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Purpose. Alzheimer’s disease (AD) is considered to be the most common neurodegenerative disease and also one of the major fatal
diseases affecting the elderly, thus bringing a huge burden to society. Therefore, identifying AD-related hub genes is extremely
important for developing novel strategies against AD. Materials and Methods. Here, we extracted the gene expression profile
GSE63061 from the National Center for Biotechnology Information (NCBI) GEO database. Once the unverified gene chip was
removed, we standardized the microarray data after quality control. We utilized the Limma software package to screen the
differentially expressed genes (DEGs). We conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) analyses of DEGs. Subsequently, we constructed a protein-protein interaction (PPI) network using the STRING
database. Result. We screened 2169 DEGs, comprising 1313 DEGs with upregulation and 856 DEGs with downregulation.
Functional enrichment analysis showed that the response of immune, the degranulation of neutrophils, lysosome, and the
differentiation of osteoclast were greatly enriched in DEGs with upregulation; peptide biosynthetic process, translation,
ribosome, and oxidative phosphorylation were dramatically enriched in DEGs with downregulation. 379 nodes and 1149 PPI
edges were demonstrated in the PPI network constructed by upregulated DEGs; 202 nodes and 1963 PPI edges were shown in
the PPI network constructed by downregulated DEGs. Four hub genes, including GAPDH, RHOA, RPS29, and RPS27A, were
identified to be the newly produced candidates involved in AD pathology. Conclusion. GAPDH, RHOA, RPS29, and RPS27A
are expected to be key candidates for AD progression. The results of this study can provide comprehensive insight into
understanding AD’s pathogenesis and potential new therapeutic targets.

1. Background

Alzheimer’s disease (AD) is typical hippocampal amnesia
and cognitive disorder [1]. It is characterized by amyloid pla-
ques (extracellular), neurofibrillary tangles (intracellular),
and structural and functional changes in memory-related
brain regions [2, 3]. There are about 50 million people with
dementia around the world and about 10 million newly
emerged diseases annually; 60-70% of these cases are patients
with AD. It is shown that the number of people suffering from
dementia around the world has increased twofold more from
1990 to 2016. This trend is mainly attributed to the aging
and growth of the population [4]. Due to its slow or invisible
onset, it is hard to be conscious of its initial. The main mani-

festations of AD patients include the declined cognitive
function, mental and behavioral disorders, and decreased
capability of daily living [5]. AD is classified into three stages
in view of the deteriorated degree of cognitive capability and
physical function [6]. AD devastates numerous people and
has become a chief medical and social burden worldwide [7].

As known to all, a variety of complex pathogenic factors,
such as genetic and environmental factors, lead to the occur-
rence of AD [8, 9]. Up to date, it is yet elusive towards the
mechanisms involved in AD’s pathogenesis, and efficient
methods are incomplete to prevent and treat AD [10].
Though several clinical treatments have been applied in com-
bating the cognitive and behavioral deficits associated with
AD, they are still needed to be improved due to limitations.
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Gene chip technology is a toolset that arranges a large
number of nucleic acid molecules in a large-scale array on a
small carrier and detects the strength of the hybridization sig-
nal by hybridizing with a labeled sample and then determines
the number of detected molecules in the sample [11]. It has
the advantages of high sensitivity and accuracy, quickness
and simplicity, and the ability to detect multiple diseases at
the same time [12]. The past decade has witnessed the discov-
ery and validation of more than a dozen of risk genes related
to AD. In human prostate cancer, the use of gene chip tech-
nology to explore the role of GAB2 in human prostate cancer
cells provides a new therapeutic target for prostate cancer
[13]. Using lncRNA microarray gene chip technology, it
was found that AC002454.1 has a significantly high expres-
sion in children with acute leukemia [14], which is related
to the immunophenotype and prognosis of children with
acute leukemia to a certain extent. Through gene chip tech-
nology, it has been identified that miR-937 in peripheral
blood mononuclear cells (PBMCs) is involved in the occur-

rence and development of Kawasaki disease (KD) [15], which
provides a new idea for the prevention and treatment of KD
coronary artery expansion.

This article is dedicated to screening and identifying the
differentially expressed genes (DEGs) in the gene expression
profile GSE63061 and DEGs related to AD. We performed
function and pathway enrichment analysis of the DEG and
subsequently constructed the protein-protein interaction
(PPI) network. Finally, we obtained several genes related to
AD: GAPDH, RHOA, RPS29, and RPS27A.

