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A deterministic model was formulated and employed in the analysis of the dynamics of tuberculosis with a keen emphasis on
vaccination and drug resistance as the first line of treatment. It was assumed that some of the susceptible population were
vaccinated but with temporal immunity. This is due to the fact that vaccines do not confer permanent immunity. Moreover,
part of the infected individual after treatment grows resistance to the drug. Infective immigrants were also considered to be part
of the population. The basic reproductive number for the model is estimated using the next-generation matrix method. The
equilibrium points of the TB model and their local and global stability were determined. It was established that if the basic
reproductive number was less than unity ðR0 < 1Þ, then the disease free equilibrium is stable and unstable if R0 > 1. Furthermore,
we investigated the optimal prevention, treatment, and vaccination as control measures for the disease. As the objective
functional was optimised, there have been a significant reduction in the number of infections and an increase in the number of
recovery. The best control measure in combating tuberculosis infections is prevention and vaccination of the susceptible
population.

1. Introduction

Respiratory disease can be described as an infection which
can be treated with time. The commonest respiratory infec-
tions include pneumonia, tuberculosis, and flu. Chronic con-
ditions such as asthma and chronic bronchitis are persistent
and sometimes long-lasting [1].

Tuberculosis is among the most ancient diseases world-
wide. It is very contagious. The causative organism, Myco-
bacterium tuberculosis, was discovered by the German
microbiologist Robert Koch in 1882 [2]. The motivation
behind this study is to use a deterministic model to analyse
the dynamics of the infection and suggest the best optimal
control measure in combating the disease.

Through coughing, singing, and sneezing, pulmonary
tuberculosis is spread from a sick TB patient as a droplet
infection. Inhalation by an uninfected individual of these

droplets may cause infection. With the frequency and dura-
tion of contact with people who have the disease, the risk of
contracting TB rises.

In 1993, the WHO decreed TB a global epidemic [3]. It is
estimated that the risk of contracting active TB after coming
into contact with an infected person is between 5% and 10%,
with a greater proportion of the disease playing a crucial role
which happens in the very first few years after the initial
infection with the arrival of HIV [4].

Biological models usually explain the transmission
dynamics of infectious diseases and can determine the status
of the disease in a population with time. The basic reproduc-
tion number is the threshold value that determines the per-
sistence of a disease in a population [5–7].

Optimal control theory is usually employed in biological
models to determine the best optimal control strategy in
combating infections in a population [8–10].
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2. Model Description and Formulation

The model partitions the entire populace into six compart-
ments according to their epidemiological status. We define
SðtÞ,VðtÞ, EðtÞ, IðtÞ, R1ðtÞ, and RðtÞ as the number of suscep-
tible individuals, vaccinated individuals, exposed individuals,
infectious individuals, individuals with resistance to treat-
ment, and recovered individuals, respectively, at time t ≥ 0.

Tables 1 and 2 show the variables and parameters used in
the tuberculosis model. Figure 1 shows the tuberculosis (TB)
model transmission dynamics.

The following differential equations were obtained from
the model flow diagram:

dS
dt

=Λ + αM + σR − βSI − γ + μð ÞS, ð1Þ

dV
dt

γS − θ + μð ÞV , ð2Þ

dE
dt

= βSI − ρ + μð ÞE, ð3Þ

dI
dt

= ρE + 1 − αð ÞM − τ + δ + μð ÞI, ð4Þ

dR1
dt

= τI − κ + μð ÞR1, ð5Þ

dR
dt

= κR1 + θV − σ + μð ÞR: ð6Þ

Thus, the total population is given as

N = S + V + E + I + R1 + R, ð7Þ

with initial conditions:

S 0ð Þ, V 0ð Þ, E 0ð Þ, I 0ð Þ, R1 0ð Þ, R 0ð Þð Þ ∈ R6
+: ð8Þ

3. Tuberculosis Model Analysis

The tuberculosis (TB) model is about human population;
hence, model state variables ought to be nonnegative and
limited for all t ≥ 0. In this section, we demonstrate that the
TB model is numerically and epidemiologically sensible.

3.1. Positivity of Solution. We prove the positivity of the var-
iables in the model. Based on the concept of derivative of a
function, the behavior of the function at a known point can
be established.

Theorem 1. Let the initial set be Sð0Þ, Vð0Þ, Eð0Þ, Ið0Þ, R1ð0Þ,
and Rð0Þ and be nonnegative; then, the solution set of fSðtÞ,
VðtÞ, EðtÞ, IðtÞ, R1ðtÞ, RðtÞg of equation (1) is positive and
bounded for all t > 0, wherever they exist.

Proof. From equation (1), we can state that

dS
dt

≥ − γ + μ + βIð ÞS,
dS
S
dS
dt

≥ − γ + μ + βIð Þdt,

In Sj j dS
dt

≥ − γ + μ + βIð Þt + c,

S tð Þ dS
dt

≥ ce− γ+μ+βIð Þt:

ð9Þ

At t = 0, Sð0ÞðdS/dtÞ ≥ c,

S tð Þ dS
dt

≥ S 0ð Þe− γ+μ+βIð Þt , ð10Þ

since

γ + μ + βIð Þ > 0, S tð Þ dS
dt

≥ 0: ð11Þ

Table 1: Variable description.

Variables Description

S Susceptible persons

V Vaccinated persons

E Exposed persons

I TB-infected persons

R1 Individuals resistant to treatment

R Recovered persons

Table 2: Parameter description.

