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Photoacoustic imaging (PAI) is a new nonionizing, noninvasive biomedical imaging technology that has been employed to
reconstruct the light absorption characteristics of biological tissues. The latest developments in compressed sensing (CS)
technology have shown that it is possible to accurately reconstruct PAI images from sparse data, which can greatly reduce
scanning time. This study focuses on the comparative analysis of different CS-based total variation regularization
reconstruction algorithms, aimed at finding a method suitable for PAI image reconstruction. The performance of four total
variation regularization algorithms is evaluated through the reconstruction experiment of sparse numerical simulation
signal and agar phantom signal data. The evaluation parameters include the signal-to-noise ratio and normalized mean
absolute error of the PAI image and the CPU time. The comparative results demonstrate that the TVAL3 algorithm can
well balance the quality and efficiency of the reconstruction. The results of this study can provide some useful guidance
for the development of the PAI sparse reconstruction algorithm.

1. Introduction

Photoacoustic imaging (PAI) is a novel noninvasive biomed-
ical imaging modality with the capability of quantitatively
imaging of light absorption characteristics of endogenous
tissue chromophores that has grown tremendously in the
last two decades [1–4]. As a hybrid imaging method, PAI
combines strong optical contrast with high ultrasonic pene-
tration [5–7]. And it has shown great potential in multiple
clinical applications, including the breast imaging [8, 9], der-
matologic imaging [10, 11], thyroid imaging [12, 13], and
imaging of the lymphatic system [14]. In PAI, the recon-
struction of a high-quality image usually requires a large
amount of signal data, which requires expensive electronic
equipment or long data acquisition times. Moreover, in
many clinical applications including ophthalmic imaging
[15] and breast imaging [8], only incomplete data with lim-
ited angles can be accepted. Additionally, the conventional
analytic methods usually reconstruct distorted images with
strong artifacts when the data are insufficient or collected

from few views. Therefore, the development and investiga-
tion of high-speed and high-quality PAI image reconstruc-
tion algorithms based on incomplete data is a popular
research area of current interest [16–18]. To address the
issue of insufficient information, the iterative algorithms
for PAI reconstruction have been proposed to improve the
quality of reconstructed images and reduce the time of data
acquisition [19–21]. The incomplete data may arise from a
variety of forms, but in this work, we focus on the sparse
data problem in PAI with a circular measurement geometry.

Mathematically, the reconstruction of PAI images from
sparse data can be regarded as a problem of solving underde-
termined linear equations. By incorporating some prior
information of the object or missing data, the iterative algo-
rithms that can obtain more accurate reconstruction results
at the cost of much more computing time have been devel-
oped for PAI [19–21]. One of them is based on the theory
of compressed sensing (CS), which has attracted more and
more attention due to its can recover sparse signals using
much less measurements than advised by Shannon’s
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sampling theory [22, 23]. By using the L1magic convex opti-
mization algorithm and sparse-view data, Provost and
Lesage applied the CS theory to the PAI imaging for the first
time [24]. The issue of loss of resolution and artifacts in the
case of insufficient measurements can be solved by using
random lighting via the SPGL1 algorithm [25]. Based on a
set of highly sparse representations of noise signals, Bayesian
CS theory was used to obtain PAI images [26]. The results of
phantom and in vivo experiments showed that the CS
method can effectively reduce the undersampling artifacts
through the nonlinear conjugate gradient descent algorithm
[27, 28]. All these studies showed that the CS-based iterative
reconstruction methods can significantly reduce the number
of ultrasound transducers in the PAI imaging system and
obtain high-quality reconstructed images with sparse data.

