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Background. It is often tricky to differentiate cystic pituitary adenoma from Rathke cleft cyst with visual inspection because of
similar MRI presentations between them. We aimed to design an MR-based radiomics model for improving differential
diagnosis between them. Methods. Conventional diagnostic MRI data (T1-,T2-, and postcontrast T1-weighted MR images) were
obtained from 215 pathologically confirmed patients (105 cases with cystic pituitary adenoma and the other 110 cases with
Rathke cleft cyst) and were divided into training (n = 172) and test sets (n = 43). MRI radiomics features were extracted from the
imaging data, and semantic imaging features (n = 15) were visually estimated by two radiologists. Four classifiers were used to
construct radiomics models through 5-fold crossvalidation after feature selection with least absolute shrinkage and selection
operator. An integrated model by combining radiomics and semantic features was further constructed. The diagnostic
performance was validated in the test set. Receiver operating characteristic curve was used to evaluate and compare the
performance of the models at the background of diagnostic performance by radiologist. Results. In test set, the combined
radiomics and semantic model using ANN classifier obtained the best classification performance with an AUC of 0.848 (95% CI:
0.750-0.946), accuracy of 76.7% (95% CI: 64.1-89.4%), sensitivity of 73.9% (95% CI: 56.0-91.9%), and specificity of 80.0% (95%
CI: 62.5-97.5%) and performed better than multiparametric model (AUC = 0:792, 95% CI: 0.674-0.910) or semantic model
(AUC = 0:823, 95% CI: 0.705-0.941). The two radiologists had an accuracy of 69.8% and 74.4%, respectively, sensitivity of 69.6%
and 73.9%, and specificity of 70.0% and 75.0%. Conclusions. The MR-based radiomics model had technical feasibility and good
diagnostic performance in the differential diagnosis between cystic pituitary adenoma and Rathke cleft cyst.

1. Introduction

Cystic pituitary adenoma (CPA) and Rathke cleft cyst (RCC)
are both common intrasellar cystic lesions, but they have dif-
ferent treatment strategies and prognosis in clinic [1–4].
Although endocrinous test is effective for differentiating these
two diseases, MRI is still the vital tool in diagnosis of these two
lesions, especially in the case of nonfunctional pituitary ade-
noma. MR image features for CPA and RCC have been well
documented over these years, for example, features of fluid-
fluid level, off-midline location, septation, and hypointense

rim on T2-weighted images (T2WI) are rather specific for
CPA, and intracystic nodule is commonly seen in RCC [5–
10]. In many cases, these two lesions were difficultly distin-
guished on MRI manifestations. CPA can present high- (sub-
acute bleeding) or low- (liquefaction) intensity on T1-
weighted imaging (T1WI) and can also present high (liquefac-
tion) or low (necrosis underpinned by chronic bleeding)
intensity on T2WI. These radiological manifestations can imi-
tate those of the RCC with various intracystic protein levels [5,
11–13]. Thus, the overlapped imaging manifestations pose
challenge for differential diagnosis with visual inspection.
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Recently, computer-aided diagnosis and quantitative
imaging analysis have been increasingly applied to MRI of
intrasellar lesions [14–16]. As a natural extension of
computer-aided diagnosis, radiomics has become a promis-
ing technique for diagnosis in radiological field [17] and
has been applied to differential diagnosis in many diseases
of whole body [18–21]. In contrast to conventional
computer-aided diagnosis, radiomics has advantages in
high-throughput features and mineable data that may
improve diagnostic accuracy [17, 22]. Previous research has
established that the combination of signal intensity on the
postcontrast image and texture features can be used to dis-
criminate pituitary adenoma and RCC, based on the fact that
pituitary adenoma was more likely to show enhancement
while RCC rarely showed enhancement on the contrast-
enhanced image [15]. In our opinion, pituitary adenomas
with solid enhancement can be well distinguished from
RCC, but it is difficult to differentiate CPA with nonenhance-
ment or thin-rim enhancement from RCC. In this study, we
aimed to estimate the diagnostic capability of MR-based
radiomics model in differentiating CPA and RCC.

