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Antioxidant proteins (AOPs) play important roles in the management and prevention of several human diseases due to their ability
to neutralize excess free radicals. However, the identification of AOPs by using wet-lab experimental techniques is often time-
consuming and expensive. In this study, we proposed an accurate computational model, called AOP-HMM, to predict AOPs by
extracting discriminatory evolutionary features from hidden Markov model (HMM) profiles. First, auto cross-covariance (ACC)
variables were applied to transform the HMM profiles into fixed-length feature vectors. Then, we performed the analysis of
variance (ANOVA) method to reduce the dimensionality of the raw feature space. Finally, a support vector machine (SVM)
classifier was adopted to conduct the prediction of AOPs. To comprehensively evaluate the performance of the proposed AOP-
HMM model, the 10-fold cross-validation (CV), the jackknife CV, and the independent test were carried out on two widely used
benchmark datasets. The experimental results demonstrated that AOP-HMM outperformed most of the existing methods and
could be used to quickly annotate AOPs and guide the experimental process.

1. Introduction

A free radical is an atom, molecule, or ion that has an
unpaired valence electron, making it highly reactive with
other molecules [1]. Reactive oxygen species (ROS) are com-
posed of oxygen-containing free radicals and play important
roles in cell signalling and homeostasis [2]. Typically, ROS
are present at low and stationary levels in normal cells,
involved in a variety of biochemical processes [3]. However,
once the organisms suffer from environmental stresses,
ROS levels can increase dramatically in the cells, resulting
in significant damage to cell structures [2]. Cumulatively, this
may lead to a pathological condition known as oxidative
stress. In humans, oxidative stress is thought to be involved
in the development of several diseases such as ADHD [4],
cancer [5], Parkinson [6], Alzheimer [7], and heart failure
[8]. Fortunately, cells have evolved defense mechanisms
(called antioxidant systems) to keep a check on the genera-
tion of ROS and effectively resist the damages caused by
ROS [9]. An antioxidant protein (AOP), also known as the

free radical scavenger, is a substance that can significantly
inhibit oxidation by donating its own electron to ROS and
thus neutralize the adverse effects of excess free radicals
[10]. The increasing studies have demonstrated that AOPs
can promote the immune defense and reduce the hazard of
human diseases caused by oxidative stress [11]. Given the
importance of AOPs, it has become one of the hot research
topics to accurately predict AOPs in protein science. How-
ever, due to the complexity of antioxidant mechanisms, it is
often time-consuming and laborious to identify AOPs
through biochemical experiments [12]. With the huge
growth of protein sequences in the last decade, there is an
urgent need to develop computational models for the accu-
rate annotation of AOPs based on sequence data only.

From the viewpoint of machine learning, identification of
AOPs is usually described as a binary classification problem.
In recent years, numerous computational methods have been
developed to address this problem [12], which mainly focus
on two aspects: (1) the feature encoding schemes of protein
sequences and (2) the design of classification algorithms.
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For instance, Fernández-Blanco et al. reported the first
machine learning model for the prediction of AOPs by com-
bining the random forest (RF) algorithm and star graph
topological indices [13]. However, protein sequences in their
dataset shared high sequence similarities, which may lead to
the overestimation of predictive performance [14]. Then,
Feng et al. constructed a reliable benchmark dataset by
removing these redundant protein sequences with the
sequence similarity higher than 60% and developed a Naïve
Bayes-based model to predict AOPs by using amino acid
composition (AAC) and dipeptide composition (DPC) [14].
Unfortunately, the proposed model achieved a relatively
low accuracy (Acc) of 66.88% in the jackknife test [14]. Later,
Feng et al. adopted a support vector machine (SVM) classifier
to improve the prediction of AOPs based on the optimal 3-
gap dipeptides obtained by using the analysis of variance
(ANOVA) [15]. The overall Acc reached 74.79% on the same
dataset [15]. Almost simultaneously, Zhang et al. put forward
an RF-based method to distinguish AOPs from non-AOPs by
incorporating g-gap dipeptide compositions and the
position-specific scoring matrix (PSSM) [16]. Their model
showed an excellent Acc of 80.7% when tested on an inde-
pendent dataset [16]. Subsequently, Zhang et al. presented
an ensemble classifier to further enhance the predictive per-
formance of AOPs with hybrid features, including secondary
structure information (SSI), PSSM, relative solvent accessi-
bility (RSA), and composition, transition, and distribution
(CTD) [17]. The ensemble model achieved a balanced per-
formance with a sensitivity (Sen) of 87.8% and a specificity
(Spe) of 86% on the same independent test [17]. On the basis
of these early studies, many researchers have designed differ-
ent hybrid feature representation models to help boost the
recognition capability of AOPs, including AOPs-SVM [18],
SeqSVM [19], Vote9 [9], and IDAod [20]. In addition, sev-
eral feature selection techniques were adopted to reduce the
irrelevant and noisy features and thus enhance the predictive
Acc of AOPs [21–26]. More details can be seen in the recent
review article [12].