Parameters Description

Λ Recruitment of susceptible individuals

M Immigrants into the susceptible and infectious
compartments

α Rate of inflow of immigrants into the susceptible
compartment

σ Rate at which the cured lose their immunity

μ Rate of natural mortality

γ Rate of vaccination of susceptible individuals

θ Rate at which the vaccinated recover

β Rate at which the susceptible individuals are exposed
to Mtb

ρ Rate at which unprotected individuals get infected

δ Disease-induced death rate

κ Rate of recovery after treatment

τ Rate of resistance to the treatment

1 − αð Þ Rate of inflows of immigrants into the infected
compartment
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Also,

dV
dt

dS
dt

≥ − θ + μð ÞV ,

V tð Þ dS
dt

≥ ce− θ+μð Þt:

ð12Þ

At t = 0,Vð0ÞðdS/dtÞ ≥ c,

V tð Þ dS
dt

≥V 0ð Þe− θ+μð Þt , ð13Þ

since

θ + μð Þ > 0,V tð Þ dS
dt

≥ 0: ð14Þ

Also,

dE
dt

dS
dt

≥ − ρ + μð ÞE,

E tð Þ dS
dt

≥ ce− ρ+μð Þt:

ð15Þ

At t = 0, Eð0ÞðdS/dtÞ ≥ c,

E tð Þ dS
dt

≥ E 0ð Þe− ρ+μð Þt , ð16Þ

since

ρ + μð Þ > 0, E tð Þ dS
dt

≥ 0: ð17Þ

Also,

dI
dt

dS
dt

≥ − τ + μ + δð ÞI,

I tð Þ dS
dt

≥ ce− τ+μ+δð Þt:

ð18Þ

At t = 0, Ið0ÞðdS/dtÞ ≥ c,

I tð Þ dS
dt

≥ I 0ð Þe− τ+μ+δð Þt , ð19Þ

since

τ + μ + δð Þ > 0, I tð Þ dS
dt

≥ 0: ð20Þ

Also,

dR1
dt

dS
dt

≥ − κ + μð ÞR1,

R1 tð Þ dS
dt

≥ ce− κ+μð Þt:

ð21Þ

At t = 0, R1ð0ÞðdS/dtÞ ≥ c,

R1 tð Þ dS
dt

≥ R1 0ð Þe− κ+μð Þt , ð22Þ

since

κ + μð Þ > 0, R1 tð Þ dS
dt

≥ 0: ð23Þ

Also,

dR
dt

dS
dt

≥ − σ + μð ÞR,

R tð Þ dS
dt

≥ ce− σ+μð Þt:

ð24Þ

At t = 0, Rð0ÞðdS/dtÞ ≥ c,

R tð Þ dS
dt

≥ R 0ð Þe− σ+μð Þt , ð25Þ

since

σ + μð Þ > 0, R tð Þ dS
dt

≥ 0: ð26Þ
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Figure 1: Tuberculosis model flow diagram.
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3.2. Boundedness of the System. The region in which solutions
of the tuberculosis (TB) model system are uniformly
bounded is the proper subset, and it is given by

Γ = S,V , E, I, R1, Rð Þ ∈ R6
+ : N ≤

Λ +M − δI
μ

, μ ≠ 0
� �

:

ð27Þ

Proof.

N = S +V + E + I + R1 + R,

dN
dt

=Λ − μN +M − δI
dN

Λ − μN +M − δI

= dt −
1
μ

ð −μ
Λ − μN +M − δI

� �
dN

=
ð
dt −

1
μ
In Λ − μN +M − δIj j = t + c,

In Λ − μN +M − dIj j = −μt + c1,

Λ − μN +M − δI = c2e
−μt ,

N tð Þ = Λ +M − δI − c2e
−μt

μ
,

At t = 0,N 0ð Þ =N0, I 0ð Þ = I0,

N0 =
Λ +M − δI0 − c2

μ
,

c2 =Λ +M − δI0 − μN0,

N tð Þ = Λ +M − δI − Λ +M − δI0 − μN0ð Þe−μt
μ

: ð28Þ

So as t⟶∞, N ⟶ ððΛ +M − δIÞ/μÞ ∈ R+.
Therefore, Γ is a positive invariant.

3.3. Existence of Disease-Free Equilibrium Point. The disease-
free equilibrium of the dynamical system (1) is obtained by
setting dS/dt = dV/dt = dE/dt = dI/dt = dR1/dt = dR/dt = 0,
and since there is no disease E = I = R1 = R = 0,

Λ + αM − γ + μð ÞS = 0⇒ S = Λ + αM
γ + μ

: ð29Þ

Therefore, the disease-free equilibrium of the dynamical
system (1) is

C0 = S0, V0, E0, I0, R0
1, R0� �

= Λ + αM
γ + μ

, γ Λ + αMð Þ
θ + μð Þ γ + μð Þ , 0, 0, 0, 0

� �
:

ð30Þ

3.4. Basic Reproductive Number. The basic reproductive
number can be computed utilizing the cutting edge matrix
approach. The basic reproduction number determines the

state of a disease with time in a dynamical system [11, 12].
It is utilized to predict the stability of the disease equilibrium.
The basic reproductive number is characterized as the quan-
tity of secondary infections that one tainted person can create
in a completely susceptible population [13, 14]. According to
[13, 15], the next-generation matrix is defined as K = FG−1

and R0 = ρðFG−1Þ, where ρðFG−1Þ denotes the spectral radius
of FG−1.