2. Materials and Methods

2.1. Patient Selection. This retrospective study was approved
by our institutional review board, and informed consent was
waived. A total of 230 patients with an imaging presentation
of cystic lesion on preoperative contrast-enhanced MR exam-
ination and pathological confirmation of pituitary adenoma
(n = 117) and RCC (n = 113) were consecutively collected
from July 2009 to February 2021. Patients were excluded due
to low-quality or incomplete MRI data (n = 12), a history of
surgery, and radiotherapy in the sellar region (n = 3). This
study finally included 215 patients, including 105 patients with
CPA and 110 patients with RCC. All of 215 patients were
divided into two nonoverlapping set according to the MR
images acquisition time: 172 cases (82 CPAs and 90 RCCs)
who underwent MRI scan during period from July 2009 to
June 2019 were assigned as training set, and the remaining
43 cases (23 CPAs and 20 RCCs) who were scanned from July
2019 to February 2021 were set as test set.

2.2. Image Acquisition.MRI data were obtained on four scan-
ners in our hospital (3.0 T Siemens Trio, 3.0T GE Discovery
MR750, 1.5 T GE Signa, and 1.5T Siemens Magnetom) with
the following protocols: (1) sagittal T1WI (TR, 360-450msec;
TE, 13-17msec; section thickness, 2-3mm; matrix, 256 × 192
; and FOV, 20 × 20 cm), coronal T1WI (TR, 400-440msec;
TE, 10-17msec; section thickness, 2-3mm; matrix, 256 ×
179; and FOV, 20 × 20 cm), coronal T2WI (TR, 3500-
4000msec; TE, 92-113msec; section thickness, 2-3mm;
matrix, 320 × 240; and FOV, 20 × 20 cm). Sagittal and coro-
nal postcontrast T1WI were performed after an intravenous
bolus injection (0.1mL/kg) of gadolinium-based contrast
(gadopentetate dimeglumine).

2.3. Region-of-Interest (ROI) Segmentation. A radiologist
(with 5 years of experience) manually delineated the ROI
along the boundary of the entire lesion on coronal T2WI

and coronal postcontrast T1WI layer by layer using an
open-sourceMRICRON software (version 6). Another senior
radiologist (with 10 years of experience) examined the out-
line results. To transfer the segmentations to the T1
sequence, the postcontrast T1 sequence were linearly aligned
to the T1 sequence using SPM12 software package on the
platform of MATLAB (http://www.fil.ion.ucl.ac.uk/spm/
software/spm12), thereby compensating for patient move-
ment between the two scans.

2.4. Radiomics Feature Extraction. Both T1WI, T2WI, and
postcontrast T1WI data were subjected to radiomics feature
extraction by using Pyradiomics software [23]. Feature nor-
malization was performed before the estimation of radiomics
features. The 110 radiomics features were extracted from
each of T1WI, T2WI, and postcontrast T1WI data, and
comprised seven groups: 19 first-order statistical features,
17 shape-based features, 23 gray level cooccurrence matrix
(GLCM) features, 16 gray level run length matrix (GLRLM)
features, 16 gray level size zone matrix (GLSZM) features, 5
neighbouring gray tone difference matrix (NGTDM) fea-
tures, and 14 gray level dependence matrix (GLDM) fea-
tures. Thus, a total of 330 radiomics features were
extracted from the original images. The first-order statisti-
cal features can evaluate the attributes of the individual
pixel value, but are independent of spatial interaction
between pixels [24]. The shape-based features are morpho-
logical properties such as volume and size. The remaining
features belong to texture features and can be used to char-
acterize irregularity of tissues [25].

2.5. Semantic Feature Evaluation. Two radiologists (radiolo-
gist 1 with 10 years of working experience, radiologist 2 with
15 years of working experience) who were blinded to clinical
information and pathologic results independently reviewed
the MR images to evaluate semantic features for all patients.
The semantic features included: (1) tumor shape (round,
oval, snowman-like, and lobulated [7]); (2) tumor location
(intrasellar, intrasellar and suprasellar, suprasellar); (3) sellar
floor depression (defined as a sellar floor depth exceeding
10mm below the imaginary posterior extension line from
the planum sphenoidale [26]; absence/presence); (4) inten-
sity on T1WI (defined the white matter of the brain as the
reference standard; divided into 6 groups: hypointensity,
iso-hypointensity, isointensity, iso-hyperintensity, hyperin-
tensity, or hyperhypointensity); (5) intensity on T2WI (clas-
sified as above); (6) off-midline location (defined as
lateralization of the lesion in the sella turcica or stalk devia-
tion by the lesion [6, 7], absence/presence); (7) signal inten-
sity of cystic portion (homogeneous/heterogeneous); (8)
cyst wall thickness (uniformity/nonuniformity); (9) lesion
boundary (well-defined/ill-defined); (10) inner margin of
cyst wall (regular, irregular); (11) fluid-fluid level [9] (absen-
ce/presence); (12) intracapsular septation [6] (absence/pre-
sence); (13) a hypointense rim on T2WI (the peripheral
portion of a sellar lesion was lower than the intensity of white
matter on T2WI [5, 6], absence/presence); (14) intracystic
nodule (free-floating nodules without enhancement [8],
absence/presence); and (15) the relationship with the
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cavernous sinus (defined by whether within or beyond the
lateral margin of the cavernous intracranial carotid artery
(ICA) [7], within/beyond) (Figure 1). In case of disagreement
in semantic feature evaluation, consensus was achieved by
disscusion. If consensus still could not be achieved, a senior
neuroradiologist (with more than 18 years of experience)
assisted to reach a consensus. The results were summarized