Previous studies have shown that the hidden Markov
model (HMM) profiles generated by running the HHblits
[27] program can provide important clues for many protein
classification tasks such as DNA-binding protein prediction
[28–30] and protein fold recognition [31], similar to PSSM
profiles. In general, the HMM of a query protein is an L ×
30matrix calculated by using the HHblits [27] software pack-
age to iteratively search a given protein against a specified
database to detect its distantly related homologous proteins
above a specified e-value score, where L is the length of the
query sequence. To the best of our knowledge, there is no
published paper on the application of HMM profiles in the
identification of AOPs. In this study, we proposed a novel
method, called AOP-HMM, which explored evolutionary
features from the HMM profiles to predict AOPs. The work-
flow diagram of the AOP-HMM model is illustrated in
Figure 1. First, three feature extraction schemes were applied
to transform HMM profiles into fixed-length numerical vec-
tors, including AAC, DPC, and auto cross-covariance (ACC)
variables. Next, the optimal ACC features were selected by
the ANOVA method and input to an SVM classifier to per-

form the prediction of AOPs. Then, the synthetic minority
oversampling technique (SMOTE) [32] was adopted to deal
with the unbalanced data. Finally, the proposed AOP-
HMM model was validated on the two working datasets by
using the 10-fold cross-validation (CV), the jackknife test,
and the independent test, respectively. The experimental
results showed that AOP-HMM achieved promising predic-
tion performance and could be used in combination with
existing tools to help increase annotation levels of AOPs.

2. Materials and Methods

2.1. Datasets. The construction of a high-quality benchmark
dataset is the prerequisite step in developing and validating
machine learning models for the identification of AOPs. In
this study, two well-established datasets were adopted to
examine the performance of the proposed method, denoted
by D1 and D2. The D1 dataset contains 253 AOPs and
1552 non-AOPs, which was constructed by Feng et al. [14,
15] according to the following three rigorous criteria: (1) only
proteins with the experimentally validated antioxidant activ-
ity were collected from the UniProt database [33]; (2) pro-
teins with unknown residues, such as “X”, “Z”, or “B”, were
excluded due to their indeterminate meanings; and (3) those
proteins that have more than 60% sequence identity with any
other sequences were eliminated. Based on the D1 dataset,
our model was tested by using the 10-fold CV and the jack-
knife CV.

Additionally, the D2 dataset provided by Zhang et al. [17]
was further applied to evaluate the robustness and generali-
zation ability of our predictor. This dataset consists of two
parts: the first one contains 100 AOPs and 100 non-AOPs
(termed D2_train); and the other one includes 74 AOPs
and 392 non-AOPs (termed D2_test), which was adopted
for the independent test.

