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A modeling approach to investigate the dynamics of COVID-19 epidemics coupled with fear is presented in this paper. The basic
reproduction number R0 is computed and employed in analysing the effect of initial transmission and the conditions for disease
control or eradication. Numerical simulations show that whenever there is an outbreak coupled with fear, the disease is likely to
persist in the first two months, and after that, it will start to slow down as the recovery rate from fear increases. An increase in
the number of recovered individuals lead to a rise in the number of susceptibles and consequently set off a second wave of
infection in the third month of the epidemic.

1. Introduction

1.1. Coronavirus Disease Outbreak. According to the World
Health Organisation (WHO), coronavirus disease (COVID-
19) is a disease caused by a new coronavirus called SARS-
CoV-2. WHO first learned of this new virus on December
31st, 2019, following a report of a cluster of cases of ‘viral
pneumonia’ in Wuhan, People’s Republic of China [1].

The COVID-19 virus spreads primarily through droplets
of saliva or discharge from the nose when an infected person
coughs or sneezes. Most people infected with the COVID-19
virus will experience mild to moderate respiratory illness and
recover without requiring special treatment. Older people
and those with underlying medical problems like cardiovas-
cular disease, diabetes, chronic respiratory disease, and can-
cer are more likely to develop severe illness [2].

Since its outbreak in December 2019, COVID-19 has
caused a great threat worldwide, with millions of people
being infected and dying. By November 30th, 2020, cases of
coronavirus were about 63 millions, with death cases of about
1.5 million and recovery cases of about 43.5 millions [3].

The COVID-19 pandemic has attracted researchers in
different fields, including mathematics, to analyse, predict,
and give suggestions on the disease outbreak’s dynamics
and how to control it. Since the outbreak of COVID-19, dif-
ferent mathematical models for the dynamics of COVID-19
have been developed. Approaches used include simple com-
partmental models, network models, age-structured models,
discrete models, and stochastic models. Ndairou et al. [4]
developed a compartmental mathematical model that has
taken into account the superspreading phenomenon of indi-
viduals. In this model, the basic reproduction number was
computed, and the sensitivity of each parameter value was
analysed. The stability of the disease-free equilibrium was
also analysed.

Liu et al. [5] developed an SEIRU mathematical model to
study the latency period’s impact with a constant time delay.
Wang et al. [6] developed an SEIR, which was applied to esti-
mate the epidemic trend in Wuhan, China. A simple suscep-
tible infected-recovered-deaths (SIRD) model, which uses an
indicative rate of recovery based on the kinetic parameter,
was also developed by Fanelli and Piazza [7].
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A stochastic susceptible, exposed, infectious, treated, and
recovered (SEITR) model with input options for multiple
stages of infection, treatment, and the external fluctuations
in the transmission were developed by Otunuga and Ogun-
solu [8]. Jayson et al. [9] developed a spatiotemporal “risk
source” model with an index for assessing transmission risk
that leverages population flow data over time for different
locations. The changes in distribution and growth of epi-
demic overtime were derived using a Cox proportional haz-
ards framework with a time-varying hazard rate function
that describes the number of cumulative confirmed cases at
any given time for a given population.

A discrete-time SIRmodel with dead individuals, based on
the official counts for confirmed cases, was developed by Ana-
stassopoulou et al. [10]. The model was a data-based model
aimed at analysing and forecasting the COVID-19 outbreak.

Casella [11] developed a control-oriented SEIR model
that stresses the effects of delays and compares the outcome
of different containment policies. The goal, in this case, was
to reduce the reproduction number and control the epi-
demic. Other models with control measures include that of
Mumbu and Hugo [12], Cakan [13], Vega [14], the
SIDARTHE model by Giulia et al. [15], and the SEIRQ epi-
demic model by Hu et al. [16].

Mathematical models that use fractional derivatives have
also been formulated. Alkahtani and Alzaid [17] developed a
novel mathematical model of COVID-19 with fractional
derivative in which the basic reproduction number and sta-
bility were analysed. Tuan et al. [18] formulated a mathemat-
ical model of COVID-19 using Caputo fractional derivative.
Other COVID-19 models formulated using fractional deriv-
atives includes Khan et al. [19], Awais et al. [20], and Khan
and Atangana [21].