Using the next-generation matrix, we consider only the
infectious compartments in the system of differential equa-
tion in (1).

dE
dt

= βSI − ρ + μð ÞE,
dI
dt

= ρE + 1 − αð ÞM − τ + δ + μð ÞI,
dR1
dt

= τI − κ + μð ÞR1:

ð31Þ

Let f be the count of emerging infection moving into the
system and g be the count of infections exiting the system.

f = βSI, 0, 0ð Þ,
g = ρ + μð ÞE,−ρE − 1 − αð ÞM + τ + μ + δð ÞI,−γI + k + μð ÞR1ð Þ:

ð32Þ

The Jacobian matrix of f and g are obtained by

F =
0 βS 0
0 0 0
0 0 0

0
BB@

1
CCA,

G =
ρ + μ 0 0
−ρ τ + μ + δ 0
0 −γ k + μ

0
BB@

1
CCA:

ð33Þ

But R0 = ρðFG−1Þ.
From the relation FG−1, the inverse ofG can be calculated:

G−1 =

γ + μ + δð Þ
ρ + μð Þ τ + μ + δð Þ 0 0

ρ

ρ + μð Þ τ + μ + δð Þ
1

τ + μ + δð Þ 0

γρ

ρ + μð Þ τ + μ + δð Þ k + μð Þ
γ

τ + μ + δð Þ k + μð Þ
γ + μ + δð Þ

τ + μ + δð Þ k + μð Þ

0
BBBBBBBB@

1
CCCCCCCCA
:

ð34Þ

Computing the product of FG−1,
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FG−1 =

0 βS 0

0 0 0

0 0 0

0
BBB@

1
CCCA

�

γ + μ + δð Þ
ρ + μð Þ τ + μ + δð Þ 0 0

ρ

ρ + μð Þ τ + μ + δð Þ
1

τ + μ + δð Þ 0

γρ

ρ + μð Þ τ + μ + δð Þ k + μð Þ
γ

τ + μ + δð Þ k + μð Þ
γ + μ + δð Þ

τ + μ + δð Þ k + μð Þ

0
BBBBBBBBB@

1
CCCCCCCCCA
,

FG−1 =

βρS
ρ + μð Þ τ + μ + δð Þ

βS
τ + μ + δð Þ 0

0 0 0
0 0 0

0
BBBB@

1
CCCCA: ð35Þ

By selecting the dominant eigenvalue of FG−1, the basic
reproductive number is

R0 =
βρS

ρ + μð Þ τ + μ + δð Þ : ð36Þ

At the disease-free equilibrium, we substitute S = ðΛ + α
MÞ/ðγ + μÞ into the basic reproductive number, R0.

This therefore implies that

R0 =
βρ Λ + αMð Þ

γ + μð Þ ρ + μð Þ τ + μ + δð Þ : ð37Þ

3.5. Local Stability of the Disease-Free Equilibrium

Theorem 2. The disease-free equilibrium point C0 of the
dynamical system (1) is locally asymptotically stable if R0 < 1
and unstable R0 > 1.

Proof. The Jacobian matrix of the dynamical system (1) at the
DFE point C0 = ððΛ + αMÞ/ðγ + μÞ, γðΛ + αMÞ/ðθ + μÞðγ +
μÞ, 0, 0, 0, 0Þ

is given by

J C0� �
=

− γ + μð Þ 0 0 −
β Λ + αMð Þ

γ + μ
0 σ

γ − θ + μð Þ 0 0 0 0

0 0 − ρ + μð Þ β Λ + αMð Þ
γ + μ

0 0

0 0 ρ − τ + μ + δð Þ 0 0
0 0 0 τ − κ + μð Þ 0
0 θ 0 0 κ − σ + μð Þ

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

:

ð38Þ

The corresponding characteristic equation for the eigen-
values λ is jλI − JðC0Þj = 0.

λ + γ + μð Þ 0 0 β Λ + αMð Þ
γ + μ

0 −σ

−γ λ + θ + μð Þ 0 0 0 0

0 0 λ + ρ + μð Þ −
β Λ + αMð Þ

γ + μ
0 0

0 0 −ρ λ + τ + μ + δð Þ 0 0
0 0 0 −τ λ + κ + μð Þ 0
0 −θ 0 0 −κ λ + σ + μð Þ

���������������������

���������������������

= 0:

λ + κ + μð Þ λ + γ + μð Þ λ + θ + μð Þ λ + σ + μð Þ − γθσ½ �

λ + τ + μ + δð Þ λ + ρ + μð Þ − ρβ Λ + αMð Þ
γ + μ

	 

= 0,

λ + κ + μ = 0⇒ λ1 = −κ − μ,

λ + γ + μð Þ λ + θ + μð Þ λ + σ + μð Þ − σγθ = 0,

λ3 + γ + θ + σ + 3μð Þλ2 + θ + μð Þ σ + μð Þ γ + μð Þ θ + σ + 2μð Þ½ �λ
+ μ3 + γ + θ + σð Þμ2 + γθ + σγ + σθð Þμ� �

= 0:
ð39Þ

This is

λ3 +Qλ2 + Rλ + T = 0: ð40Þ

According to the Routh-Hurwitz criterion, since Q > 0,
R > 0, and T > 0, λ2, λ3, and λ4 will have negative real part
as roots.

Also,

ρ + μð Þ τ + μ + δð Þ − ρβ Λ + αMð Þ
γ + μ

> 0,

λ2 + ρ + τ + δ + 2μð Þλ + ρ + μð Þ τ + μ + δð Þ − ρβ Λ + αMð Þ
γ + μ

= 0:

ð41Þ

The roots, λ5 and λ6, of this characteristic polynomial
will have negative real part if and only if

ρ + μð Þ τ + μ + δð Þ − ρβ Λ + αMð Þ
γ + μ

> 0,

1 − ρβ Λ + αMð Þ
γ + μð Þ ρ + μð Þ τ + μ + δð Þ > 0,

1 − R0 > 0,
R0 < 1:

ð42Þ

Therefore, C0 is asymptotically stable since R0 < 1 and
unstable if R0 > 1.

