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Background. Hepatocellular carcinoma (HCC) is a prevalent primary liver cancer. Treatment is dramatically difficult due to its
high complexity and poor prognosis. Due to the disclosed dual functions of autophagy in cancer development, understanding
autophagy-related genes devotes into novel biomarkers for HCC. Methods. Differential expression of genes in normal and
tumor groups was analyzed to acquire autophagy-related genes in HCC. These genes were subjected to GO and KEGG
pathway analyses. Genes were then screened by univariate regression analysis. The screened genes were subjected to
multivariate Cox regression analysis to build a prognostic model. The model was validated by the ICGC validation set.
Results. To sum up, 42 differential genes relevant to autophagy were screened by differential expression analysis.
Enrichment analysis showed that they were mainly enriched in pathways including regulation of autophagy and cell
apoptosis. Genes were screened by univariate analysis and multivariate Cox regression analysis to build a prognostic
model. The model constituted 6 feature genes: EIF2S1, BIRC5, SQSTM1, ATG7, HDAC1, and FKBP1A. Validation
confirmed the accuracy and independence of this model in predicting the HCC patient’s prognosis. Conclusion. A total of
6 feature genes were identified to build a prognostic risk model. This model is conducive to investigating interplay
between autophagy-related genes and HCC prognosis.

1. Introduction

Hepatocellular carcinoma (HCC) is a multistep and complex
disease involved in epigenetic and genetic alterations,
including genomic insertion, mutation, and deletion [1]. So
far, certain therapeutic strategies like radical excision, liver
transplantation, radiofrequency ablation (RFA), and arterial
embolization (TAE) are expected to be applied in the treat-
ment of this lethal disease [2–4]. Due to early diagnosis,

intervention therapy, and development of therapies and sur-
gery, the treatment for this cancer has been progressed
greatly. However, most patients are diagnosed in the
advanced stage due to lack of available biomarkers [5, 6].
Thus, there is an urgent need to decipher in-depth the path-
ways and mechanism of HCC progression.

Autophagy is a basic process to deliver damaged organ-
elles and misfolded proteins to lysosomes for degradation
to main intracellular homeostasis [7]. This process is
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involved in degeneration of dysfunctional cells [8]. More-
over, autophagy is also relevant to pathological process of
liver injury and HCC [9, 10]. Thus, we thought that
autophagy-related genes may participate in regulation of
HCC or even most cancer development.

Due to rapid advancement in the high-throughput RNA
profile, accessible gene expression data has been applied
widely for cancer research. Extracting differently expressed
genes by comparing tumor and normal tissues, followed by
in-depth bioinformatics analyses for constructing prediction
model, is a prevalent strategy. Based on the strategy, an emerg-
ing number of studies have proposed the HCC prognostic pre-
diction model. However, for the practical application of the
model, it is still needed to enhance the performance [11].

This investigation acquired the clinical data as well as
expression data HCC and autophagy-related genes from bio-
informatics databases. Autophagy-related genes in HCC
were acquired through differential expression analysis. A
prognostic model was built and validated through regression
analyses. Altogether, a 6-gene-based prognostic risk model
was determined. The model offers a candidate prognostic
prediction strategy for HCC postoperation.

2. Materials and Methods

2.1. Data Preprocessing and Differential Expression Analysis.
Firstly, mRNA expression data (normal: 50, tumor: 374) and
corresponding clinical data (Supplementary Table 1) in the
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Figure 1: Differential expression analysis. (a) Volcano plot of autophagy-related DEGs. Red: differentially upregulated genes; green:
differentially downregulated genes; black: gene with no statistical significance. (b) Boxplot of the expression of autophagy-related DEGs.
Green: normal tissue; red: tumor tissue.
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TCGA-Liver Hepatocellular Carcinoma (LIHC) dataset were
downloaded. Then, 222 autophagy-related genes were
accessed from the Human Autophagy Database (http://
www.autophagy.lu/) (Supplementary Table 2). The
expression of these genes was extracted from mRNA
expression data in TCGA-LIHC. Differential expression

analysis (∣logFC ∣ >1, FDR < 0:05) was undertaken on the
normal group and the tumor group using the “limma”
package [12]. Differentially expressed autophagy-related
genes were therefore obtained. Clinical data (like survival
status and time) in Liver Cancer-RIKEN, Japan (LIRI-JP)
were accessed from the International Cancer Genome
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Figure 2: Enrichment analyses of autophagy-related DEGs. (a) GO enrichment analysis. Blue: downregulated; red: upregulated. (b) KEGG
enrichment analysis. Blue: downregulated; red: upregulated. The inner circle histogram shows the size of the p value. The smaller the p value,
the higher the column. Z-score is defined as the combining expressions of upregulated and downregulated genes. The outer circle shows
terms corresponding to the top 10 minimum p values.