in Supplementary Table (available here). Meanwhile, the
two radiologists were informed that the final diagnosis was
one of the two tumors (CPA or RCC), and they separately
diagnosed all the cases.

2.6. Feature Selection and Classifier Training. The feature
selection and classification method were computed using

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1: Semantic features for image analysis ((a–f): patients with CPA; (g–h): patients with RCC): (a) fluid-fluid level (short arrow) and
wall thickness nonuniformity (long arrow) (sagittal T1 image); (b) a hypointense rim on T2WI (coronal T2 image); (c) heterogeneous of
cystic portion (short arrow) and beyond the lateral margin of the cavernous ICA (long arrow) (coronal T2 image); (d) off-midline location
(coronal T1 image); (e) sellar floor depression (short arrow) and intracapsular septation (long arrow) (sagittal postcontrast T1 image); (f)
ill-defined lesion boundary (coronal postcontrast T1 image); (g) intracystic nodule (coronal T1 image); (h) intracystic nodule (coronal
postcontrast T1 image).

3Computational and Mathematical Methods in Medicine



sklearn (https://scikit-learn.org/stable/).To avoid collinearity
and overfitting in feature space, least absolute shrinkage and
selection operator (LASSO) algorithm was used for feature
selection [27, 28]. To assess the predictive value of the radio-
mics features and semantic features, three models were
trained and tested based on radiomics features only (multi-
parametric model), semantic features only (semantic model),
and a combination of radiomics features and semantic fea-
tures (the combined radiomics and semantic model). Fur-
thermore, out of curiosity about the differences in the
discriminative ability of each single parametric imaging fea-
ture in multiparameter model, we compared the diagnostic
value of models based on single parametric imaging feature:
T1 imaging features only (T1WI model), T2 imaging features
only (T2WI model), and postcontrast T1 imaging features
only (postcontrast T1WI model). For classification, we inves-
tigated four machine learning classifiers, including support
vector machine (SVM), artificial neural network (ANN),
adaptive boosting (AdaBoost), and random forest (RF).
SVM learns an optimal hyperplane that separates the classes
as wide as possible, while trying to balance with misclassified
cases [29]. For SVM model, a radial basis function (RBF) ke,
rnel is used, together with regularization parameter C of 1.0.
ANN, inspired by biological neural networks, has a remark-
able self-learning ability to investigate the meaning and rules
of complicated data [30, 31]. For ANN model, a three-layer
feedback architecture (i.e., one input layer, one hidden layer
with 100 neurons, and one output layer) was performed
(Figure 2). ReLU transfer function was used in the hidden
and output layers. Adam optimization algorithm was
adopted to update the network weights. The overfit penalty
and maximum iteration number were set as 0.0001 and
200, respectively. We also used RF and AdaBoost, two tree-
based ensemble learning classifiers that allow nonlinear
interactions between features and have good interpretability,
to develop our models. For AdaBoost and RF, the classifica-
tion models were trained with the number of trees as 100,
maximum depth as 10.

To compare the performance of models, we computed
different combinations of feature selection methods and clas-
sifiers. A schematic overview of the radiomics approach is
shown in Figure 3.

2.7. Statistical Analyses

2.7.1. Group Comparison. All statistical analyses were per-
formed using SPSS software, v.21(IBM Corp, Armonk, New
York, USA). The demographic and clinical characteristics
were compared by a χ2 test for categorical variables and a
Kolmogorov-Smirnov test for continuous variables. A two-
sample t-test or a nonparametric t-test was applied to analyze
the statistical differences, depending on whether they con-
form to the normal distribution of continuous variables. P
values less than 0.05 was considered statistically significant.