3.6. Global Stability of the Disease-Free Equilibrium

Theorem 3. The disease-free equilibrium point C0 of the
dynamical system (1) is globally asymptotically stable in Λ if
R0 < 1 and unstable R0 > 1.
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Proof. Using the Perron eigenvector to prove the global sta-
bility of the disease free equilibrium as in [16–18], we apply
the matrix-theoretic method. In the dynamical system, the
disease compartment is x = E I R1ð ÞT ∈ R3 and the non-
disease compartment is y ∈ R6.

Taking the same path as [16, 18], let us set

f x, yð Þ≔ F −Gð Þx − F x, yð Þ + G x, yð Þ: ð43Þ

Then, the equation of the disease compartment can be
written as

x1 = F −Gð Þx − f x, yð Þ: ð44Þ

Theorem 4. Let Ro be defined as in equation (11). Then, the
threshold property holds for system (1).

Proof. Using the condition outlined in Theorem 3, we set the
Lyapunov function for the disease-free equilibrium (DFE).

We first find wT (the left eigenvector of the nonnegative
matrix G−1F):

G−1F =

1
ρ + μð Þ 0 0

ρ

ρ + μð Þ γ + μ + δð Þ
1

γ + μ + δð Þ 0

γρ

ρ + μð Þ γ + μ + δð Þ κ + μð Þ
γ

γ + μ + δð Þ κ + μð Þ
1

κ + μð Þ

0
BBBBBBBBB@

1
CCCCCCCCCA

�
0 βS 0

0 0 0

0 0 0

0
BBB@

1
CCCA =

0 βS
ρ + μð Þ 0

0 ρβS
ρ + μð Þ γ + μ + δð Þ 0

0 ρβγS
ρ + μð Þ γ + μ + δð Þ κ + μð Þ 0

0
BBBBBBBBB@

1
CCCCCCCCCA

=

0 R0
γ + μ + δð Þ

ρ
0

0 R0 0

0 R0
γ

κ + μ
0

0
BBBBBB@

1
CCCCCCA

⇒wT =

0 R0
γ + μ + δð Þ

ρ
0

0 R0 0

0 R0
γ

κ + μ
0

0
BBBBBB@

1
CCCCCCA

�
n1

n2

n3

0
BBB@

1
CCCA =

n1

n2

n3

0
BBB@

1
CCCAR0 ⇒ R0

γ + μ + δð Þ
ρ

n2 = R0n1, R0n2

= R0n2 andR0
γ

κ + μ
n2 = R0n3:

ð45Þ

∴wT = ðγ + μ + δÞ/ρ 1 γ/ðκ + μÞð Þ, and any multiple
of this becomes our eigenvector.

From equation (40),

x1 = F −Gð Þx − f x, yð Þ: ð46Þ

That is, f ðx, yÞ = ðF −GÞx − x1,

f x, yð Þ =
0 βS 0

0 0 0

0 0 0

0
BBB@

1
CCCA −

ρ + μ 0 0

−ρ τ + μ + δ 0

0 −γ κ + μ

0
BBB@

1
CCCA

2
6664

3
7775x

−

βSI

0

0

0
BBB@

1
CCCA +

ρ + μð ÞE
−ρE + 1 − αð ÞM + τ + μ + δð ÞI

−γI + κ + μð ÞR1

0
BBB@

1
CCCA

=

− ρ + μð Þ βS 0

ρ − τ + μ + δð Þ 0

0 γ − κ + μð Þ

0
BBB@

1
CCCA

E

I

R1

0
BBB@

1
CCCA

+

−βSI + ρ + μð ÞE
−ρE + 1 − αð ÞM + τ + μ + δð ÞI

−γI + κ + μð ÞR1

0
BBB@

1
CCCA

=

βSI − ρ + μð ÞE
ρE − τ + μ + δð ÞI
γI − κ + μð ÞR1

0
BBB@

1
CCCA +

−βSI + ρ + μð ÞE
−ρE + 1 − αð ÞM + τ + μ + δð ÞI

−γI + κ + μð ÞR1

0
BBB@

1
CCCA = 0,

ð47Þ

where α = 1 at the disease-free equilibrium.
Therefore, f ðx, yÞ = 0, and this satisfies the demand of

Theorem 4. The Lyapunov function D is

D =wTG−1x,

D = γ + μ + δ

ρ
1 γ

κ + μ

� �

�

1
ρ + μð Þ 0 0

ρ

ρ + μð Þ γ + μ + δð Þ
1

γ + μ + δð Þ 0

ργ

ρ + μð Þ γ + μ + δð Þ κ + μð Þ
γ

γ + μ + δð Þ κ + μð Þ
1

κ + μð Þ

0
BBBBBBBBB@

1
CCCCCCCCCA

�
E

I

R1

0
BBB@

1
CCCA = γ + μ + δ

ρ
1 γ

κ + μ

� �

�

1
ρ + μð Þ E

ρ

ρ + μð Þ γ + μ + δð Þ E + 1
γ + μ + δð Þ I

ργ

ρ + μð Þ γ + μ + δð Þ κ + μð ÞE + γ

γ + μ + δð Þ κ + μð Þ I +
1

κ + μð ÞR1

0
BBBBBBBBB@

1
CCCCCCCCCA

= γ + μ + δ

ρ ρ + μð Þ + ρ

ρ + μð Þ γ + μ + δð Þ + ργ2

ρ + μð Þ γ + μ + δð Þ κ + μð Þ2
 !