3Computational and Mathematical Methods in Medicine

http://www.autophagy.lu/
http://www.autophagy.lu/


CAPN10
p-value Hazard ratio

Hazard ratio

<0.0001 1.792 (1.395–2.302)
1.628 (1.281–2.070)
1.657 (1.301–2.110)
1.711 (1.329–2.202)
1.659 (1.298–2.121)
1.517 (1.253–1.836)
1.833 (1.370–2.451)
1.294 (1.163–1.438)
1.400 (1.204–1.628)
1.297 (1.139–1.476)
1.877 (1.490–2.365)
1.768 (1.335–2.341)
1.856 (1.383–2.491)
1.499 (1.239–1.813)
1.708 (1.326–2.199)
1.885 (1.481–2.399)
1.854 (1.386–2.482)
1.463 (1.237–1.731)
1.801 (1.388–2.338)
1.804 (1.420–2.291)
1.815 (1.423–2.315)

<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001

RUBCN
RHEB
RAB24
CHMP4B
NPC1
EIF2S1
BIRC5
SQSTM1
GRID2
ATIC
ATG9A
ATG7
GAPDH
GNAI3
HDAC1
RAB7A
PRKCD
ATG101
RAC1
FKBP1A

0.0 0.5 1.0 1.5 2.0

(a)

0.109

0.036⁎

<0.001⁎⁎⁎

0.043

0.045⁎

0.022⁎ 

Hazard ratio

EIF2S1 1.35

1.15

1.33

0.59

0.40

1.50
(1.06–2.13)

(1.01–1.94)

(1.36–0.98)

(1.13–1.56)

(1.01–1.31)

(1.94–1.94)N = 364

N = 364

N = 364

N = 364

N = 364

N = 364

BIRC5

SQSTM1

ATG7

HDAC1

FKBP1A

0.4 0.6 0.8 1 1.2 1.4 1.61.8 2 2.2
# Events: 130; Global p-value (Log-Rank): 1.4422e-09
A/C: 1289.59; Concordance index: 0.69

(b)

Figure 3: Continued.
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Figure 3: Continued.
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Consortium (ICGC) (https://icgc.org/) as the validation set
(Supplementary Table 3) to validate the multivariate
prognostic model.

2.2. Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG). GO and KEGG enrichment analyses
were conducted on the above autophagy-related genes in
LIHC using the “clusterProfiler” package [13]. The “digest”
and “GOplot” packages were applied for visualization.

2.3. Construction and Validation of a Prognostic Prediction
Model. Univariate regression analysis was undertaken on
differentially expressed genes (DEGs) using the “survival”
package (p < 0:0001) [14]. Next, multivariate regression
analysis was undertaken on the above screened genes using
the “survival” package for establishment of a prognostic risk
model. The patient’s risk score was calculated according to
the expression level of each gene. The median value of the
risk score was deemed as a cut-off to distinguish high-risk
and low-risk groups. Patient’s survival curve was drawn by
the “survival” package. The R package “survivalROC” was
used to draw 3-year and 5-year OS receiver operating char-
acteristic (ROC) curves. The area under the curve (AUC)
was calculated.

2.4. Validation of the Risk Model with Clinical Information.
We validated to assure whether the predictive perfor-
mance of the model was independent of other clinical
variables (including age, sex, T stage, and clinical stages).
Univariate and multivariate Cox regression analyses were
undertaken on clinical data in TCGA-LIHC as well as
risk score. ROC curves of clinical characteristics and risk
score were drawn.

2.5. Drawing and Validation of the Nomogram. A nomo-
gram was established with clinical information and risk

score to predict the possibility of 3-year and 5-year OS of
HCC patients. Effectiveness of the nomogram was evaluated
by the calibration curve.

3. Results

3.1. Data Preprocessing and Differential Expression Analysis.
mRNA expression data and autophagy-related genes were
first obtained. Afterwards, the “limma” R package was
applied to determine DEGs from TCGA-LIHC, which was
then overlapped with autophagy-related genes for obtaining
autophagy-related DEGs. Altogether, 42 autophagy-related
DEGs in LIHC were found (upregulated: 37; downregulated:
5) (Figure 1(a)). A boxplot of the expression of these genes
in samples is shown in Figure 1(b).

