlation coefficient for the test
set is calculated by equation (11):

r2p =
SD − PRESS

SD
: ð11Þ

In equation (11), SD represents the deviation-square sum
between experimental biological activity data in the test set
and the average biological activity in the training set, and
PRESS indicates the error-square sum of the predictive
biological activity in the test set with experimental biological
activity.

3. Results and Discussion

3.1. Classification Based on Molecular Descriptors. Com-
pounds with similar biological activity usually have some
similar molecular descriptors, such as reasonable hydrophi-
licity and H-bond number and volume. In theory, molecular
descriptors can be partially used to classify inhibitors and
noninhibitors. Figure 1 shows the distributions of eight
molecular descriptors (i.e., AlogP, logD, MW, nHBA, nHBD,
MSA, nAR, and MFPSA). The distribution of AlogP ranged
from -13.707 to 13.333, with an average of 2.523. Specifically,
the average values for 682 inhibitors and 1103 noninhibitors
were 2.608 and 2.470, respectively. Then, t-test was used to
evaluate the significant difference of AlogP between inhibi-
tors and noninhibitors. At 95% confidence level, the P value
related to the difference between the two types of molecules
was 0.274, indicating that there was no significant difference
between the two distributions. Similarly, logD and nAR both
also have high P values of 0.236 and 0.332, respectively.
Obviously, these three molecular descriptors with higher P
values cannot be used to distinguish HIV-1 IN inhibitors
from noninhibitors.

In addition, the P value of the other five molecular
descriptors (i.e., MW, nHBA, nHBD, MSA, and MFPSA) were
relatively small, with a minimum of 6.78e-14 and a maximum
of 4.9e-4. Given the relatively scattered distribution and small
overlap of these parameters, it is obvious that they cannot be
used to accurately distinguish inhibitors from noninhibitors.

3.2. Classification Based on Recursive Partition Model.
According to the above analysis, using a single molecular

descriptor cannot classify compounds well. In order to estab-
lish a more accurate and understandable classification model,
IC50 values were set as the classification basis and recursive
partitioning (RP) model was adopted. In this model, mole-
cules were divided into smaller and smaller subsets and
finally presented in the form of decision tree. According to
our experiments, the classification performance of the RP
model containing 12 molecular descriptors and molecular fin-
gerprints is better than that of the model only with molecular
descriptors. Of all the molecular fingerprints, ECFP_6 and
FCFP_6 both have better classification effect in training set
and test set. The corresponding highest C value of Matthews
correlation coefficient was 0.717 and 0.733, respectively (see
figure S1). Based on molecular descriptors and ECFP_6, the
sensitivity and specificity of RP model were 0.848 and 0.852,
respectively. The prediction accuracy of inhibitors and
noninhibitors was 70.3% and 90.4%, respectively.

In RP model, depth is an important parameter determin-
ing the complexity of decision tree. Generally, the larger the
tree depth, the more accurate the recognition of important
features in the training set, but it also increases the risk of
overfitting; the smaller the tree depth, the higher the tree
applicability to datasets. Figure 2 shows the C value changes
of the training and test sets along with tree depth, which are
used to evaluate the response ability of the models. From the
training set, the C value increases with the growing of tree
depth. For the test set, the C value reaches a maximum of
0.748, when the tree depth is 9. In order to avoid overfitting
phenomenon, setting the tree depth of RP model to 9 is the
best choice.

Table S1 lists the decision tree reports with tree depth of 9.
In the mixed matrix, experimental data and prediction results
are filled in the vertical and horizontal columns, respectively,
where 0 and 1 represent HIV-1 IN inhibitor and noninhibitor,
respectively. Based on the above equations (8) and (9), the
prediction accuracies of inhibitors and noninhibitors are 0.825
and 0.862, respectively, with Matthews correlation coefficient
of 0.722.

Figure 3 shows all the details of a decision tree with a
depth of 9. It can be seen that the decision tree has 25 internal
nodes and 26 leaves. The discriminant descriptors consist of 7
molecular properties (ECFP_6, logD, MSA, AlogP, nHBD,
MFPSA, and MW) and 16 structural fragments (F1 … F16).
These 16 molecular fingerprints are helpful to distinguish
inhibitors from noninhibitors and have positive reference
value to the following drug design (see figure S2).

3.3. Classification Based on Naive Bayesian Model. Although
the decision tree obtained by RP model is concise and
explicit, this method is highly sensitive to predetermined
parameters and it will lead to false positives (FP) and false
negatives (FN). To further improve model accuracy and
make comparison, we used naive Bayesian (NB) method to
establish another new classification model. The process of
NB classification is to find features with separation ability
in an unbiased way, which does not involve parameter fitting
and adjustment as an unsupervised learning method.

Table S2 shows the influence of different parameter
combinations in the test and training sets on NB classification.
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As for the model only based on molecular descriptors, the
sensitivity, specificity, and C value of training set were 66.9%,
71.9% and 0.561; while those of test set were 60.5%, 78.4%,
and 0.57, respectively. Considering that Matthews coefficient
C is unsatisfactory, several other types of NB models have also
been constructed by combining molecular fingerprint and
molecular descriptor, and the classification performance is
significantly improved.