1.2. Coupling Fear in Epidemics. Outbreaks of any infectious
disease can be associated with fear to society, especially when
the disease causes severe illness and death. Fear, if not con-
trolled, can do more damage than a disease virus can do.
Controlling fear among infected and noninfected individuals
can be an important aspect in controlling disease transmis-
sion. While fear is an emotion that we frequently experience
as an individual, it can also be a shared and social emotion,
which circulate through groups and communities, and
shapes our reaction to ongoing events. Like other emotions,
fear is contagious and can spread swiftly [22]. Fear may also
cause individuals to isolate themselves as a reaction to the
epidemic crisis. People may isolate on an individual basis,
or a household basis [23].

Though fear is contagious, hardly few models have incor-
porated its impacts. Epstain et al. [24] developed a mathe-
matical and computational model coupled with contagion
disease and fear dynamics and found that fear has a great
impact on disease transmission and control. Valle et al. [23]
developed a model on the impact of behaviour changes on
the spread of pandemic influenza in which fear-based home
isolation was considered one of the behaviour changes.

Fear has played a significant role in the coverage of the
coronavirus outbreak. There have been a prominence of anx-
iety as a theme in reports of the coronavirus which support

that much of the scope of the epidemic is more a reflection
of public fear than information of what is happening in terms
of the spread of the virus [22].

In this article, we develop a mathematical model using
nonlinear differential equations. Our model captures the
dynamics of COVID-19 infection coupled with the fear epi-
demics. To gain some insights into disease vital dynamics,
we establish the basic reproduction number which is the ini-
tial transmission of the disease, determine the existence and
stability of equilibrium points, and analyse the impact of fear
on the dynamics of COVID-2019. Over time, mathematical
models have been used to describe the transmission dynam-
ics of several infectious diseases as well as the possible control
mechanisms available for the disease [25].

2. The COVID-19 Model Coupled with Fear

2.1. Model Formulation. The model considers only human
population with natural death rate, disease-induced death
rate, and the fear-induced death rate for human. The popula-
tion consists of susceptible human ðSÞ, human infected with
COVID-19 virus only ðIcÞ, human infected with both
COVID-19 virus and fear ðIcf Þ, human with fear of contagion
ðI f Þ, and recovered human ðRÞ.

It is assumed that individuals affected by fear will tend to
go for self-isolation on their free will to form a compartment
ðI f Þ. Meanwhile, individuals affected by the COVID-19 virus
or both COVID-19 virus and fear will go for self-isolation or
hospitalization compartment ðIcf Þ. The human with fear of
contagion may recover from fear and become fearless suscep-
tible. It is also assumed that an individual can develop fear
from Ic, Icf , and I f but may contract disease only by contact
with Ic and Icf or infected objects.

Lockdown and other preventive measures such as social
distancing and sanitization are not considered in this model.
Table 1 shows the model parameters and their description as
they have been used in this work. As a framework to the
approach used in this work, we mention the work by Epstain
et al. [24] and Valle et al. [23].

Figure 1 shows the transmission dynamics of coronavirus
fever with variables and parameters as described in Table 1.
Using the parameters in Table 1 and Figure 1, an SISR model
is derived using first-order nonlinear ordinary differential
equations as follows:

dS
dt

=Λ − 1 − αð ÞβS Ic + Icf
� �

− 1 − βð ÞαS I f + Ic + Icf
� �

− αβS Ic + Icf
� �

− dnS + ωI f ,

dIc
dt

= 1 − αð ÞβS Ic + Icf
� �

− αIc Icf + I f
� �

− dn + dc + γcð ÞIc,
dIcf
dt

= αβS Ic + Icf
� �

+ βI f Icf + Ic
� �

+ αIc Icf + I f
� �

− dn + dcf + γcf

� �
Icf ,

dI f
dt

= 1 − βð ÞαS I f + Ic + Icf
� �

− βI f Icf + Ic
� �

− ω + dn + df

� �
I f ,

dR
dt

= γcIc + γcf Icf − dnR:

ð1Þ
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2.2. Feasibility of the Model Solution. From the model equa-
tion, we have

dN
dt

= dS
dt

+ dIc
dt

+⋯+ dR
dt

≤Λ − dnN: ð2Þ

Solving this equation, we obtain

0 ≤N tð Þ ≤ Λ

dn
+N 0ð Þ exp−dnt: ð3Þ

As t⟶ 0, we have 0 <NðtÞ ≤Λ/dn: Hence, the model
solution is feasible and positively invariant in the region