E

 

+ 1
γ + μ + δð Þ +

γ2

γ + μ + δð Þ κ + μð Þ2
 !

I + γ

κ + μð Þ2 R1

!

= γ + μ + δð Þ2 κ + μð Þ2 + ρ2 ρ + μð Þ κ + μð Þ + ρ2γ2

ρ ρ + μð Þ γ + μ + δð Þ κ + μð Þ2
 !

E

+ κ + μð Þ2 + γ2

γ + μ + δð Þ κ + μð Þ2
 !

I + γ

κ + μð Þ2
 !

R1:

ð48Þ
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But

D1 =wTV−1x1 =wTV−1 F −Vð Þx −wTV−1 f x, yð Þ,
D1 = R0 − 1ð ÞwTx −wTV−1 f x, yð Þ:

ð49Þ

Since wT > 0, V−1, and f ðx, yÞ = 0,

⇒D1 < 0 if R0 < 1: ð50Þ

From the derivative of the Lyapunov function, D1 < 0
when R0 < 1, which satisfies the condition that the disease-
free equilibrium is asymptotically stable and unstable when
R0 > 1.

3.7. Existence of the Endemic Equilibrium. The endemic equi-
librium point is acquired by mounting the right-hand side of
the dynamical system (1) equal to zero and solving them
simultaneously [19, 20]. The endemic equilibrium point is
C∗ = ðS∗, V∗, E∗, I∗, R∗

1 , R∗Þ, where

S∗ = θ + μð Þ Λ + αMð Þ σ + μð Þ κ + μð Þ + κστI∗½ �
κ + μð Þ σ + μð Þ θ + μð Þ γ + μ + βI∗ð Þ − σθγ½ � ,

V∗ = γ Λ + αMð Þ σ + μð Þ κ + μð Þ + κστI∗½ �
κ + μð Þ σ + μð Þ θ + μð Þ γ + μ + βI∗ð Þ − σθγ½ � ,

E∗ = β θ + μð Þ Λ + αMð Þ σ + μð Þ κ + μð Þ + κστI∗½ �I∗
ρ + μð Þ κ + μð Þ σ + μð Þ θ + μð Þ γ + μ + βI∗ð Þ − σθγ½ � ,

R∗
1 =

τI∗

κ + μð Þ ,

R∗ = 1
σ + μð Þ κ + μð Þ κτI∗ + θγ Λ + αMð Þ σ + μð Þ κ + μð Þ + κστI∗½ �

σ + μð Þ θ + μð Þ γ + μ + βI∗ð Þ − σθγ½ �
	 


:

ð51Þ

I∗ is the positive root of AI∗2 + BI∗ + C = 0, that is, I∗ =
−ðB +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − 4AC

p
Þ/2A > 0.

We have three possibilities of getting the value of I∗:

(1) If B2 − 4AC < 0, then there is no endemic equilibrium
state

(2) If B2 − 4AC = 0, then again, the endemic equilibrium
point does not exist

(3) If B2 − 4AC > 0, then the endemic equilibrium point
exists when AC < 0

where A = κστρβðθ + μÞ,

B = β σ + μð Þ κ + μð Þ ρ θ + μð Þ Λ + αMð Þ + ρ + μð Þ½
� τ + μ + δð Þ θ + μð Þ + ρ + μð Þ 1 − αð ÞM�,

C = ρ + μð Þ κ + μð Þ θγσ − σ + μð Þ θ + μð Þ γ + μð Þ½ �
� τ + μ + δð Þ − 1 − αð ÞM½ �: ð52Þ

3.8. Local Stability of the Endemic Equilibrium

Theorem 5. The positive endemic equilibrium point C∗ of the
system (1) is locally asymptotically stable if Ro > 1.

Proof. The Jacobian matrix of the system of equation (1) at
the endemic point is

J C∗ð Þ =

M11 0 0 M14 0 σ

γ M22 0 0 0 0
M31 0 M33 M34 0 0
0 0 ρ M44 0 0
0 0 0 τ M55 0
0 θ 0 0 κ M66

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
,

ð53Þ

where M11 = −ðγ + μ + βI∗Þ, M14 = −βS∗, M22 = −ðθ + μÞ,
M31 = −βI∗,M33 = −ðρ + μÞ, M34 = −βS∗, M44 = −ðτ + μ + δÞ
,M55 = −ðκ + μÞ, andM66 = −ðσ + μÞ.

The corresponding characteristic equation is JðC∗Þ
denoted by jλI − JðC∗Þj = 0 and is given as

λ −M11 0 0 M14 0 σ

γ λ −M22 0 0 0 0
M31 0 λ −M33 M34 0 0
0 0 ρ λ −M44 0 0
0 0 0 τ λ −M55 0
0 θ 0 0 κ λ −M66

�����������������

�����������������

= 0:

ð54Þ

The matrix JðC∗Þ is a strictly column diagonally domi-
nant matrix. Again, all the diagonal entries are negative.
Hence, all eigenvalues of JðC∗Þ have negative real part.
Now applying the Gershgorin circle theorem [21], C∗ is
locally asymptotically stable if jM11j > jM14 + σj, jM22j > jγj,
jM33j > jM31 +M34j, jM44j > jρj, jM55j > jτj, and jM66j > jθ
+ κj.
3.9. Global Stability of the Endemic Equilibrium

Theorem 6. The dynamical system (1) is said to have an
endemic equilibrium if Ro > 1, and it is globally asymptotically
stable.