Meanwhile, ECFP_6 was selected to compare the predic-
tion performances between RP and NB models. Table 1
shows the cross validation of NB classification, from which
the TP, FN, FP, and TN values of NB model are 627, 55,
210, and 893, respectively. It turns out that the prediction
accuracy of inhibitors is 0.883, and that of noninhibitors is

0.872; the correlation coefficient C value of NB model is
0.852, which is slightly higher than RP model (see Table S1),
indicating that the prediction ability of NB model is better.

Like RP model, NB classification can also provide the
unique key fragment structure (i.e., molecular fingerprints)
of certain compounds. Molecular fingerprints can be
transformed into two-dimensional fragments, which aids
the design of HIV-1 IN inhibitors. Figure 4 shows the top
20 potential favorable molecular fingerprints of HIV-1 IN
inhibitors obtained by NB classification. Most of the advanta-
geous fragments contain nitrogen-oxygen heterocycles (such
as oxazole rings and pyridine rings), providing implications
for molecular design based on inhibition mechanism and
ligand structure. In addition, oxygen-sulfur double bond,
nitrogen-nitrogen double bond, and pyrimidine ring appear
in the unfavorable fragments (see Figures S3), which should
be filtered out to improve the screening efficiency of HIV-1
IN inhibitors.

3.4. Molecular Design for Quinolinone Acid Inhibitors.
Figure 5 shows structures and pIC50 of 22 quinolinone acid
inhibitors, where 18 inhibitors were randomly selected into
the training set to establish three-dimensional quantitative
structure activity relationship (3D-QSAR) model. In the
preprocessing step of 3D-QSAR analysis, the conformations
of quinolinone acid inhibitors overlap quite well (see
figure S4), which lays the foundation for the subsequent
establishment of a good model.

As for the CoMFA models (see Table S3), the cross-
validated correlation coefficient (q2) and noncross-validated
correlation coefficient (R2) were 0.864 and 0.969, respectively.
The root mean square error (RMSE) was 0.020, and the
combination with high predicted correlation coefficient
(r2p = 0:918) confirms the reasonability and reliability of this
model. According to the CoMFA model, the contribution

500

400

300

200

100

Fr
eq

ue
nc

y

0
0 4 8 12 –5 0 10 15 20 25 30 35

500
600

400
300
200
100

Fr
eq

ue
nc

y

0

600

800

400

200Fr
eq

ue
nc

y

0
0 4 8 12 16

0 5 10 15

600

800

400

200Fr
eq

ue
nc

y

0

300

400

200

100Fr
eq

ue
nc

y

0
–15 –10 –5 0 5 10

0 500 1000 1500 2000 2500 3000

500
600

400
300
200
100

Fr
eq

ue
nc

y

0
0 500 1000 1500 2000 2500 3000

500
600
700

400
300
200
100

Fr
eq

ue
nc

y

0

250

200

150

100

50

Fr
eq

ue
nc

y

0
0.2 0.4 0.6 0.8

Inhibitors
Non-inhibitors

Figure 1: Distributions of eight molecular descriptors of both inhibitors and noninhibitors.

0.8

0.7

0.6

C

0.5

2 3 4 5 6
Depth of decision tree

7 8 9 10 11

Test set
Training set

Figure 2: The C value changes of the training and test sets along
with tree depth.

5Computational and Mathematical Methods in Medicine



rates of steric field (S) and electrostatic file (E) are 68.6% and
31.4%, respectively. It indicates that S has an important
influence on the inhibitory activity of quinolinone acid
inhibitors. In CoMSIA model, the contribution rates of S, E,
H, D, and A were 7.4%, 13.2%, 16.9%, 45.7%, and 16.8%,
respectively, which shows that the H-bond donors of
quinolinone acid inhibitors have great influence on their
activity. Then, the trained CoMFA and CoMSIA models
both are used to predict molecular activity in the test set.
Figure 6 shows the correlation between experimental pIC50
and the predicted values by two models. It can be found that
the correlation coefficient R2 was greater than 0.9, and the
deviation between the predicted and experimental data was
less than 1, which proves the reliability of the two models. In
addition, some individual results are very consistent with

their experimental data, such as compounds 4, 7, 10, and 14
in CoMFA model as well as compounds 4 and 10 in
CoMSIA model.

It has been mentioned above that the two models com-
plement and verify each other, which provides an important
idea for the design of HIV-1 IN inhibitors. Figure S5 shows
the CoMFA and CoMSIA contour map of quinolinone acid
inhibitors, where compound 2 is used as the template and
the contour line truncation is 80%: 20%. In the S field, there
are large yellow and green blocks around the inhibitor,
indicating that the introduction of large volume groups in
the corresponding region is not conducive to and
conducive to the enhancement of inhibitory activity. The
yellow blocks are widely distributed around the ketone,
carboxyl, and chlorine atoms; the green blocks are clustered
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Table 1: Cross validation of naive Bayesian classification.