2. Materials and Methods

2.1. Extraction of Microarray Data. The gene expression pro-
file GSE63061 on Illumina HumanHT-12 V4.0 expression
beadchip was acquired from the Gene Expression Omnibus
(GEO) of NCBI (http://www.ncbi.nlm.nih.gov/gds/) [16]. A
total of 112 samples, comprising 72 AD samples and 40 con-
trol samples, were studied.
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Figure 1: Heat map analysis of identified DEGs between AD specimens and healthy controls. The genes with upregulation and
downregulation were indicated as red and green, respectively.
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Figure 2: Biological process (BP) and KEGG analysis for the DEGs with upregulation. (a) BP analysis and (b) KEGG pathway analysis.
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Figure 3: Biological process (BP) and KEGG analysis for the DEGs with downregulation. (a) BP analysis and (b) KEGG pathway analysis.
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2.2. Identifying the DEGs. We utilized the Limma package in
R to identify the DEGs, with an adjusted P value <0.01. For
analyzing the DEGs in-depth, we constructed a heat map
utilizing the Pheatmap package (https://cran.r-project.org/
package=pheatmap) in R.

2.3. Functional Enrichment Analyses for DEG.We performed
the enrichment analysis of AD-associated genes by Gene
Ontology (GO) and the Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses utilizing the Database for Anno-
tation, Visualization and Integrated Discovery (DAVID;
https://david.ncifcrf.gov/tools.jsp) [17]. GO terms containing
biological processes, molecular functions, and cellular com-
ponents could commendably illustrate the biological func-
tion for identified DEGs. As a public encyclopedic database,
KEGG comprehensively analyzed the function and biochem-
ical pathways of selected DEGs. If P < 0:05, the result is con-
sidered statistically significant.

2.4. PPI Network Analysis of DEGs. We employed the
STRING database (http://string-db.org) [18], which was
applied for the Retrieval of Interacting Genes to construct
the PPI network. To dig out AD-associated hub protein and
key genes, we obtained the interaction between DEGs with
a total score ≥ 0:4 and then constructed a PPI network utiliz-
ing the STRING database. Finally, we conducted the Cytos-
cape software to visualize the network and uncover hub
genes with higher degrees (connected nodes) in the PPI net-
work. These genes might have a vital role in the network.

3. Result

3.1. Identification of DEGs in AD. All the blood of AD
patients and healthy people from the datasets (GSE63061)
was used for our research. We firstly analyzed the DEGs
between AD samples and age-matched normal samples. We
obtained 2169 genes. The genes with the most significant
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Figure 4: The PPI networks were established by significant DEGs with upregulation, which is composed of 379 nodes and 1149 PPI edges.
Nodes mean proteins, and edges mean the interaction of proteins.
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P values are RPL36AL, LOC100132795, NDUFA2, and so on.
Then, we utilized a heat map of identified DEG in the
GSE63061 database to conduct cluster analysis (Figure 1).
Genes with upregulation and genes with downregulation were
shown as red and green, respectively. 1313 DEGs were indi-
cated as genes with upregulation, and 856 DEGs were indi-
cated as genes with downregulation.

3.2. GO and KEGG Enrichment Analyses. To obtain the func-
tion and pathway of these DEGs, we used the online tool
DAVID to analyze 1313 upregulation DEGs and 856 down-
regulation DEGs. Functional enrichment analysis showed
that these DEGs with upregulation exhibited a significant
association with the immune response of activated neutro-
phil involvement, the degranulation of neutrophils, and the
immunity mediated by neutrophils (Figure 2(a)). Lysosome,
osteoclast differentiation, and phagosome were significant
pathway enrichment of these upregulated genes (Figure 2(b)).
The DEGs with downregulation were mainly related to pep-

tide biosynthetic process, translation, ribosome, and SRP-
dependent cotranslational protein targeting to the membrane
(Figure 3(a)). Ribosome, oxidative phosphorylation, and
nonalcoholic fatty liver disease (NAFLD) were significant
pathway enrichment of these DEGs with downregulation
(Figure 3(b)).