3.2. Enrichment Analysis of Autophagy-Related DEGs. Some
basic signaling transduction pathways and biological pro-
cesses regulated by autophagy-related DEGs in HCC were
further analyzed. Enrichment analyses were undertaken on
42 obtained DEGs. GO enrichment analysis revealed the
main enrichment of DEGs in the regulation of autophagy,
neuronal death, regulation of apoptotic signaling pathway,
and that sort of biological processes (Figure 2(a)). KEGG
illuminated that DEGs were mostly enriched in cellular
senescence, cell apoptosis, and PI3K-Akt signaling pathways
(Figure 2(b)).

3.3. Construction and Validation of a Model. Univariate
regression analysis was undertaken on autophagy-related
DEGs based on TCGA-LIHC (training set) (p < 0:0001). 21
genes remarkably relevant to patient’s prognosis were
obtained to draw a frost plot (Figure 3(a)). Genes were
screened by multivariate regression analysis to establish the
model. Finally, a 6-gene-based prognostic risk model was
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Figure 3: Construction and validation of a prognostic risk model. (a) Forest plot of univariate Cox regression analysis (p < 0:0001). (b)
Forest plot of multivariate Cox regression analysis. (c) Distribution plot of risk score of patients. (d) Distribution plot of survival status
of patients. (e) ROC curves of 3-year and 5-year OS of patients in the training set predicted by 6-gene-based risk model. (f) Kaplan-
Meier survival curves of patients in each group in the training set. (g) ROC curves of 3-year and 5-year OS of patients in the validation
set predicted by 6-gene risk model. (h) Kaplan-Meier survival curves of patients in each group in the validation set.
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determined (Figure 3(b)). LIHC patients were classified into
low- and high-risk groups. A risk score distribution plot
(Figure 3(c)) and survival status plot (Figure 3(d)) were
obtained. Moreover, the drawn ROC curves exhibited that
AUC values of 5-year and 3-year OS were 0.733 and 0.717,
respectively, (Figure 3(e)). The Kaplan-Meier cumulative
curve suggested that the low-risk score patients had remark-
ably longer OS (Figure 3(f)).

Universality of the model was validated by the ICGC vali-
dation set LIRI-JP. AUC values of 5-year and 3-year OS were,
respectively, 0.772 and 0.822 (Figure 3(g)). Survival curves
showed a longer survival of patients a having low-risk score
(Figure 3(h)). Taken together, the model held high accuracy.

3.4. Validation of the Independence of the Risk Model with
Clinical Data. Risk score, clinical stages, and T stage all
showed significant influence on the patient’s prognosis
(Figure 4(a)), while the multivariate regression analysis
exhibited that only the risk score held a significant effect
on patient’s prognosis (Figure 4(b)). ROC curves based
on clinical characteristics and risk score showed that
AUC of risk score (0.78) was higher than that of all clin-
ical characteristics (Figure 4(c)). Of all of the above, the
prognostic model was a favorable prognostic prediction
indicator which was better than the patient’s clinical char-
acteristics and independent from clinical characteristics
themselves.
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Figure 4: Risk score with clinical information of TCGA-LIHC patients: (a, b) forest plot of Cox regression analyses; (c) ROC curve of
clinical characteristics and risk score.
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3.5. Drawing and Validation of the Nomogram. The nomo-
gram has been widely employed in predicting a cancer
patient’s prognosis. It is mainly because it can simplify the
statistical prediction model into a single value evaluation of
the individual’s OS possibility. The nomogram generated
by clinical characteristics (T stage, sex, age, and clinical
stages) and risk score could be used to predict OS of HCC
patients (Figure 5(a)). Performance of the nomogram was
predicted by calibration curves, and a high fitting level was
observed (Figures 5(b) and 5(c)). On the whole, the nomo-
gram is capable of accurately predicting the patient’s prog-
nosis, fueling an opportunity for the following
consultation, decision, and arrangement.

4. Discussion

HCC is a global health concern on cancer. Its complexity
and poor prognosis preclude effective access to treatment.
Finding helpful biomarkers and constructing robust prog-
nostic models to predict patients’ prognosis are of general
interest for HCC therapy.