2.2. Feature Extraction

2.2.1. HMM Profiles. The increasing studies have shown that
HMM profiles could provide informative evolutionary fea-
tures for a range of protein classification tasks such as protein
fold recognition [31], protein remote homology detection
[34], DNA-binding protein identification [28, 29], and
nucleic-acid-binding residue recognition [35]. For a query
protein with the length of L, the HHblits program [27] was
used to search against the latest Uniclust30 database [36]
with default parameters to generate an HMM matrix with
the size of L × 30: Similar to the PSSM profile, we only used
the first 20 columns which represent observed frequencies
for 20 natural amino acids in homologous sequences at each
position. Each element x of the HMM profile was trans-
formed into the range of [0,1] using the following formula:

f xð Þ =
0, if x = ∗,

2−x/1000, else:

(
ð1Þ

2.2.2. Composition-Based Features. The amino acid composi-
tion (AAC) of a protein is one of the most simple and effec-
tive feature representation models due to its close relation to
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function properties of the protein. AAC features count the
frequencies of individual amino acids in the protein
sequence, which can be calculated based on the sequence
itself or its HMM profile, denoted by Seq-AAC and HMM-
AAC.

Given a query protein sequence S with the length of L,
we denote its standardized HMM matrix as H = ½hi,j�: To
help clarify the relationship between Seq-AAC and HMM-
AAC, the 20 amino acids are first represented as 20 binary
vectors by the one-hot encoding. For instance, the jth amino
acid Aj is encoded as (0, 0,…, 1, 0,…, 0), where only the jth
value is 1. Accordingly, a query sequence S is denoted as a
binary matrix B = ½bi,j�, which has the same dimension with
H = ½hi,j�.

Then, the frequency of amino acid Aj in the query
sequence S can be computed as

xj =
1
L
〠
L

i=1
bi,j j = 1, 2,⋯, 20ð Þ: ð2Þ

Finally, the Seq-AAC descriptor of the query sequence S
is a 20D vector, denoted by

X = x1, x2,⋯, x20ð Þ: ð3Þ

Similarly, the HMM-AAC features can be calculated
based on the HMM matrix H = ½hi,j� instead of the binary
matrix B = ½bi,j�.

At the same time, the dipeptide composition (DPC) pro-
vides more features since they may partially reflect the local
sequence-order information between amino acid pairs. There
are two ways to generate DPC features by using the binary
matrix and the HMM matrix, termed as Seq-DPC and
HMM-DPC. Here, we only give the definition formula of
HMM-DPC as follows:

Y = yi,j
h i

, ð4Þ

where

yi,j =
1

L − 1
〠
L−1

k=1
hk,i × hk+1,j 1 ≤ i, j ≤ 20ð Þ ð5Þ

represents the composition of amino acid pair AiAj in the
query sequence S.

Since there are 400 possible combinations of dipeptides,
the dimensions of both Seq-DPC and HMM-DPC are 400.

2.2.3. ACC Features. In this study, each column of the
HMM profile can be viewed as a time series of the corre-
sponding property. The ACC features consist of two vari-
ables, i.e., auto covariance (AC) and cross-covariance
(CC). In signal processing, the AC variable measures the
correlation of a time series with a delayed copy of itself as
a function of delay and the CC variable is a measure of sim-
ilarity of two series as a function of the displacement of one
relative to the other. Particularly, the AC is treated as the
CC of a signal sequence with itself. The ACC features have
been successfully applied to a wide range of sequence classi-
fication tasks in bioinformatics [37–40]. They are defined by
the following formulas:

zj,k,g =
1

L − g
〠
L−g

i=1
hi,j − �hj
� �

hi+g,k − �hk
� �

1 ≤ j, k ≤ 20, 1 ≤ g ≤Gð Þ,

ð6Þ

where G is the maximum value of the lag g and �hj ð �hkÞ is
the average score of the jth (kth) column in the HMM
matrix.

Hence, the ACC descriptor of the query sequence S is
expressed as a 3D matrix Z = ½zj,k,g� with the size of 20 ×
20 ×G, resulting in 400 × G features. The parameter G
should be smaller than the length of the shortest protein
sequence in the dataset. Aided by the ACC transformation
of the HMM profile, the sequence-order effect and evolution-
ary information can be indirectly and partially, but quite
effectively reflected.