The total variation (TV) regularization and compressed
sensing theory has a wide array of applications in biomedical
imaging, for its good properties for preserving sharp edges
and contours of objects. For example, a TV iterative shrink-
age scheme is proposed to CS recovery of parallel MRI [29,
30]. Jia et al. developed the GPU-based cone-beam CT
reconstruction algorithm using noisy and reduced projection
data via TV [31]. Liu et al. investigated the application of
sparse Bayesian learning framework and in electrical imped-
ance tomography [32, 33]. This paper conducts a quantita-
tive performance study on the application of CS-based TV
regularization reconstruction algorithm in PAI. The total
variation minimization by augmented Lagrangian and alter-
nating direction algorithm (TVAL3) [34, 35], the generic
log-barrier algorithm (L1magic) [24, 36], Nesterov’s algo-
rithm (NESTA) [37], and the two-step iterative shrinkage
thresholding algorithm (TwIST) [38] are considered to solve
the TV minimization problem. Based on sparsely sampled
data, we evaluated the performance of the four reconstruc-
tion algorithms. Both the quality of the reconstructed images
and the CPU runtime are investigated. The results of this
study are expected to provide a suitable reconstruction algo-
rithm for PAI that reduces the scanning time without reduc-
ing the quality of the reconstructed image.

The organization of this article is as follows. Section 2
briefly reviews the methods used in the study, including
the photoacoustic theory, reconstruction algorithms, and
evaluation criteria. The results of a comparative experimen-
tal study and discussion are presented in Section 3. In the
last part of this article, we got some conclusions based on
the results of numerical experiments and simulation
experiments.

2. Methods

2.1. Photoacoustic Theory. According to the theory of photo-
acoustic signal generation, the relationship between the
ultrasonic pressure pðr, tÞ in a homogeneous medium and
the absorption distribution AðrÞ obeys the following wave
equation [1]:

∇2p r, tð Þ − 1
c2

∂2

∂t2
p r, tð Þ = −

β

Cp
A rð Þ ∂δ tð Þ

∂t
, ð1Þ

where r denotes the pixel coordinate, t means the time, c is
the sound velocity, β is the thermal coefficient of volume
expansion, Cp is the specific heat, and δðtÞ is a delta func-
tion. By using the Green function, wave equation (1) can
be solved, providing the forward problem [9].

p r0, tð Þ = β

4πCp
∭

A rð Þ
∣r − r0 ∣

δ t −
∣r − r0 ∣

c

� �
d3r, ð2Þ

where r0 is the position of the ultrasound transducer.
By taking the Fourier transform of equation (2) and

denoting k = ω/c, where ω is the angular frequency, the for-
ward problem in the temporal-frequency domain can be
expressed as [24]

�p r0, kð Þ = −ikβ
4πCp

∭A rð Þ exp ik r0 − rj jð Þ
c r0 − rj j d3r: ð3Þ

During the experiment, we obtained the photoacoustic
signal in the frequency domain by performing fast Fourier
transform on the time domain signal. After discretisation,
equation (3) can be represented as a linear equation:

Y = KX, ð4Þ

where Y ∈ RM denotes the vector for all pressure measure-
ments in Fourier domain and X ∈ RN denotes the vector
for the unknown reconstruction image. However, we can
only observe inaccurate measurements Y = KX + ε, where ε
∈ RM denotes the modeling transducer noise. According to
equation (3), the time-frequency domain measurement
matrix can be written as

K m,nð Þ i,jð Þ = −ickn
eikn rm−rijj j
rm − rij
�� �� ,m = 1, 2,⋯, p, n = 1, 2,⋯, q,

ð5Þ

where rm represents the transducer position, rij indicates the
coordinate of pixel, p is the transducer quantity, and q repre-
sents the number of sampling locations, respectively. The
image reconstruction problem is to extract the absorption
distribution X from the pressure data Y , which is usually
ill-posed when there are fewer sampling points. Therefore,
regularization techniques and prior information of the
image are utilized to obtain a stable reconstruction process.