Model name ROC score ROC rating TP FN FP TN SE SP C

Naive Bayesian model 0.897 Good 627 55 210 893 0.919 0.81 0.852
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near the nitrogen atom; it partly confirms why compounds
10 and 11 have better inhibitory activities. In the E field,
the blue area near the ketone group indicates the
introduction of a positively charged groups is conducive to
improving inhibitory activity; there is a red block near the
amino group, so the introduction of negatively charged
group should be fully considered in molecular design. H-
bond is one of the most important nonbonding interactions
between drug molecules and receptors, which is the key to
the drug-target specific recognition and biological activity.
In the H field, almost all the hydrophobic chains are
surrounded by gray blocks, and the introduction of
hydrophobic groups will reduce the inhibitory activity. As
for the D field, cyan represents the donor region of H-
bond, where introducing hydroxyl or carboxyl group helps
to improve inhibitory activity. In the A field of CoMSIA

contour map, the red blocks near the carboxylic acid group
and the contralateral nitrogen atom are mainly H-bond
receptor rejection regions, and the introduction of H-bond
receptors is strictly prohibited.

Based on the above analyses and previous studies, several
design suggestions on improving the activity of quinolinone
acid inhibitors are proposed: (1) the structure of beta-
carbonyl carboxylic acid is strictly preserved, which is the
key to maintain its activity; (2) at the N atom of amino group,
long fatty chains (especially negatively charged one, such as
carboxy group) are recommended; (3) H-bond donors (such
as amino or hydroxyl group) may be considered for addition
to the diphenylmethane side of quinolinone. To be objective,
molecular dynamics (MD) simulation and biochemical
enzyme experiments both are still needed to further verify
the above molecular design ideas.
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Figure 4: Potentially advantageous molecular fingerprint structures for HIV-1 IN inhibitors derived from naive Bayesian classification.
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4. Conclusion

A database of HIV-1 IN inhibitors containing 1785 molecu-
lar structure and biological activity data was established first.
The relationship between molecular descriptors and their
inhibitory activities was systematically studied through the
RP and NB methods. The prediction performance of the

two classification models based on the combination of
molecular descriptor with molecular fingerprint than that
based on the individual molecular descriptor. By analyzing
the key fragments transformed from molecular fingerprints,
the nitrogen-containing ring including oxazole and pyridine
rings is suggested to be introduced into subsequent inhibitor
modification.

Cl

1 6.097
N
H

O OH

O

Cl

2 6.387
N
H

O OH

O

Cl

Cl
7 6.602

N
H

O OH

O

F

3 6.301
N
H

O OH

O

OCH3

5 5.932
N
H

O

Cl

OH

O

Cl

6 6.432
N
H

O OH

Cl
Cl

8 7.081
N
CH3

O OH

O

Cl
Cl

12 7.420
N

(CH2)2CO2H

O OH

O

Cl
Cl

14 7.114
N

(CH2)3OH

O OH

O

Cl
F

15 7.357
N

(CH2)2OH

O OHCl
Cl

13 7.456
N
CH2CONH2

O OH

O

Cl
Cl

11 7.187
N
C4H7

O OHCl
Cl

10 7.260
N

H2C
CH2

CH3

O OH

O

Cl
Cl

16

F

7.602

N
OH

O OH

O

Cl
Cl

17 F7.469
N

OH

O OH

O

Cl
Cl

20
Cl
7.367

N
OH

O OH

O

Cl
Cl

21
H3C

7.387
N

OH

O OH

O

Cl
Cl

22
NC
7.301

N
OH

O OH

Cl
Cl

4 7.155
N
H

O OH

O

(CH2)2CONH2

Cl
Cl

9 6.936
N

O OH

O

(CH2)2NH2

Cl
Cl

18 6.668
N

O OH

O

(CH2)2OH

F
Cl

19 7.620
N

O OH

Figure 5: Structures and pIC50 values of quinolinone acid inhibitors against HIV-1 IN. The training set and test set are shown in black and
red, respectively. The IC50 value is units of μM.

Test set
Training set

Linear (training set)

8.0

7.5

Pr
ed

ic
te

d 
pI

C 5
0 (

Co
M

FA
)

7.0

6.5

6.0

6.0 6.5
Experiment pIC50

7.0 7.5 8.0

(a)

Test set
Training set

Linear (training set)

8.0

7.5

Pr
ed

ic
te

d 
pI

C 5
0 (

Co
M

SI
A

)

7.0

6.5

6.0

6.0 6.5
Experiment pIC50

7.0 7.5 8.0

(b)
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Finally, CoMSIA and CoMFA models with good predic-
tive ability (R2 > 0:9) both were established by selecting
quinolinone acid inhibitors against HIV-1 IN. According to
the contour maps and the favorable groups given by NB clas-
sification, several design suggestions on improving the activ-
ity of inhibitors are propose. In particular, it is recommended
to introduce long fatty chains (especially negatively charged
one, such as carboxy group) into the N atom of amino group,
as well as H-bond donors (such as amino group, hydroxyl
group, and nitrogen-oxygen heterocycles) into the diphenyl-
methane side of quinolinone. This work provides some
theoretical guidance for classification and molecular design
of HIV-1 IN inhibitors.
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