2.7.2. Model Construction and Evaluation. All classification
experiments based on different combinations of feature selec-
tion and machine learning classifiers were performed
through 5-fold crossvalidation, and the whole training set

was randomly divided into five subsets. In each fold, four
subsets were used as the training set, and the rest one subset
was used as the testing set. In the training stage, LASSO was
used to select the most relevant features. Due to the different
training set, the number of selected features ranged between
20 and 40. After that, cluster models were trained based on
these features in the training set. In the testing stage, these
trained models were applied to the testing set, and the classi-
fication results were obtained. This process was repeated
until all subsets served as the testing set once. Four machine
learning classifiers were utilized, and parameters with the
best AUC were selected for each model. Then, the radiomics
model, semantic model, and the combined radiomics and
semantic model were externally validated in the test set.

2.7.3. Comparison of Diagnostic Performance. The diagnostic
performance of the six models was calculated using AUC in
the training set. The multiparametric model, semantic
model, and the combined radiomics and semantic model
was evaluated and compared using AUC, accuracy, sensitiv-
ity, specificity, positive predictive value, and negative predic-
tive value in the training and test set. Additionally, we
assessed the diagnostic performance of the radiologists who
had previously evaluated semantic features and distinguished
CPA from RCC.

3. Results

3.1. Patient Characteristics. Clinical and demographic char-
acteristics were summarized in Table 1. In either the training
or the test set, there were no significant statistical differences
in age and gender between the two groups. Abnormal hor-
mone level occurred more frequently in CPAs than in RCCs
in both the training (P < 0:001) and the test (P = 0:01) sets
(Table 1).

3.2. Determination of the Best Models in the Training Set. The
results of the diagnostic performance using different combi-
nations of six feature-selection methods and four classifiers
in the training set were summarized in Table 2.

Input layer

Hidden layer

Output layer

Classification CPA RCC

Weights

WeightsW
(2)
j

W
(1)
i,j

Figure 2: Illustration of ANN architecture. The input layer includes a

number of input nodes. Then, wð1Þ
ij denotes the weights that connect

the ith input to the jth node in the hidden layer.wð2Þ
j is the weight that

connects the jth hidden neuron to the output layer neuron.
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3.2.1. The Models Based on Radiomics Features. The ANN
classifier achieved consistent superior performance with at
least 2.3% higher AUC over other classifiers except using
T1 imaging features. The ANN classifier showed the best
diagnostic performance in multiparametric model (mean
AUC = 0:890, 95% CI: 0.851-0.929) than that of other radio-

mics models. The ANN classifier showed the best diagnostic
performance in T2WI model (mean AUC = 0:847) and post-
contrast T1WImodel (meanAUC = 0:867) than that of other
classification methods. The performance of the SVM or RF
classifier (mean AUC = 0:756) was better than that of the
other two classification methods in T1WI model.

(a) Images (b) Segmentation

T2WI

Post-contrast T1WI
(c) Registration

T1WI

(d) Radiomics feature extraction
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Figure 3:Workflow of radiomics approach. (a) Input T1, T2, and postcontrast T1 images. (b) Segmentation of the tumor on the T2 image and
postcontrast T1 image. (c) Registration of the postcontrast T1 to the T1 image to transform this segmentation to the T1 image. (d) Feature
extraction from the T1, T2, and postcontrast T1 images, combined with semantic features. (e) Predictive analysis and model evaluation.

Table 1: Clinical and demographic characteristics of patients.

Training set (n = 172)
P value

Test set (n = 43)
P value

CPA (n = 82) RCC (n = 90) CPA (n = 23) RCC (n = 20)
Age (mean ± SD), y 43:39 ± 14:27 42:23 ± 14:35 .597b 40:43 ± 15:97 47:65 ± 16:18 .150b

Gender, male/female ratio 31 : 51 37 : 53 .658a 7 : 16 8 : 12 .512a

Abnormal hormone level, n (%) 77 (93.9) 55 (61.1) <.001a 17 (73.9) 10 (35.0) .010a

Hormonal symptoms n (%)

With 24 (29.3) 7 (7.8) 8 (34.8) 3 (15.0)

Without 58 (70.7) 83 (92.2) <.001a 15 (65.2) 17 (85.0) .138a

Visual loss n (%)

With 37 (45.1) 23 (25.6) 7 (30.4) 3 (15.0)

Without 45 (54.9) 67 (74.4) .007a 16 (69.6) 17 (85.0) .232a

Note: SD indicates standard deviation. Data in parentheses are percentages. a: from the χ2 test; b: from the two independent sample t-tests.