2.2. Total Variation Regularization. So far, a variety of CS
reconstruction algorithm has been developed, such as the
greedy iterative algorithm, total variation (TV), and Bayes-
ian framework. Among them, TV regularization has great
success in image reconstruction due to its capability of keep-
ing edges and boundaries. The discrete form of the isotropic
TV for a grayscale image is the sum of the L2 norm of the
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discrete gradient:

TV Xð Þ = 〠
N

i=1
DiXk k2 = 〠

N

i=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δh
i X

2 + Δv
i X

2
q

, ð6Þ

where DiX = ðΔh
i X, Δv

i XÞ
T
is the discrete gradient of the gray

image X and Δh
i and Δv

i denote the horizontal and vertical
difference operators. The existing literature indicated that
TV-based CS algorithms can accurately reconstruct images
from sparsely sampled data [34–38]. The L2 norm of DiX
corresponds to the isotropic TV, or the L1 norm of DiX cor-
responds to the anisotropic TV. In the field of PAI, the TV
minimization optimization algorithm can reconstruct excel-
lent image from few view data [39–42]. The noiseless dis-
crete TV regularization model can be written as

min
X

TV Xð Þ s:t: KX = Y : ð7Þ

For the reconstruction with noise signals, we can solve
the Rudin-Osher-Fatemi model as an alternative

min
X

TV Xð Þ + λ

2
KX − Yk k22: ð8Þ

In this work, the TVAL3, L1magic, NESTA, and TwIST
are considered to solve TV minimization problem (7) or
(8). Comparative performance is assessed for both noiseless
and noisy sparsely sampled data.

2.3. Evaluation Factors. Three quantitative parameters are
used to evaluate the performance of these four reconstruc-
tion algorithms from a sparse data set: the CPU time, the
signal-to-noise ratio (SNR), and the normalized mean abso-
lute error (NMAE). The CPU time was used to estimate the
efficiency of the algorithm, and the SNR was applied to eval-
uate the quality of the reconstructed image, and the NMAE
was used to quantify the reconstruction error between the
gray image and its reconstruction. The SNR is defined by

SNR X
_� �

= 10 ∗ log10
X − �X

�� ��2
X − X

_��� ���2
0
B@

1
CA, ð9Þ

where X
_

is the reconstruction and �X is the mean intensity
valve of X. The NMAE is defined as

NMAE X
_� �

=
X − X

_��� ���
Xk k × 100%: ð10Þ

3. Experiments and Results

In this article, we provide a simulation-based comparative
performance study between these four TV regularization
algorithms. The forward simulation and inverse reconstruc-
tion were conducted in 2D phantoms. The NCAT phantom
and the blood vessel phantom are used in the comparisons

to generate the photoacoustic signals. And the photoacoustic
signals are generated by using equation (3). Figure 1(a)
shows the NCAT phantom, and Figure 1(b) shows the blood
vessel phantom. The size of the phantom is 42mm × 42mm
with a resolution of 128 × 128 pixels. During the simulation,
the sound speed is 1500m/s and the diameter of the circular
scan is 60mm. To simulate the response of the ultrasonic
transducer, at every sampling location, 64 randomly chosen
kn/2πc’s inside the ½0:1, 32�MHz window were employed to
define the frequency domain projection matrix K. By rescal-
ing the phantom gray values to ½0, 1�, we acquired the fre-
quency domain signals using the projection matrix.

The simulation experiments were carried out using
MATLAB (MathWorks, Natick, MA) on a personal com-
puter with an Intel core i7-4790 processor and 32GB mem-
ory. The parameter ranges of the four algorithms are selected
according to the literature 34 to 38, and the specific param-
eter values are manually adjusted. The same iteration stop-
ping criteria kXk+1 − Xkk/kXkk < 0:005 were used to be fair
to compare the four algorithms. In the following section,
the quality of the reconstructed images and quantitative
comparisons are going to be discussed.