Proof. Consider the Lyapunov function defined by

Q C∗ð Þ = S − S∗ − S∗In S
∗

S

� �
+ V − V∗ −V∗InV

∗

V

� �

+ E − E∗ − E∗In E
∗

E

� �
+ I − I∗ − I∗In I

∗

I

� �

+ R1 − R∗
1 − R∗

1 In
R∗
1

R1

� �
+ R − R∗ − R∗InR

∗

R

� �
:

ð55Þ
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Computing the derivative of Q along the solution of the
dynamical system in (1) directly,

dQ
dt

= S − S∗

S

� �
dS
dt

+ V −V∗

V

� �
dV
dt

+ E − E∗

E

� �
dE
dt

+ I − I∗

I

� �
dI
dt

+ R1 − R∗
1

R1

� �
dR1
dt

+ R − R∗

R

� �
dR
dt

,

dQ C∗ð Þ
dt

= S − S∗

S

� �
Λ + αM + σR − γ + μð ÞS − βSIð Þ

+ V − V∗

V

� �
γS − θ + μð ÞSð Þ + E − E∗

E

� �
βSI − ρ + μð ÞEð Þ

+ I − I∗

I

� �
ρE + 1 − αð ÞM − τ + δ + μð ÞIð Þ

+ R1 − R∗
1

R1

� �
τI − κ + μð ÞR1ð Þ + R − R∗

R

� �
� κR1 + θV − σ + μð ÞRð Þ,

dQ
dt

= Λ +M + μN∗ + γS∗ + σV∗ + ρE∗ + τ + δð ÞI∗ + κR∗
1 + σR∗ + βS∗Ið Þ

− μN + Λ + αM + σRð Þ S
∗

S
+ γ

SV∗

V
+ β

SIE∗

E
+ δI

�

+ ρE + 1 − αð ÞMð Þ I
∗

I
+ τ

IR∗
1

R1
+ κR1 + θVð ÞR

∗

R

�
⇒ dQ

dt
= Z − Y ,

ð56Þ

where Z =Λ +M + μN∗ + γS∗ + σV∗ + ρE∗ + ðτ + δÞI∗ + κ
R∗
1 + σR∗ + βS∗I and Y = μN + ðΛ + αM + σRÞðS∗/SÞ + γðS

V∗/VÞ + βðSIE∗/EÞ + δI + ðρE + ð1 − αÞMÞðI∗/IÞ + τðIR∗
1 /R1

Þ + ðκR1 + θVÞðR∗/RÞ.
Imposing the condition that Z < Y , the derivative of the

Lyapunov function with respect to time is less than or equal
to zero.

If Z < Y , then dQ/dt ≤ 0.
But dQ/dt = 0 if and only if S = S∗, V =V∗, E = E∗, I = I∗,

R1 = R∗
1 , and R = R∗.

Therefore, the endemic equilibrium point C∗ is globally
asymptotically stable in Γ if Z < Y .

The largest invariant set in fC∗ = ðS∗, V∗, E∗, I∗, R∗
1 , R∗Þ

∈ Γ : dQ/dt = 0g is a singleton, where C∗ is the endemic
equilibrium point.

4. TB Model Extension to Optimal Control

An analysis of the optimal controls to ascertain its effects on
the model is been conducted. The optimal control problem is
obtained by integrating the undermentioned control func-
tions into the tuberculosis model (1) and introducing an
objective functional that desires to minimize the controls
ðu1, u2, u3Þ, where u1 is the vaccination of the susceptible
population ðSÞ as a control measure, u2 is the treatment of
the infected individuals ðIÞ as a control measure, and u3 is
the education/sensitization of the exposed population ðEÞ
as a control measure.

By inserting the various controls, the system with the
optimal controls becomes

dS
dt

=Λ + αM + σR − u1γS − μS − βSI, ð57Þ

dV
dt

= u1γS − θ + μð ÞV , ð58Þ

dE
dt

= βSI − 1 − u3ð ÞρE − μE, ð59Þ

dI
dt

= 1 − u3ð ÞρE + 1 − αð ÞM − u2τI − δ + μð ÞI, ð60Þ

dR1
dt

u2τI − 1 − u2ð ÞκR1 − μR1, ð61Þ

dR
dt

1 − u2ð ÞκR1 − 1 − u1ð ÞθV − σ + μð ÞR: ð62Þ

Let the optimal levels of the control set be u, which is
Lebesgue measurable and defined as

U = u1 tð Þ, u2 tð Þ, u3 tð Þð Þ: 0 ≤ u1 < 1, 0 ≤ u2 < 1, 0 ≤ u3 < 1, 0 ≤ t ≤ t f
� �

:

ð63Þ

The quadratic nature of the control efforts as a result of
the assumption that costs is generally nonlinear in nature.
Our objective is to minimise the number of infections and
reduce the cost of treatment.

The problem is to find a control uðtÞ and its associated
state variables SðtÞ, VðtÞ, EðtÞ, IðtÞ, R1ðtÞ, and RðtÞ to mini-
mize the objective functional J given by

J = min
u1,u2,u3ð Þ

ðt f
0

a1I + a2R1 + 〠
3

i=1
wiui

2
 !

dt: ð64Þ

That is, J =minðu1,u2,u3Þ
Ð t f
0 ða1I + a2R1 +w1u

2
1 +w2u

2
2 +

w3u
2
3Þdt subject to the differential equation system (57),

where a1, a2, w1, w2, and w3 are the weight constants to bal-
ance the terms in the integrals to abstain the ascendance of
one over the others.