Biomarkers for HCC diagnosis and prognosis have been
screened in the past few decades, and several prognostic pre-
diction models were constructed. A risk model was estab-
lished based on 7 autophagy-related genes (SPHK1,
HSPB8, ITGA3, CDKN2A, BIRC5, IKBKE, and TMEM74)
in HCC (Wang et al. [15]). Potential core genes associated
with HCC progression and prognosis were identified by bio-
informatics analysis: CCNB1, CCNA2, CCNB2, NCAPG,
PBK, NUSAP1, AURKA, ZWINT, PRC1, and KIF4A (Song
et al. [16]). This paper identified 6 gene signatures (EIF2S1,
BIRC5, SQSTM1, ATG7, HDAC1, and FKBP1A) by differ-
ential expression analysis, univariate analysis, and multivar-
iate analysis in TCGA-LIHC. These autophagy-associated
DEGs in HCC were used to build a prognostic prediction

risk model. Compared with the previous studies focusing
on autophagy-associated prognostic signature [17–19], our
model presented an advantage with the relatively higher risk
score (about 1.5) and reliable p value. To sum up, our results
provide a novel perspective for precise prediction of HCC
prognosis.

Regulation of these 6 genes were proven in assorted can-
cers except HCC. Sequestosome 1 (SQSTM1) encodes a
multifunctional protein that binds to ubiquitin. p62 was
confirmed to inhibit autophagy flux and promote
epithelial-mesenchymal transformation in metastatic pros-
tate cancer by maintaining the level of HDAC6 [20]. Seques-
tosome 1 is an effective prognostic factor associated with cell
proliferation in human colorectal cancer [21]. In addition,
p62 is upregulated in the prophase of HCC and induces can-
cer by maintaining the survival of stress-induced HCC-
initiating cells [22]. HDAC1 mediates eukaryotic gene
expression. It has been reported to promote glycolysis in
gastric cancer, and it is an independent adverse prognostic
factor for disease-free survival and OS [23]. Silencing of
HDAC1 enhances the sensitivity of ovarian cancer to che-
motherapy [24]. HDAC1 restrains Snail2-mediated
epithelial-mesenchymal transition (EMT) in the process of
metastasis of HCC (Hu et al. [25]). Viewed in toto, these
genes participate in the progression of HCC, which is consis-
tent with this paper.

Besides, 4 feature genes were not yet well defined in
HCC. EIF2S1 catalyzes the first regulatory step in the initia-
tion of protein synthesis to promote the binding of the initial
tRNA to the 40S ribosome subunit. Phosphorylated eIF2α
has been found to predict a triple-negative breast cancer
patient’s disease-free survival [26]. Estrogen-induced apo-
ptosis of breast cancer cells takes place by blocking dephos-
phorylation of the eIF2α protein [27]. It has been shown that
the long noncoding RNA (lncRNA) nR2F1-AS1 stimulates
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Figure 5: Drawing and validation of the nomogram. (a) 3-year and 5-year OS of HCC patients predicted by the nomogram. (b) Calibration
curve of 3-year OS of HCC patients. (c) Calibration curve of 5-year OS of HCC patients.
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the malignant phenotype of osteosarcoma cells [28]. Inhibi-
tion of BIRC5 improves cervical cancer cell sensitivity to
radiotherapy [29]. Nine genes, including BIRC5, may be bio-
markers for HCC [30]. FKBP1a encodes proteins that are
members of the immunomodulatory family, and it is pivotal
in immunomodulatory and fundamental cellular processes
involved in protein folding and transport. Ten genes, includ-
ing FKBP1A, were identified as biomarkers for breast cancer
[31]. lncRNA SNHG15 enhances EMT of prostate cancer by
regulating miR-338-3p/FKBP1A axis [32]. Luo et al. [33]
reported FKBP1A overexpression in HCC. Studies have
shown that ATG7 adjusts three negative breast cancer tumor
progressions [34]. miR-154 exerts a suppressor role by
directly targeting ATG7 in bladder cancer [35]. In the con-
text, the investigation of the mechanism of SQSTM1 and
HDAC1 in the 6 feature genes was in its infancy. EIF2S1,
BIRC5, and FKBP1A were only identified as biomarkers of
HCC, and ATG7 was not reported to be associated with
HCC. Hence, this paper may provide a theoretic basis for
studying these genes in HCC.

On the whole, 6 autophagy-associated genes were identi-
fied via bioinformatics methods (EIF2S1, BIRC5, SQSTM1,
ATG7, HDAC1, and FKBP1A), and a corresponding prog-
nostic risk model was constructed. Our finding will yield
valuable insight into early diagnosis, prognosis, and develop-
ment of new therapies. However, application of these 6 fea-
ture genes requires validation by incremental clinical
experiments and animal experiments.
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