Table 2: The mean AUC value of fivefold crossvalidation using different combinations of feature selection and classifiers in the training set.

Model
Classifier

ANN SVM AdaBoost RF

T1WI model 0.722 0.756 0.682 0.756

T2WI model 0.847 0.835 0.779 0.817

Postcontrast T1WI model 0.867 0.850 0.829 0.847

Multiparametric model 0.890 0.889 0.845 0.868

Semantic model 0.902 0.842 0.844 0.873

Combined radiomics and semantic model 0.924 0.907 0.849 0.889
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3.2.2. The Semantic Model. The ANN classifier showed the
best diagnostic performance (mean AUC = 0:902, 95% CI:
0.863-0.941) in semantic model than that of other classifica-
tion methods.

3.2.3. The Combined Radiomics and Semantic Model. The
ANN classifier in the combined radiomics and semantic
model achieved the best diagnostic performance (mean
AUC = 0:924, 95% CI: 0.885-0.963) than that of other classi-
fication methods.

3.3. Comparison of the Models in the Training and Test Set.
The combined radiomics and semantic model had better
diagnostic performance than either the multiparametric
model or the semantic model in the training and test set
(Table 3).

The ANN classifier in combined radiomics and semantic
model yielded an AUC, accuracy, sensitivity, and specificity
of 0.924, 85.5%, 86.6%, and 84.4% for the training set and
0.848, 76.7%, 73.9%, and 80.0% for the test set (Table 3).
Additionally, the ROC curves were shown in Figure 4.

3.4. Diagnostic Performance of Radiologists. The radiologists
achieved an accuracy of 70.9% and 79.1%, respectively, sensi-
tivity of 76.8% and 82.9%, and specificity of 65.6% and 75.6%
in the training set. In the test set, two radiologists had an
accuracy of 69.8% and 74.4%, respectively, sensitivity of
69.6% and 73.9%, and specificity of 70.0% and 75.0%
(Figure 4).

3.5. Model Analysis. In the training set, we computed the
importance ranking of features that is selected by LASSO
regression with the optimal lambda including nonzero vari-
ables in each round of crossvalidation and mixed them up
to select the TOP20 importance ranking of features

(Figure 5). For multiparametric model, the selected features
were mainly derived from texture features, such as entropy,
emphasis, and nonuniformity. The TOP 20 features in multi-
parametric model included 3 first-order features, 3 shape-
based features, 6 GLCM features,3 GLRLM features, 1
GLSZM features, 1 NGTDM features, and 3 GLDM features
(Figure 5).

In the training set, the TOP 20 importance feature selec-
tion in the combined radiomics and semantic model, 6
semantic features and 14 radiomics features, was found
retained after LASSO feature selection in 5-fold (Figure 5).
The 6 semantic features were sellar floor depression, T2WI
intensity, off-midline location, cyst wall thickness, intracap-
sular septation, and intracystic nodules. The selected radio-
mics features mainly comprised first-order features and
shape-based features. The14 radiomics features included 4
first-order features, 5 shape-based features, 3 GLCM features,
1 GLSZM features, and 1 GLDM features. Among the TOP
20 features of the two models, the overlapping feature is orig-
inal_shape_SurfaceArea.

Among the 43 cases in the test set, 10 cases (4 RCC, 6
CPA) were classified incorrectly by the combined radiomics
and semantic model. Some of the misclassified cases were
shown in Figure 6.

4. Discussion

In this study, we used a radiomics-based machine learning
method to distinguish CPA from RCC. Our results indicated
that the radiomics analysis based on traditional MR images
provide a promising noninvasive method and yield better
diagnostic performance than radiologists. Another impor-
tant finding was that the performance of combined radiomics
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Figure 4: ROC curves for ANN classifier with multiparametric model, semantic model, and combined radiomics and semantic model in
training set (a) and test set (b). The performances of the radiologists are also shown with red and blue dots.
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Figure 5: TOP 20 importance ranking of features in multiparametric model (a) and combined radiomics and sematic model (b) by LASSO in
5 folds in training set. Features with name starting with “T1C_original” are radiomics features extracted from postcontrast T1WI; “T2_
original” are radiomics features extracted from T2WI; “original” are radiomics features extracted from T1WI, and the others are sematic
features (marked in red).
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and semantic model has been further improved on the basis
of adding semantic features.