3.1. Sparse-View Reconstruction. The reconstructed images
of the NCAT phantom using these four TV regularization
algorithms and TV regularization model (7) from a set of
the sparsely sampled signals, with 20, 30, and 40 positions,
are shown in Figure 2. The first column displays the recon-
structed images of the TVAL3 algorithm, and the second
column show those of the L1magic algorithm. The third col-
umn is the reconstructed images of the NESTA algorithm,
and the fourth column presents those of the TwIST algo-
rithm. From Figure 2, it can be found that the image of the
NCAT phantom has been reconstructed very well by the
TVAL3 algorithm, even when the sampling number is
reduced to 20. There are stripe and speckle noise in the
image reconstructed by the L1magic algorithm, which affects
the quality of the reconstruction. The image reconstructed
by the NESTA algorithm is blurred, which affects the visual
effect. Among the four algorithms, the TwIST algorithm per-
formed the worst. Even if signals with 40-view angles are
used, the TwIST algorithm still cannot obtain a better image.
The TwIST algorithm still cannot obtain a better image
under 40-view sampling circumstance. This experiment
shows that the TVAL3 method is better than other three
methods significantly in PAI image sparse reconstruction.

In order to better observe the differences between these
four algorithms, we drew the pixel gray scales along the mid-
dle extraction lines of the reconstructed images. In Figure 3,
the red dotted line and the black solid line are the pixel gray
scales of the reconstructed image and the NCAT phantom,
respectively. By observing the gray scales, we can get the
similar conclusions mentioned above. Therefore, when these
two evaluation factors are considered together, the TVAL3
algorithm achieves the best reconstruction performance,
followed by the L1magic algorithm and the NESTA
algorithm.

The quantitative evaluation parameters of the recon-
structed images including the CPU time, the SNR, and the
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NMAE achieved by these four algorithms. From the CPU
time in Table 1, we can know that there are large differences
between the algorithm execution times: TwIST is about 1.3
times faster than NESTA, which itself can be roughly 2 times
faster than TVAL3. And the L1magic algorithm has the lon-
gest running time. As the sampling number increases, the
SNR data show an upward tendency and the NMAE values
show a downward tendency. According to Table 1, we find
that the TVAL3 algorithm provides the highest SNR value
and the lowest NMAE value and the TwIST algorithm has
the lowest SNR value and the highest NMAE value. NESTA
and L1magic have the similar reconstruction performance.
Considering the reconstruction efficiency and performance,
the TVAL3 algorithm is the optimal algorithm for sparsely
sampling PAI.

Figure 4 illustrates the reconstructed images of the blood
vessel phantom using these four TV regularization algo-
rithms from a set of the sparsely sampled signals, with 20,
30, and 40 positions. Therein, the first column to the fourth
column show the reconstruction results of the TVAL3 algo-
rithm, the L1magic algorithm, the NESTA algorithm, and
the TwIST algorithm, respectively. From Figure 4, we can
see that the blood vessel phantom has been well recon-
structed when using the TVAL3 algorithm and 40 position
signals. The image quality of the reconstruction is reduced
when 30 position signals are used. And the quality of image
reconstructed by using 20 position signals becomes very
poor. However, the reconstructed images contain noises
and blurs when using the other three algorithms and 40
position signals, and the quality of the reconstructed images

(a) (b)

Figure 1: The NCAT phantom and blood vessel phantom employed in comparisons.

20
30

40

NESTAL1magicTVAL3 TwIST

Figure 2: Reconstruction results of the NCAT phantom. The first to the third rows are the reconstruction images with 20-view, 30-view, and
40-view that are uniformly distributed at a 360° curve. The first to the fourth columns show the results of TVAL3, L1magic, NESTA, and
TwIST individually.
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is relatively poor when 30 and 20 position signals are used.
This experiment fully proves that the TVAL3 method has
the best reconstructed image quality.

The detail distinguish ability can also be seen from the
pixel gray scales along the middle extraction lines of the
reconstructed images (the red line in Figure 1(b)). As can
be seen from Figure 5, the TVAL3 algorithm has the best
image detail reconstruction capability. The reconstructed
image with L1magic algorithm contains more interference
noise. The details of the image reconstructed by the NESTA
algorithm are blurred. And the TwIST algorithm has the
worst image detail reconstruction ability. According to

Figure 5, we can get the similar conclusion as the previous
NCAT phantom experiment.