Also, a1, I, and a2R1 are the cost associated with the
infected individuals and the individuals with resistance to
treatment, respectively, while w1u

2
1, w2u

2
2, and w3u

2
3 are the

cost associated with vaccination, treatment, and sensitization
as preventive measures. t f is the period of the intervention.

The purpose of inserting the controls is to minimize the
number of infections and at the same time reduce the cost
of treatment.

Our task at this point is to find the optimal functions:
u∗1 ðtÞ, u∗2 ðtÞ, and u∗3 ðtÞ such that Jðu∗1 ðtÞ, u∗1 ðtÞ, u∗1 ðtÞÞ =
minðu1,u2,u3Þ ∈ ∪Jðu1, u2, u3Þ, where U = fui : 0 ≤ uiðtÞ ≤ 1, t
∈ ½0, t f �, i = 1, 2, 3g is referred to as the control set.
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4.1. Pontryagin’s Maximum Principle. Consider the Lagrang-
ian function:

L I, R1, u1, u2, u3, tð Þ = a1I + a2R1 +w1u
2
1 +w2u

2
2 +w3u

2
3:

ð65Þ

The Pontryagin maximum principle provides the essen-
tial condition that the optimal must satisfy. This changes
the system of the differential equation into minimization
problem pointwise Hamiltonian ðHÞ with respect to ðu1, u2
, u3Þ.

Hence, the Hamiltonian ðHÞ becomes

H S, V , E, I, R1, R, tð Þ = L I, R1, u1, u2, u3, tð Þ + λ1
dS
dt

+ λ2
dV
dt

+ λ3
dE
dt

+ λ4
dI
dt

+ λ5
dR1
dt

+ λ6
dR
dt

,

ð66Þ

where λ1, λ2, λ3, λ4, λ5, and λ6 are disjoint variables.

H = a1I + a2R1 +w1u
2
1 +w2u

2
2 +w3u

2
3 + λ1

� Λ + αM + σR − u1γS − μS − βSIf g
+ λ2 u1γS − θ + μð ÞVf g + λ3 βSI − 1 − u3ð ÞρE − μEf g
+ λ4 1 − u3ð ÞρE + 1 − αð ÞM − u2τI − δ + μð ÞIf g
+ λ5 u2τI − 1 − u2ð ÞκR1 − μR1f g + λ6
� 1 − u2ð ÞκR1 + 1 − u1ð ÞθV − σ + μð ÞRf g,

ð67Þ

considering the relation

dλi
dt

= −
∂H

∂ x
•
tð Þ
: ð68Þ

By taking partial derivatives of the Hamiltonian function
with respect to ðS, V , E, I, R1, RÞ and negating each of them,
the following costate variables are the solutions of the adjoint
systems.

dλ1
dt

= −
∂H
∂S

= λ1 − λ2ð Þu1γ + λ1 − λ3ð ÞβI + μλ1,

dλ2
dt

= −
∂H
∂V

= λ2 − λ6ð Þθ + u2λ2 + u1θλ6,

dλ3
dt

−
∂H
∂E

= 1 − u3ð Þ λ3 − λ4ð Þρ + μλ3,

dλ4
dt

−
∂H
∂I

= λ1 − λ3ð ÞβS + λ4 − λ5ð Þu2τ + μ + δð Þλ4,
dλ5
dt

−
∂H
∂R1

= 1 − u2ð Þ λ5 − λ6ð Þκ + μλ5,

dλ6
dt

−
∂H
∂R

= λ6 − λ1ð Þσ + μλ6:

ð69Þ

The above satisfy the transversality condition:

λ1 t f
� �

= λ2 t f
� �

= λ3 t f
� �

= λ4 t f
� �

= λ5 t f
� �

= λ6 t f
� �

= 0:
ð70Þ

Moreover, the characterization of the optimal control is
obtained by solving

∂H
∂ui

= 0, ð71Þ

where ui = u∗i , i = 1, 2, 3.

∂H
∂u1

= 2w1u1 + λ2 − λ1ð ÞγS − λ6θV ⇒ 2w1u1 + λ2 − λ1ð ÞγS − λ6θV

= 0∴u∗1 =
λ1 − λ2ð ÞγS∗ + λ6θV

∗

2w1
,

∂H
∂u2

= 2w2u2 − λ4 − λ5ð ÞτI∗ − λ6 − λ5ð ÞκR∗
1

⇒ 2w2u2 − λ4 − λ5ð ÞτI∗ − λ6 − λ5ð ÞκR∗
1 = 0∴u∗2

= λ4 − λ5ð ÞτI∗ + λ6 − λ5ð ÞκR∗
1

2w2
,

∂H
∂u3

= 2w3u3 − λ4 − λ3ð ÞρE∗ ⇒ 2w3u3 − λ4 − λ3ð ÞρE∗ = 0∴u∗3

= λ4 − λ3ð ÞρE∗

2w3
,

u∗1 =
λ2 − λ1ð ÞγS∗ + λ6θV

∗

2w1
,

u∗2 =
λ4 − λ5ð ÞτI∗ + λ6 − λ5ð ÞκR∗

1
2w2

,

u∗1 =
λ4 − λ3ð ÞρE∗

2w3
: ð72Þ

Table 3: Numerical values.