Ω = S, Ic, Icf , I f , R
� �

≥ 0 ∈ℝ5
+ : S + Ic + Icf + I f + R ≤

Λ

dn

� �
: ð4Þ

Since R does not appear in other equations, then the
equation for R can be omitted from the analysis for its value
can be obtained when the values for S, Ic, Icf , and I f are
known. The remaining system becomes

dS
dt

=Λ − 1 − αð ÞβS Ic + Icf
� �

− 1 − βð ÞαS I f + Ic + Icf
� �

− αβS Ic + Icf
� �

− dnS + ωI f ,

dIc
dt

= 1 − αð ÞβS Ic + Icf
� �

− αIc Icf + I f
� �

− dn + dc + γcð ÞIc,
dIcf
dt

= αβS Ic + Icf
� �

+ βI f Icf + Ic
� �

+ αIc Icf + I f
� �

− dn + dcf + γcf

� �
Icf ,

dI f
dt

= 1 − βð ÞαS I f + Ic + Icf
� �

− βI f Icf + Ic
� �

− ω + dn + df

� �
I f :

ð5Þ

Thus, the model solution is feasible and positively invari-
ant in the region

Ω = S, Ic, Icf , I f
� �

≥ 0 ∈ℝ4
+ : S + Ic + Icf + I f ≤

Λ

dn

� �
: ð6Þ

The existence of the feasible solution of the model, which
is positively invariant in ℝ4

+, implies that the model system is
well-posed epidemiologically and mathematically. The well-

posedness of the model allows us to continue with other
mathematical treatments of the model.

2.3. Equilibrium Points. Setting the LHS of the model equa-
tion equal to zero and that Ic = Icf = I f = 0, we have the
disease-free equilibrium E0 given by

E0 =
Λ

dn
, 0, 0, 0

� 	
: ð7Þ

The endemic equilibrium is E∗ = ðS∗, I∗c , I∗cf , I∗f Þ, where

S∗ = 1
dn

Λ − dn + dc + γcð ÞI∗c + dn + dcf + γcf

� �
I∗cf + dn + df

� �
I∗f

h i
,

I∗c =
1 − αð ÞβS∗I∗cf

α I∗cf + I∗f
� �

+ γc + dn + dcð Þ − 1 − αð ÞβS∗
,

I∗cf =
αβS∗ + α + βð ÞI∗f
� �

I∗c

dn + dcf + γcf

� �
− αβS∗ − αI∗c − βI∗f

,

I∗f =
1 − βð ÞαS∗ I∗c + I∗cf

� �
β I∗cf + Ic
� �

+ ω + dn + dcð Þ − 1 − βð ÞαS∗
:

ð8Þ

2.4. Basic Reproduction Number. The basic reproduction
number R0 is a very important measure of the initial trans-
mission of any infectious disease. Using the next-generation
method as described by van den Driessche and Watmough
[26], we have

F =
1 − αð ÞβS∗ 1 − αð ÞβS∗ 0
αβS∗ αβS∗ 0

1 − βð ÞαS∗ 1 − βð ÞαS∗ 1 − βð ÞαS∗

2
664

3
775,

V =
γc + dn + dc 0 0

0 γcf + dn + dcf 0
0 0 ω + dn + df

2
664

3
775,

ð9Þ

FV−1 =

1 − αð ÞβS∗
γc + dn + dc

1 − αð ÞβS∗
γcf + dn + dcf

0

αβS∗

γc + dn + dc

αβS∗

γcf + dn + dcf
0

1 − βð ÞαS∗
γc + dn + dc

1 − βð ÞαS∗
γcf + dn + dcf

1 − βð ÞαS∗
ω + dn + df

2
6666666664

3
7777777775
:

ð10Þ
The basic reproduction number R0 is the largest eigen-

value of the FV−1 matrix. Now solving for the eigenvalues

Table 1: Parameters and their description.