3.3. PPI Network Analysis. We carried out a PPI network
analysis to explore the interaction and hub genes of DEGs.
Except for disconnected nodes in the network, 379 nodes
(proteins) and 1149 PPI edges (interactions) were demon-
strated in the PPI network constructed by upregulated DEGs
(Figure 4). Likewise, 202 nodes (proteins) and 1963 PPI edges
(interactions) were observed in the PPI network constructed
by downregulated DEGs (Figure 5). Considering the infor-
mation of the STRING database, we have chosen the top
node with a higher node degree. The number of edges was
positively correlated with the importance of their function
in the PPI network. The edges and nodes of the connecting
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Figure 5: The PPI networks were established by significant DEGs with downregulation, which is composed of 202 nodes and 1963 PPI edges.
Nodes mean proteins, and edges mean the interaction of proteins.
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lines of these genes were very dense. Among the genes with
upregulation, GAPDH and RHOA were thought of as hub
proteins and key genes. Among the genes with downregula-
tion, RPS29 and RPS27A are themost important. This suggests
they might play an important function in AD development.

4. Discussion

As an intricate and refractory neurodegenerative disease, AD
seriously affects people’s life and living quality, particularly
for the elderly [19, 20]. Its pathogenesis is not yet clear, and
no effective cure has been developed [21]. Thus, AD is still
a major problem in human diseases. Many hypotheses
explain the pathogenesis of AD, including amyloid cascades,
hyperphosphorylation, neurotransmitters, and oxidative
stress [22, 23]. However, the root cause and optimal treat-
ment plan are still difficult to achieve. Xia et al. found out
DEGs from the single-cell microarray data of four brain
regions affected by AD and constructed a PPI network [24].
Analysis shows that the increase of oxidative stress and the
changes in neuronal lipid metabolism may be some events
that occur in the early stage of AD pathology. Lee et al.
pointed out that p38MAPK could mediate a variety of AD-
associated events, i.e., the phosphorylation of tau, neurotox-
icity, neuroinflammation, and the dysfunction of synapsis.
Therefore, inhibiting p38MAPK is a prospective treatment
for AD [25]. Kajiwara et al. believe that the expression of
caspase-4 in microglia is related to cognitive impairment in
AD [26]. Further research on caspase-4 will be beneficial
for comprehending AD’s etiology and uncovering new tar-
gets for treating AD. Therefore, identifying the key genes
involved may help to further understand the development
of Alzheimer’s disease.

We used public databases to identify and screen DEGs
and related pathways in AD through various bioinformatics
methods. We identified GAPDH, RHOA, RPS29, and
RPS27A as the hub proteins and key genes of AD. Previous
studies have shown that GAPDH is a regulator of cell death,
and GAPDH is involved in tumor progression and has
become a new therapeutic target. Research by Hwang et al.
showed that GAPDH-mediated mitosis eliminated defective
mitochondria and led to apoptosis, which can provide a
potential treatment method for the treatment of Huntington’s
disease and other neurodegenerative diseases [27]. Mirabello
et al. pointed out that RPS29 was a constituent of the small
40S ribosomal subunit which functions essentially in rRNA
processing and ribosomal biogenesis and also reported that
RPS29 could cause autosomal dominant Diamond-Blackfan
anemia [28]. Researchers have shown that RPS27A may be a
potential target of mesenchymal stem cells in treating type 2
diabetes mellitus (T2DM).

Functional enrichment analysis revealed that DEGs with
upregulation primarily took part in and were enriched in the
immune response, neutrophil degranulation, lysosome, oste-
oclast differentiation, and so on. Mishra and Brinton’s
research has pointed out that the inflammatory immune
response is the unifying factor that connects each risk factor
of AD [29]. The DEGs with downregulation exhibit a signif-
icant enrichment in peptide biosynthetic process, translation,

ribosome, and oxidative phosphorylation. Beck et al. pointed
out that reducing mitochondrial oxidative phosphorylation
could lead to defects in AD, and mitochondrial dysfunction
was one of the early manifestations of AD [30].

This study has some limitations. First, the key DEGs need
to be verified by RT-qPCR. In future studies, we will collect
clinical samples to verify the expression levels of key DEGs
through RT-qPCR. Secondly, we plan to further explore the
mechanism of key genes in AD in the animal model.

5. Conclusion

In summary, we identified 2169 DEGs between AD patients
and healthy controls. Functional enrichment analysis
demonstrated that DEGs with upregulation displayed a sig-
nificant association with immune response, neutrophil
degranulation, lysosome, and osteoclast differentiation; the
DEGs with downregulation exhibited a significant associa-
tion with peptide biosynthetic process, translation, ribosome,
and oxidative phosphorylation. Subsequently, we identified
GAPDH, RHOA, RPS29, and RPS27A as key genes in AD
by analysis of the PPI network. The purpose of this research
is to improve our understanding of the molecular mechanism
of AD through comprehensive bioinformatics analysis and
may give a hint of developing the treatment of AD patients.
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