The diagnostic accuracy of the radiomics model was
higher than the experienced radiologists. As we know, the
diagnostic performance of radiologists is based on their expe-
rience and subjective perception of conventional MR image,
while radiomics approach could discover subtle differences
that were not perceptible by visual inspection and allow for
reproducible analysis [17, 22, 32].

This study was designed to compare the diagnostic effi-
cacy of radiomics models based on different single paramet-

ric image. Consistent with the prior study of Zhang et al.
[15], this research found that the most significant MR image
data in single parametric model for differential diagnosis is
postcontrast T1 image, followed by T2 image. However, T1
hyperintensity can be seen in intratumoral hemorrhage in
PA and high concentrations of protein in RCC, which may
be mistaken for contrast-enhanced tumors; the evaluation
of postcontrast T1WI alone may be misleading [13, 33].
Thus, we calculated the performance of multiparametric
model and found that multiparametric images had more
contribution to improve the performance. In

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6: Examples of cases who were classified incorrectly by the combined radiomics and semantic model: (a, b) patients with CPA (coronal
T1 and T2 image); (c, d) patients with CPA (coronal and sagital postcontrast T1 image); (e, f) patients with RCC (coronal T1 and T2 image);
(g, h) patients with RCC (sagital T1 image and coronal T2 image).
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multiparametric model, the selected importance features
were mainly derived from texture features; entropy and uni-
formity could be used to quantified heterogeneity at relevant
scales [34]. Entropy reflected the texture irregularity, while
uniformity represented the distribution of gray levels within
the tumor [34]. The heterogeneity may be correlated with
specific radiographic signs, such as the fluid-fluid level, the
septation, and floating nodule, which affect the texture
characteristics.

Considering that semantic features are important in dif-
ferential diagnosis and may provide additional predictive
value, we added it to radiomics features to build the inte-
grated model. As we expected, the combined radiomics and
semantic model performed better than the model based on
radiomics or semantic features alone. In addition to valuable
semantic features consistent with previous studies, we tried
to explain the importance of sellar floor depression and cyst
wall thickness in the selected importance features. We specu-
lated that sellar floor depression may be related to the inva-
siveness of PA, and PA could infiltrate many structures
such as the sellar floor, the cavernous sinus, and the suprasel-
lar region [35–37]. However, the growth of RCC was expan-
sive and noninvasive behavior pattern. The main MRI
finding of RCC was nonenhancement or thin-rim enhance-
ment. Earlier studies have shown that the thin-rim enhance-
ment of RCC can be attributed to squamous metaplasia,
inflammation, deposition of hemosiderin, or cholesterol
crystals in the cyst wall [38–41]. Therefore, it is important
to distinguish that RCC is surrounded by enhanced normal
pituitary gland to simulate the enhancement of cyst wall
enhancement [41, 42]. The wall of CPA is attributed to the
incomplete hemorrhage, infarction, or hemorrhagic infarc-
tion occurred in the solid part of pituitary adenoma, so the
thickness of the wall can be nonuniformity. The radiomics
features in the selected importance features mainly com-
posed of first-order features and shape-based features. The
correlation analysis between semantic features and texture
remains to be studied.

In the test set, we found that the performance of the three
models decreased compared to training set, but still had rel-
atively good performance compared to radiologists. Different
manufacturers and different parameter settings may be a fac-
tor affecting the image quality and manifestation; thus, we
speculated that this may be an impact on the performance
of the models, whereas, from another point of view, it was
proved that the radiomics techniques had rather superior
generalization performance even thought it was constructed
with heterogeneous data.

There were several limitations in our study. First, the rel-
atively small number of patients in test set in this study might
influence our results, and multicenter data might be needed
to validate our model in the future. Second, this study did
not include highly suspected patients without surgery, which
may lead to bias in the results.

5. Conclusions

The radiomics approach was a feasible method to distinguish
CPA from RCC, and the diagnostic performance of radio-

mics model outperformed radiologists. The performance of
the model was further improved after semantic features were
added. The combined radiomics and semantic model utiliz-
ing the ANN classifier was considered to be the optimal
model for identifying CPA and RCC.
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