Parameter Description

Λ Recruitment rate in human population

dn Natural death rate of human

dc Disease-induced death rate of human

dcf Disease-and-fear-induced death rate of human

df Fear-induced death rate of human

β Disease transmission rate

α Disease fear rate

γc Disease recovery rate

γcf Disease and fear recovery rate

ω Fear recovery rate
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of FV−1 and substitute S∗ =Λ/dn at disease-free equilibrium,
we obtain

R0 = max 1 − βð ÞαΛ
dn ω + dn + df

� � , 1 − αð ÞβΛ
dn γc + dn + dcð Þ +

αβΛ

dn γcf + dn + dcf
� �

8<
:

9=
;:

ð11Þ

Observe that

1 − βð ÞαΛ
dn ω + dn + df

� � = R0f , ð12Þ

is the basic reproduction number for fear epidemic,

1 − αð ÞβΛ
dn γc + dn + dcð Þ = R0c, ð13Þ

is the basic reproduction number of coronavirus epidemic,
and

αβΛ

dn γcf + dn + dcf
� � = R0cf , ð14Þ

is the basic reproduction number of coronavirus coupled
with fear epidemic.

3. Local Stability of the Disease-
Free Equilibrium

Theorem 1. The disease-free equilibrium of the COVID-19
model (2.5) is locally asymptotically stable if R0 < 1 and unsta-
ble if R0 > 1:

Proof. We show that the Jacobian matrix JðE0Þ of the
COVID-19 model (2.5) at E0 = ðΛ/dn, 0, 0, 0Þ has negative

eigenvalues. Further computations show that he Jacobian
matrix of the COVID-19 model (2.5) at E0 is

J E0ð Þ =

−dn −A −A − 1 − βð ÞαS∗ + ω

0 B 1 − αð ÞβS∗ 0
0 αβS∗ C 0
0 1 − βð ÞαS∗ 1 − βð ÞαS∗ D

2
666664

3
777775,

ð15Þ

where A = ð1 − αÞβS∗ + αβS∗ + ð1 − βÞαS∗, B = ð1 − αÞβS∗ −
ðγc + dn + dcÞ, C = αβS∗ − ðγcf + dn + dcf Þ, and D = ð1 − βÞα
S∗ − ðω + dn + df Þ. From the Jacobian matrix JðE0Þ, we find
that some of the eigenvalues are λ1 = −dn and λ2 =D = −ðω
+ dn + df Þ½1 − ððð1 − βÞαS∗Þ/ðω + dn + df ÞÞ�. The remaining
eigenvalues are obtained from the reduced 2 × 2 matrix

J∗ E0ð Þ =
B 1 − αð ÞβS∗

αβS∗ C

" #
, ð16Þ

where B and C are as defined above.
To show that the remaining eigenvalues are negative, we

need to show that the reduced Jacobian matrix J∗ðE0Þ satisfy
the Ruth-Hurwitz condition, that is, trðJ∗ðE0ÞÞ < 0 and det
ðJ∗ðE0ÞÞ > 0: Further computations shows that

tr J∗ E0ð Þð Þ = B + C = − γc + dn + dcð Þ 1 − 1 − αð ÞβS∗
γc + dn + dc

� 	

− γcf + dn + dcf
� �

1 − αβS∗

γcf + dn + dcf

 !
< 0,

ð17Þ

det J∗ E0ð Þð Þ = B × C − αβS∗ 1 − αð ÞβS∗

= 1 − 1 − αð ÞβΛ
dn γc + dn + dcð Þ +

αβΛ

dn γcf + dn + dcf
� �

2
4

3
5

= 1 − R0ð Þ > 0:

ð18Þ

S R

Ic

Λ 𝛾cfIcf

𝛾
c I
c𝛼Ic(Icf+If)

(1–𝛽)𝛼S(I
c +I

cf +I
f )

𝛼𝛽S(Ic+Icf)

(1–
𝛼)
𝛽S
(I c
+I c

f
)

dnRdnS

Icf

𝛽If(Icf+Ic)

(d
n +d

f )I
f

(d
n +d

cf )I
cf

(dn+dc)Ic

If
𝜔If

Figure 1: Transmission diagram for the COVID-19 model.
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Since trðJ∗ðE0ÞÞ < 0 and det ðJ∗ðE0ÞÞ > 0, then the proof
is complete.

4. Global Stability of the Disease-
Free Equilibrium

Theorem 2. The disease-free equilibrium is of the COVID-19
model (2.5) is globally asymptotically stable if R0 < 1 and
unstable if R0 > 1:

Proof. To analyse the global stability of the disease-free equi-
librium, we apply the Castillo-Chavez [27] approach. We
write the COVID-19 model (2.5) in the form

dXn

dt
= A1 Xn − XDFE,nð Þ + A12Xe,

dXe

dt
= A2Xe,

8>><
>>: ð19Þ

where Xn is the vector representing the non-transmitting
class and Xe is the vector representing the transmitting class.
The disease-free equilibrium is globally asymptotically stable
if A1 has negative real eigenvalues and A2 is a Metzler matrix.