Parameter Value Reference

Λ 10 Assumed

α 0.9 [26]

β 0.05 Assumed

γ 0.2 Assumed

σ 0.4 Assumed

μ 0.01874 [27]

θ 0.1 Assumed

ρ 0.00114 [27]

δ 0.1577 [27]

κ 1.00 Assumed

τ 0.4 [28]
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Theorem 7. Given the optimal control vector ðu∗1 ðtÞ, u∗2 ðtÞ,
u∗3 ðtÞÞ and the solutions S∗, V∗, E∗, I∗, R∗

1 , R∗ of the corre-
sponding state system (34) and (35) that minimise the objec-
tive functional ðJÞ over ∪, then there exist adjoint variables
λ1, λ2, λ3, λ4, λ5, and λ6 , where

u∗1 tð Þ =max 0, min 1, λ2 − λ1ð ÞγS∗ + λ6θV
∗

2w1

� �� �
,

u∗2 tð Þ =max 0, min 1, λ4 − λ5ð ÞτI∗ + λ6 − λ5ð ÞκR∗
1

2w2

� �� �
,

u∗3 tð Þ =max 0, min 1, λ4 − λ3ð ÞρE∗

2w3

� �� �
,

ð73Þ

where λ1, λ2, λ3, λ4, λ5, and λ6 are the solutions of equations
(28) and (30).

Proof. The presence of optimal control is as an aftereffect of
the convexity of the integral of J regarding u1, u2, and u3,
the Lipschitz property of the state system concerning the
state factors from the earlier boundedness of the state
arrangements [22, 23].

The differential conditions administering the adjoint fac-
tors are acquired by separation of the Hamiltonian work,
assessed at the ideal control. By standard control contentions
including the limits on the control, we conclude

u∗1 =

0, if η∗1 ≤ 0
η∗1 , if 0 < η∗1 < 1
1, if η∗1 ≥ 1

8>>><
>>>:

u∗2 =

0, if η∗2 ≤ 0
η∗2 , if 0 < η∗2 < 1
1, if η∗2 ≥ 1

8>>><
>>>:

u∗3 =

0, if η∗3 ≤ 0
η∗3 , if 0 < η∗3 < 1
1, if η∗3 ≥ 1

8>>><
>>>:

9>>>=
>>>;
,

ð74Þ
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Figure 2: Optimal treatment of the infected population.
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Figure 3: Optimal prevention and vaccination of the susceptible population.
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where η∗1 = ððλ1 − λ2ÞγS∗ + λ6θV
∗Þ/2w1, η

∗
2 = ððλ4 − λ5ÞτI∗

+ ðλ6 − λ5ÞκR∗
1 Þ/2w2, and η∗3 = ðλ4 − λ3ÞρE∗/2w3.

5. Numerical Results

The state systems, adjoint equations, and the transversality
terms are solved simultaneously to get the optimal strategies.
The optimal problem is a two-point boundary value problem
with two abstracted boundary conditions at initial times t = 0
and t = t f , where t f = 3months. This represents the period at
which preventive strategies and treatment are expected to be
stopped. The numerical simulation was conducted by solving
the state equations, the adjoint equations, and the transvers-
ality conditions using the Runge-Kutta fourth-order scheme
by guessing the controls over a simulated time. We then

use the current iteration of the state equation, the adjoint
equations, and the transversality conditions by a backward
method. Further iterations are done until values of the
unknown variables at the previous iteration are very close
to those at the present iteration [18, 24, 25].

Table 3 shows the various parameter values used in the
TB model simulations.

5.1. Strategy 1: Treatment, Prevention, and Vaccination of the
Susceptible Population. Objective functional was optimised
by using treatment, prevention, and vaccination as control
measures. As a result of these control measures, there have
been significant reduction of infections and an increase in
the number of recovered populations as shown in Figures 2
and 3.
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Figure 4: Optimal prevention and treatment of the infected population.
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Figure 5: Optimal prevention and vaccination of the susceptible population.
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5.2. Strategy 2: Prevention and Treatment of the Infected
Population.Objective functional was optimised by using pre-
vention, vaccination, and treatment as control measures. The
outcome of these control measures indicates a reduction of
the population infected and increased recoveries, indicating
that these variables have greatly impacted in the combat of
the spread of infections as shown in Figures 4 and 5.

5.3. Strategy 3: Vaccination and Treatment of the Infected
Population. Objective functional was optimised by using
treatment, vaccination, and prevention of the susceptible pop-
ulation as control measures. Figures 6 and 7 show the effects of
treatment and vaccination, respectively: an increase in the
recovery population, a decrease in the infectious population,
and a decrease in the number of population susceptible.

6. Conclusion

A deterministic model for tuberculosis was formulated and
analysed. The basic reproductive number for the TB model
is estimated using the next-generation matrix method.

The equilibrium points of the TB model and their local
and global stability were determined. It was established that
if the basic reproductive number was less than unity
ðR0 < 1Þ, then the disease-free equilibrium is stable and
unstable if R0 > 1. Furthermore, we investigated the optimal
prevention, treatment, and vaccination as control measures
for the disease.

Objective functional was optimised by using treatment,
prevention, and vaccination as control measures. As a result
of these control measures, there have been significant
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Figure 6: Optimal treatment of the population infected.
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Figure 7: Optimal vaccination of the susceptible population.
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reduction of infections and an increase in the number of
recovered populations as shown in Figures 2 and 3.

Objective functional was optimised by using prevention,
vaccination, and treatment as control measures. The out-
come of these control measures indicates a reduction of the
population infected and increased recoveries as shown in
Figures 4 and 5, indicating that these variables have greatly
impacted in the combat of the spread of infections.

Objective functional was optimised by using treatment,
vaccination, and prevention of the susceptible population as
control measures. An increase in the recovery population, a
decrease in the infectious population, and a decrease in the
number of population susceptible are shown in Figures 6
and 7.

It was established that the best control measure in com-
bating tuberculosis infections is prevention and vaccination
of the susceptible population.
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