2.3. Feature Selection. In machine learning, a high-
dimensional feature space often contains redundant and
noisy information and leads to huge computational cost in
the process of model training. Therefore, feature selection is
one of the important steps while building a machine learning
model, with the goal of finding the best possible subset of rel-
evant features. A variety of feature selection techniques have

Protein
sequences HHblits

Uniclust30
database

HMM profiles

AAC (20 D)

SVM

SMOTE
ANOVA

Optimized
modelDPC (400 D)

ACC (4000 D)

Prediction
results

Figure 1: Flowchart of the proposed AOP-HMM model.
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been used for the identification of AOPs [17–19] and for
other classification problems in bioinformatics [41–44]. In
this study, the ANOVA method was adopted to perform
the feature selection due to its simplicity and efficiency.
According to the principle of ANOVA, the F-score of each
feature was first calculated based on the ratio of the sample
variance between groups to the sample variance within
groups. Obviously, the larger the F-score, the more impor-
tant the feature. Then, all features were ranked according to
their F-score values. Finally, the optimal number of features
was determined by a stepwise incremental approach.

2.4. Classification Algorithm. In this study, the prediction of
AOPs was defined as a two-group classification problem.
Here, the SVM algorithm was employed as the predictor for
annotating AOPs since it is regarded as one of the most
robust prediction methods, especially suitable for the binary
classification. First, SVM maps the training samples into a
high-dimensional feature space by using the kernel trick.
Then, a good separation is achieved by the optimal hyper-
plane which maximizes the margin between the two classes.
Finally, new testing samples are mapped into the same space
and predicted to belong to a category based on which side of
the gap they fall. More details about the fundamentals of
SVM theory can be seen in the famous literature written by
Cortes and Vapnik [45].

The performance of an SVM classifier depends on the
selection of the kernel and the kernel’s parameters. The
radial basis function (RBF) was adopted in our experi-
ments because of its excellent efficiency. The best combi-
nation of the two parameters C and γ was selected by a
grid search scheme in the ranges of f2−3, 2−1,⋯, 213, 215g
and f23, 25,⋯, 2−13, 2−15g.

2.5. SMOTE. The working dataset used in this study is quite
unbalanced, with the AOPs and the non-AOPs at a ratio of
1 : 6. This may lead to the biased prediction to the predomi-
nant target class. To solve this problem, the synthetic minor-
ity oversampling technique (SMOTE) [32] was utilized to
balance the dataset before building the machine learning
model. SMOTE is an oversampling technique where the syn-
thetic samples are generated for the minority class, imple-
mented as follows: (1) take a sample X from the minority
class, and find its k nearest neighbours in the feature space;
(2) take the vector V between the current sample X and
one of those k neighbours; (3) synthesize a new sample X ′
by multiplying the vector V by a random number between
0 and 1; and (4) add the new sample X ′ to the minority class.

The SMOTE algorithm will continue to execute until the
dataset is balanced.

2.6. Performance Measurement. The proposed model was rig-
orously and fairly examined based on the 10-fold CV, the
jackknife CV, and the independent test, respectively. The
four common performance measurements were reported,
including sensitivity (Sen), specificity (Spe), accuracy (Acc),
and Matthews correlation coefficient (MCC). They are
defined as follows:

Sen =
TP

TP + FN
,

Spe =
TN

TN + FP
,

Acc =
TP + TN

TP + FP + TN + FN
,

MCC =
TP × TNð Þ − FN × FPð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FNð Þ × TN + FPð Þ × TP + FPð Þ × TN + FNð Þp ,

ð7Þ

where FP, FN, TP, and TN indicate the numbers of false pos-
itives, false negatives, true positives, and true negatives,
respectively. Additionally, the value of the area under the
receiver operating characteristic (ROC) curve (AUC) [46,
47] was calculated, as a reliable performance metric. In gen-
eral, the larger the AUC value, the more excellent the perfor-
mance of the model.