From the COVID-19 model (2.5), we have Xn = S and
Xe = ðIc, Icf , I f ÞT . Further analysis gives

A1 = −dnð Þ,
A12 = −a11 − a12a13ð Þ,

ð20Þ

where a11 = a12 = ð1 − αÞβS∗ + αβS∗ + ð1 − βÞαS∗ and a13 =
−ð1 − βÞαS∗ + ω, while

A2 =
b11 1 − αð ÞβS∗ 0
αβS∗ b22 0

1 − βð ÞαS∗ 1 − βð ÞαS∗ b33

2
664

3
775: ð21Þ

where b11 = ð1 − αÞβS∗ − ðγc + dn + dcÞ, b22 = αβS∗ − ðγcf +
dn + dcf Þ, and b33 = ð1 − βÞαS∗ − ðω + dn + df Þ:

We can clearly see that b11 = ð1 − αÞβS∗ − ðγc + dn + dcÞ =
−ðγc + dn + dcÞð1 − R0cÞ,b22 = αβS∗ − ðγcf + dn + dcf Þ = −ðγcf
+ dn + dcf Þð1 − R0cf Þ, and b33 = ð1 − βÞαS∗ − ðω + dn + df Þ
= −ðω + dn + df Þð1 − R0f Þ.

It can be easily seen that A1 has negative real eigenvalue
and that matrix A2 is a Metzler matrix because all the off-
diagonal elements are positive. Hence, the disease-free equi-
librium E0 is globally asymptotically stable.

The existence of local stability of the disease-free equilibrium
implies local stability of the endemic equilibrium. An inter-
ested individual may try to establish the global stability of
the endemic equilibrium.

5. Impact of Fear on the Dynamics of the Model

In this section, we look into the impact of fear on the dynam-
ics of the model. From the basic reproduction number repre-
sented by Equation (11), we have the following three cases. In
case α = 0 and β > 0,

R0 =
βΛ

dn γc + dn + dcð Þ , ð22Þ

which is the basic reproduction number for the classical SIR
model of coronavirus fever.

In case α > 0 and β = 0, then

R0 =
αΛ

dn ω + dn + df

� � , ð23Þ

which is the basic reproduction number for the classical SIS
model of fear of contagion.

In case α = β > 0, then we expect that dc = dcf and γc = γcf .
Hence,

R0 = max 1 − βð ÞαΛ
dn ω + dn + df

� � , βΛ

dn γc + dn + dcð Þ

( )
: ð24Þ

To study the variation of R0c, R0cf , and R0f , with respect to
α and β, we perform a 3D plot for values of α = ½0:0 − 0:003�
and β = ½�0:0 − 0:002�: The behaviour of the graphs is as
shown in Figure 2. From Figure 2, we observe that R0cf is
between 0 and 3, while R0c and R0f grow as α and β increases.
R0f is expected to be higher than R0c and R0f because there are
many pathways in which one can contract fear. When the dis-
ease is endemic, an individual is not expected to recovery eas-
ily from the fear of contagion; this can lead to a change in
individual’s behaviour and the disease prevalence.

6. Numerical Simulations

In this section, we carry out numerical simulation in order to
study the persistence of the disease when introduced in a
closed or isolated system. The initial values used in simula-
tions are S = 100, Ic = 1, Icf = 0, I f = 1, and R = 0: For natural
death rate dn, we use the life expectancy of Tanzanians for the
year 2019 which is 65/69 (male/female) [28]. Therefore,
dn = 1/65/365 = 0:000042: The time to recover from corona
depends on the seriousness of the infection. Individuals pre-
senting mild illness may recover in an average period of 2
weeks while those presenting serious or critical illness recov-
ering in about 3 to 6 weeks [29]. For the purpose of our
analysis, we use 2 weeks, and so γc = 1/14 = 0:0714. Other
parameters are as indicated in Table 2.