We record the CPU time for these four algorithms in
each experiment of the blood vessel phantom, as shown in
Table 2. The CPU time of the TwIST algorithm is approxi-
mately 2.2 times longer than the NESTA algorithm, which
itself is about 2.6 times faster than TVAL3. And the CPU
time reconstructed by the L1magic algorithm is the longest.
According to the SNR in Table 2, we can see that the TVAL3
algorithm can obtain a SNR of 30 dB using signals from 30-
views, while the SNRs of the reconstructed images of the
other three algorithms are less than 30 dB using signals from
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Figure 3: Gray curves along the middle extraction line in Figure 1(a). The gray curves are reconstructed with these four algorithms from 20-
view, 30-view, and 40-view signals for the NCAT phantom.

Table 1: Numerical results of the NCAT phantom with different sampling positions.

Experimental CPU time (seconds) SNR (dB) NMAE
Positions TVAL3 L1magic NESTA TwIST TVAL3 L1magic NESTA TwIST TVAL3 L1magic NESTA TwIST

5 2.69 202.84 1.64 1.06 10.01 2.28 6.5 0.76 26.78 65.22 40.13 77.69

10 4.29 298.61 2.23 1.98 15.03 6.3 8.42 0.72 15.02 41.05 32.16 78.04

15 6.16 442.24 2.81 1.8 20.35 8.44 9.85 1.4 8.14 32.09 27.29 72.14

20 8.11 470.25 3.47 3.01 25.28 10.56 10.95 1.93 4.62 25.14 24.04 67.93

25 9.02 425.4 3.89 4.05 29.79 12.27 11.83 2.74 2.75 20.65 21.71 61.83

30 9.93 474.47 4.33 3.13 33.3 13.3 12.31 4.19 1.83 18.34 20.56 52.33

35 10.59 446.89 4.78 3.71 37.09 14.55 13.11 6.15 1.18 15.87 18.74 41.77

40 10.93 444.98 5.06 4.78 40.83 15.62 13.86 9.3 0.77 14.04 17.18 29.06

45 10.94 532.55 5.44 2.2 42.53 17.29 14.33 7.16 0.63 11.58 16.28 37.17

50 10.99 509.73 5.89 3.92 45.71 18.27 15.06 14.36 0.44 10.35 14.98 16.23

55 12.16 474.01 6.27 3.61 48.34 19.4 15.7 18.33 0.32 9.09 13.91 10.28

60 11.8 559.14 6.81 4.33 51.05 20.87 16.3 27.72 0.24 7.67 12.98 3.49

Average 8.97 440.09 4.39 3.13 33.28 13.26 12.35 7.9 5.23 22.59 21.66 45.66
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60-views. Similarly, the TVAL3 algorithm provides the low-
est NMAE value.

Considering the results of these two simulation experi-
ments, we can draw a useful conclusion that the quality of
reconstructed image with the TVAL3 algorithm is better
than the other three algorithms. The artifacts and blurs
emerge in the other three algorithms reconstructed images,
and the quality of images is severely affected indicating that

these three methods are not suitable for sparse reconstruc-
tion. From the simulation results, we can conclude that the
TVAL3 algorithm is more suitable for reconstructing photo-
acoustic images under sparse sampling conditions than the
other three algorithms.

3.2. Robustness to the Noise. In the actual photoacoustic
imaging process, the signal will be affected by Gaussian

NESTAL1magicTVAL3 TwIST

20
30

40

Figure 4: Reconstruction results of the blood vessel phantom. The first to the third rows are the reconstruction images with 20-view, 30-
view, and 40-view that are uniformly distributed at a 360° curve. The first to the fourth columns show the results of TVAL3, L1magic,
NESTA, and TwIST individually.
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Figure 5: Gray curves along the middle extraction line in Figure 1(b). The gray curves are reconstructed with these four algorithms from 20-
view, 30-view, and 40-view signals for the NCAT phantom.
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white noise from the system ultrasonic transducer and elec-
tronic devices. Therefore, it is very important for an algo-
rithm to keep stable performance in the presence of noise.
In order to analyze the robustness of those four methods,
we added different levels of Gaussian noise to the signal.
Results of noisy signal experiments are evaluated by SNR
and NMAE.