3. Results and Discussion

3.1. The Importance of Evolutionary Features Based on HMM
Profiles. In this section, we employed an SVM classifier to
compare the performances of HMM-based and sequence-
based feature encoding models, including Seq-AAC, Seq-
DPC, HMM-AAC, and HMM-DPC. All the experiments
were performed on the D1 dataset by using the 10-fold CV,
and five evaluation metrics are reported in Table 1. Referring
to Table 1, two sequence-based models (i.e., Seq-AAC and
Seq-DPC) achieved the satisfactory Spe values higher than
97% but their Sen values were lower than 40%. The HMM-
DPC model together with the HMM-AAC model performed
better than other sequence-based models in terms of Acc,
Sen, MCC, and AUC. Particularly, the value of Sen was sig-
nificantly improved from 0.2964 to 0.6324. This demon-
strated that evolutionary information in the form of HMM
profiles could play crucial roles in the prediction of AOPs.
In addition, the performance of the HMM-AAC model was
slightly inferior to that of the HMM-DPC model. This may
be because the sequence-order information would be
completely lost if only AAC features were used to represent
the protein sequences. Hence, how to extract features related
to sequence order from HMM profiles is of great importance
to the annotation of AOPs.

3.2. The Effect of Parameter G. In the AOP-HMMmodel, the
ACC variables measure the average correlation of two amino
acids separated by g positions along the protein sequence.

Table 1: Performance comparison between sequence-based models
and HMM-based models.

Method Acc Sen Spe MCC AUC

Seq-AAC 0.8886 0.3755 0.9722 0.4548 0.8278

Seq-DPC 0.8975 0.2964 0.9955 0.4867 0.8225

HMM-AAC 0.9296 0.5454 0.9922 0.6763 0.8579

HMM-DPC 0.9335 0.6324 0.9826 0.7006 0.9025
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Theoretically, the value of parameter g can be any integer
between 1 and L − 1, where L is the length of the shortest
sequence in the dataset. In our model, each protein sequence
was represented as a 400 ×G-dimensional (D) feature vector,
where G was defined as the maximum value of g. To deter-
mine the effect of G on the prediction performance, we
applied the SVM classifier to perform the 10-fold CV on
the D1 dataset with different values of G. The Acc and
MCC were adopted as the evaluation indicators, and the
comparison results are illustrated in Figure 2. As can be seen,
the values of Acc and MCC tended to stabilize with the
growth of G and the best ones were obtained when G = 10.
Given that too large Gmay cause the curse of dimensionality,
the optimal value of G was set to 10 for the further study.

3.3. Model Optimization. There existed two thorny problems
in the proposed AOP-HMM model: one is the too high
dimension of feature space, and the other is the imbalance
of sample sizes between AOPs and non-AOPs. In this sec-
tion, we first adopted the ANOVA method to rank the total
4000 features according to their classification ability. Then,
the optimal 305D features were selected to represent protein
samples by using a stepwise incremental method. Finally, the
SMOTE technique was applied to balance the training data-
set by creating synthetic minority class examples. To evaluate
the performance of model optimization, the 10-fold CV in
combination with the SVM algorithm was tested on the D1
dataset. The experimental results are presented in Figure 3.

As seen in Figure 3, the SVM model with the original
4000D ACC features achieved the relatively satisfying Acc
(0.946), Spe (0.994), and AUC (0.904) values, which may be
attributed to the efficient utilization of sequence-order and
evolutionary information by the ACC transformation. In
addition, when only the selected 305D features by using the

ANOVA method were used to train the SVM model, the
acceptable predictive performance was obtained in compari-
son with that of the ACC-based model. That made sense
because the dimension of feature space was dramatically
reduced without much loss of Acc. However, two models
based on ACC and ACC+ANOVA yielded really poor Sen
(less than 0.66) and MCC (less than 0.76) values due to the
unbalanced sample sizes between AOPs and non-AOPs. As
expected, the ensemble model showed the best performance
in terms of Acc (0.98), Sen (0.981), MCC (0.959), and AUC
(0.992) and achieved the reasonable Spe (0.978) value,
benefited from fusing three techniques, i.e., ACC, ANOVA,
and SMOTE. Besides, ROC curves associated with three
models are plotted in Figure 4, which illustrated the consis-
tent conclusions with Figure 3.