The fear epidemic is expected to be faster than the disease
epidemic because there are many ways to develop fear than
are there for the coronavirus fever epidemic. An individual
can develop fear from Ic, Icf , or I f themselves, but an individ-
ual can contract disease only by contact with Ic and Icf : Sus-
ceptible individuals self-isolate through fear as the infection

5Computational and Mathematical Methods in Medicine



of the proper disease grows. Falling of the disease incidence
will cause susceptibility to return to circulation and trigger
the remaining infectives to cause a second wave of infections
at nearly 120 days. Figures 3(a) and 3(b) shows the variation
of subpopulations for α < β and α > β using the parameter
values in Table 2 except for the case where α > β: In the event
that α > β, it is expected that the disease-fear death dcf and
the fear of contagion death rate df will increase. For the pur-

pose of this analysis, we use dcf = 0:006 and df = 0:0003
instead of the values given in Table 2.

Figure 4 shows the variation of subpopulations when
α = β: In this case, we expect that dc = dcf and γc = γcf .
Here, one would expect that the disease epidemic curve
and the fear epidemic curve coincide. But this is not the
case actually because when fear grows, less individuals
are expected to be infected.
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(a) The graph of R0cf
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(b) The graph of R0c
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(c) The graph R0f

Figure 2: The variation of R0c, R0cf , and R0f , with respect to α and β:

Table 2: Parameters, description, and their values.

Parameter Description Value (per day) Source

Λ Recruitment rate in human 1.0 Assumed

dm Natural death rate of human 0.000042 [28]

dc Disease-induced death rate of human 0.004 Estimated

dcf Disease-and-fear-induced death rate of human 0.005 Estimated

df Fear-induced death rate of human 0.00015 Estimated

β Disease transmission rate of coronavirus disease 0.0015 [29]

α Fear rate of coronavirus fever 0.0010 Estimated

γc Disease recovery rate 0.0714 [29]

γcf Disease and fear recovery rate 0.0476 Estimated

ω Fear recovery rate 0.010 Estimated
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In the event that there is no fear of contagion, that is,
α = 0, we expect that df = 0, ω = 0, dcf = 0, and γcf = 0: The
epidemic curves for the model system are the S-curve for
the SIR model of coronavirus disease as shown in

Figure 5(a). On the other hand, when there is no coronavirus
transmission, that is, β = 0, we expect that dc = dcf = 0 and
γc = γcf = 0. The epidemic curves are the normal S-curve for
the SIS fear of the contagion model as shown in Figure 5(b).
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(a) Graphs plotted when α < β as in Table 2
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(b) Graphs plotted when α = 0:0030 > β = 0:0015

Figure 3: Time series plot for α < β and α > β.
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Figure 4: Graphs plotted when α = 0:0015 = β, dc = 0:004 = dcf , and γc = 0:0714 = γcf .
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7. Discussion

In this paper, we used a modeling approach to investigate the
dynamics of COVID-19 coupled with the fear of epidemics.
To study the effect of the initial transmission of the disease,
we computed the basic reproduction number R0 of the model
and used to analyse the stability of the disease-free equilibrium.
We also examined the effect of fear of contagion in R0 and the
whole model system using numerical simulation. Analysis of
the disease-free equilibrium indicates that the disease-free equi-
librium of the model is locally and globally asymptotically
stable when R0 < 1 and unstable otherwise. This means that
the outbreak can be controlled provided that R0 < 1:

The impact of fear rate α and the transmission rate β to
R0 were also examined. It was observed that increase in R0
will depend largely on the increase in α and β: Further anal-
ysis shows that as α and β increase and R0c and R0f grow
unbounded, while R0cf ranges from 0 to 3.

To analyse the variation of each subpopulation in the
model with respect to time, we performed numerical simula-

tions. The result from the numerical simulation shows that
whenever there is an outbreak coupled with the fear of conta-
gion, the disease is likely to persist in the first two months,
and thereafter, it will start to slow down. As more individuals
recover from fear and become susceptible, a second wave of
infection is triggered in the next month. This happens in all
case of α < β, α > β, and α = β.

8. Conclusion

COVID-19 infection will remain a potential threat to many
countries globally because of its nature of transmission. Fear
rate and transmission rate have been mainly seen to affect R0,
which is the initial transmission of the disease. Therefore, it is
essential to look into mechanisms that reduce fear and trans-
mission simultaneously in order to reduce R0. An effective
educational campaign about the nature of the disease itself
and its transmission will help reduce fear among people
and look for possible control mechanisms.
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Data Availability

The set of parameter values is mainly from articles similar to
this work while the unavailable data especially values of
parameters were estimated for the purpose of verifying
results of the mathematical analysis of the model developed.
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