In Figure 6, the SNR and the NMAE indexes are repre-
sented as a function of the number of data. A good algo-
rithm has a larger SNR and a smaller NMAE. Figure 6
shows the trend diagram of the SNR and NMAE between
the NCAT phantom and the reconstruction obtained from
those four methods and TV regularization model (8). We

remind that higher SNR and lower NMAE indicate superior
image quality. It is clear that the TVAL3 algorithm outper-
form the other three algorithms also in terms of the SNR
and NMAE. Moreover, the TVAL3 algorithm can not only
obtain better performance with fewer measurements but also
improve SNRs faster than the other three algorithms.

It can be seen from Figure 7, when there is weak noise of
40 dB and 30 dB, those four methods achieve similar SNRs
and NMAEs when using signals with less than 25 positions.
Furthermore, the TVAL3 algorithm achieves the biggest
SNR and the smallest NMAE with sampling locations of
more than 40 and improves SNR faster than the other three
algorithms. When there is strong noise of 20 dB and 10 dB,

Table 2: Numerical results of the blood vessel phantom with different sampling positions.

Experimental CPU time (seconds) SNR (dB) NMAE
Positions TVAL3 L1magic NESTA TwIST TVAL3 L1magic NESTA TwIST TVAL3 L1magic NESTA TwIST

5 2.68 258.02 1.5 0.29 2.58 0.1 1.59 0.05 71.86 95.62 80.54 97.03

10 4.3 280.44 1.8 0.56 6.07 0.89 2.38 0.36 48.09 87.3 73.56 93.73

15 6.31 338.66 2.24 0.82 9.97 1.98 2.99 0.8 30.71 77.04 68.55 89.99

20 8.22 366.16 2.59 1.19 15.55 2.54 3.69 1.2 16.14 72.26 63.28 84.25

25 10 411.43 2.92 1.48 22.63 3.66 4.38 2.98 7.15 63.51 58.41 68.62

30 11.88 467.69 3.4 1.65 34.49 4.82 4.73 5.08 1.83 55.53 56.12 53.94

35 13.17 481.37 3.87 1.94 42.76 6.31 5.48 10.95 0.7 46.8 51.46 27.42

40 11.91 619.74 4.59 2.53 48.43 7.65 6.36 19.28 0.37 40.11 46.51 10.51

45 12.22 524.17 4.77 2.13 51.61 9.18 6.71 20.4 0.25 33.64 44.71 9.24

50 12.09 672.54 5.39 2.18 54.11 10.8 7.4 23.03 0.19 27.92 41.27 6.83

55 11.3 551.73 5.49 2.81 55.39 12.57 8.21 25.27 0.16 22.76 37.6 5.27

60 12.29 626.07 5.95 2.65 57.93 14.47 8.79 26.56 0.12 18.29 35.19 4.54

Average 9.7 466.5 3.71 1.69 33.46 6.25 5.23 11.33 14.8 53.4 54.77 45.95
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Figure 6: Comparison of the SNR and NMAE values from the reconstruction results of the NCAT phantom with different numbers of
sampling points. The first to the fourth columns show the results of noisy observation with SNR = 40, 30, 20, and 10 dB, respectively.
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the NESTA algorithm and the TwIST algorithm have
smaller SNRs and larger NMAEs, but the TVAL3 algorithm
can still achieve good reconstruction results with sufficient
measurements. In other words, the TVAL3 algorithm
achieves good reconstruction of PAI images in noisy
environments.