3.4. Comparison with Existing Methods. Generally speaking,
the performance comparisons among different AOP predic-
tion approaches are scientifically meaningful only if these
models are trained and tested on the same datasets. For a fair
comparison with the existing state-of-the-art methods, we
performed the jackknife test on the D1 dataset as done in
previous studies to validate the effectiveness of the proposed
AOP-HMM model. Table 2 summarized the comparison
results between our method and several earlier predictors
on the same dataset, including Naïve Bayes [14], AodPred
[15], iANOP-Enble [48], SeqSVM [19], IDAod [20],
AOPs-SVM [18], Vote9 [9], random forest [23], and hybrid
feature [24].

Referring to Table 2, the proposed AOP-HMM predictor
outperformed the listed state-of-the-art methods for the
identification of AOPs in terms of Sen (98.23%), Acc
(98.01%), MCC (0.9601), and AUC (0.992). Three models
(i.e., IDAod, AOPs-SVM, and Vote9) achieved the excellent
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Spe values higher than 98%, but their MCC values were less
than 0.75, which indicated a tendency to generate more false
negatives. It is also worth noting that the IDAod tool yielded
the second best Acc (97.05%) value, which automatically
extracted more discriminative features from the raw g-gap

dipeptide features by utilizing a deep autoencoder and full
connect neural network. That suggested that the deep learn-
ing technique may become a practical tool in the prediction
of AOPs. In addition, the AOPs-SVM classifier obtained
the reasonable Acc (94.2%) and AUC (0.832) by extracting
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176D discrete features composed of evolutionary informa-
tion in the form of PSSM profiles and secondary structure
information. This demonstrated that evolutionary features
indeed help improve the performance of AOP prediction
and HMM profiles could provide a useful source of evolu-
tionary information as well as PSSM profiles.

To further examine the robustness of the AOP-HMM
model, we performed the same independent test on the D2
dataset built by Zhang et al. [16, 17]. The D2 dataset consists
of two parts: (1) D2_train, including 100 AOPs and 100 non-
AOPs; and (2) D2_test, including 74 AOPs and 392 non-
AOPs. For the objective and unbiased assessment, the
AOP-HMM was beforehand trained on the D2_train dataset
and then tested on the D2_test dataset. The experimental
results of our method and three previous models are reported
in Table 3. The proposed method provided the highest Spe
(99.5%), Acc (98.1%), MCC (0.926), and AUC (0.970) among
these existing models. Additionally, the Sen of AOP-HMM
was 90.5%, slightly less than that of Ahmad et al.’s method
[49]. It should be pointed out that Ahmad et al. adopted three
types of features, i.e., k-spaced amino acid pairs, bigram
PSSM, and DPC, to train the SVM classifier. This observation
reconfirmed that evolutionary features extracted from PSSM
profiles or HMM profiles could play important roles in the
recognition of AOPs.

From the above comparisons, the proposed method
showed the impressive improvements for annotating AOPs
based on the jackknife CV as well as the independent test.
This may be attributed to the fusion of three techniques: (1)
ACC evolutionary features extracted from HMM profiles,
(2) ANOVA feature selection, and (3) SMOTE.

4. Conclusions

In this study, we explored a novel effective model to dis-
tinguish AOPs from non-AOPs based on a combination
of machine learning techniques (ACC+ANOVA+SMO-
TE+SVM). Firstly, the ACC transformation was used to
extract evolutionary features from HMM profiles. Secondly,
the ANOVA method was performed to select the optimal
feature subset by removing the redundant and noisy features.

Thirdly, the SMOTE technique was utilized to oversample
the imbalanced datasets. Fourthly, the SVM classifier was
adopted to perform the prediction of AOPs. Finally, the 10-
fold CV, the jackknife CV, and the independent test were car-
ried out to comprehensively evaluate the performance of the
proposed method, respectively. Compared with the existing
state-of-the-art predictors, our method achieved superior
performance and could serve as a useful tool for the auto-
matic annotation of AOPs solely based on the sequence
information. Besides, it is anticipated that the prediction abil-
ity of our model would be further enhanced by extracting
hybrid features from sequences, physicochemical properties,
and evolutionary information and designing powerful
ensemble algorithms.
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