Figure 8 shows the histogram of the influence of chang-
ing variance of Gaussian noise distribution on TVAL3.
When the number of signals is small, there is not a great deal
of difference in the SNR of reconstructed images with differ-
ent levels of noise signals. While the number of signals
exceeds 25, the SNR of the reconstructed images under dif-
ferent noise levels will vary greatly. It can also be seen from
Figure 8 that the SNR of the reconstructed image can be
improved by increasing the number of signals when the
noise level is low, and the SNR of the reconstructed image

is low when the noise level is high. Therefore, the biggest
challenge in practical experiments is how to minimize the
impact of noise. Signal averaging technology is needed to
eliminate noise interference and obtain more reliable and
effective signal data.

3.3. In Vitro Experiments. We also compared those four
reconstruction algorithms through in vitro experiment.
Figure 9(a) shows the schematic diagram of the circular
scanning experimental system, which is modified from our
previous article. A Q-switched 532nm Nd : YAG laser was
used as the source of light. The single-element ultrasound
transducer (V309 Panametrics) with a central frequency of
5MHz and a diameter of 12.7mm was used to receive the
ultrasound signals. At each signal acquisition position, the
photoacoustic signals were first amplified by a pulse
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Figure 7: Comparison of the SNR and NMAE values from the reconstruction results of the blood vessel phantom with different numbers of
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amplifier, then recorded with an oscilloscope (MSO4000B,
Tektronix), and finally input into a personal computer for
signal processing and image reconstruction.

The imaged phantom we used in the experiment is made
by gelatin cylinder. The agar phantom was made by mixing
1% lipid, 6% gelatin, and 93% water to simulate biological
tissue. Figure 9(b) is the photograph of the phantom. The
diameter of the phantom is 20mm. One graphite rod with
a diameter of 0.5mm and two hairs of lengths of 4mm were
embedded as the optical absorbers. In the phantom experi-
ment, 60-view data are selected for reconstruction.

In the experiment, 40-view and 80-view signals that are
uniformly distributed at a 360° curve are collected to recon-
struct images. Figure 10 displays the images that were recon-
structed from the sampling data sets utilizing TVAL3,
L1magic, NESTA, and TwIST, respectively. The second
row of Figure 10 is reconstructed from 80-view data. When
the sampling signals is sufficient, the TVAL3, L1magic, and
NESTA methods can construct good-quality images, and
the TVAL3 method has the best reconstructed image quality.
However, the quality of the reconstructed image with the
TwIST method is still relatively poor. When we reconstruct
the image with 40-view data (first row of Figure 8), the

reconstructions are seriously affected and there are more
noise in the images. Only the image reconstructed by the
TVAL3 algorithm is relatively clear, while the noises in the
reconstructions of the L1magic and NESTA methods affect
the identification of the boundary of the phantom.

4. Conclusion

In this paper, we have tested and evaluated four reconstruc-
tion algorithms (TVAL3, L1magic, NESTA and TwIST) for
PAI images with sparsely sampled data. The numerical sim-
ulations demonstrate that the TVAL3 method has the most
accurate reconstruction performance under sparse sampling
while the TwIST method has the worst detail reconstruction
ability. In terms of CPU time, the TwIST method needs the
least amount of CPU time, and the L1magic method requires
the longest CPU time. In terms of the reconstructed image
quality, the TVAL3 algorithm has better accuracy and anti-
noise ability than the other three algorithms. In conclusion,
the TVAL3 algorithm has the best image quality and
requires less CPU time, which provides a good balance
between the accuracy and efficiency of the reconstruction.
We believe that the findings of this research will provide
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Figure 9: (a) The PAI experimental system. (b) The cross-section of a cylinder of a carbon absorption sample.
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Figure 10: The first and second rows are the reconstruction images of the carbon absorption sample from 40-view and 80-view
experimental data. The first to the fourth columns show the results of TVAL3, L1magic, NESTA, and TwIST individually.
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insight for the development and application of algorithms in
the field of PAI.
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