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Ventricular fibrillation (VF) is a cardiovascular disease that is one of the major causes of mortality worldwide, according to the
World Health Organization. Heart rate variability (HRV) is a biomarker that is used for detecting and predicting life-
threatening arrhythmias. Predicting the occurrence of VF in advance is important for saving patients from sudden death. We
extracted features from seven HRV data lengths to predict the onset of VF before nine different forecast times and observed the
prediction accuracies. By using only five features, an artificial neural network classifier was trained and validated based on 10-
fold cross-validation. Maximum prediction accuracies of 88.18% and 88.64% were observed at HRV data lengths of 10 and 20 s,
respectively, at a forecast time of 0 s. The worst prediction accuracy was recorded at an HRV data length of 70 s and a forecast
time of 80 s. Our results showed that features extracted from HRV signals near the VF onset could yield relatively high VF
prediction accuracies.

1. Introduction

Cardiovascular disease (CVD) is the leading cause of death in
many developed countries [1] and accounts for an estimated
31% of all global deaths according to theWorld Health Orga-
nization, making it the primary cause of mortality worldwide.
CVD includes abnormal heart rhythms, called ventricular
tachyarrhythmias (VTAs), which comprise ventricular fibril-
lation (VF) and ventricular tachycardia (VT). VTA is one of
the factors causing a fast heart rate and mortality in the
absence of immediate medical treatment [2]. Therefore, early
prediction of VTA is important to save patients from sudden
death. The development of early preventive interventions
could reduce the risk of an imminent VTA event.

Heart rate variability (HRV) indices have been used as
noninvasive biomarkers to predict life-threatening VTAs
such as VF [3]. These indices provide features useful for dis-
tinguishing arrhythmia from normal HRV [4]. HRV signifies

the time variation of the R-peaks between two successive
QRS complexes. The maximum upward deflection of a nor-
mal QRS complex is the R-peak, and the duration between
two consecutive R-peaks is called the RR interval [5]. Previ-
ous studies have analyzed HRV by quantifying its features
using three analysis methods: time-domain, frequency-
domain, and Poincare nonlinear analyses [2, 6, 7].

Several studies have used the above three HRV analysis
methods to analyze short-term (~5min) and ultra-short-
term (<5 min) HRV data. Short-term analysis has been
widely considered to be methodologically reliable for analyz-
ing HRV data [8] and for extracting features to investigate
the occurrence of VF. Joo et al. applied an artificial neural
network (ANN) to predict VTAs (both VT and VF) 10 s
before their occurrence, using short-term HRV data [6].
Recently, Lee et al. attempted to predict the occurrence of
VT using HRV features extracted from short-term HRV data
[2]. Although short-term HRV data showed promising
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performance in predicting VTAs, ultra-short-term HRV data
were found to be adequate for personal health devices with
limited performance and memory capacity [9]. Therefore,
recent studies have focused on ultra-short-term HRV analy-
sis for applications in ambulatory heart rate devices [9].
Ebrahimzadeh et al. used the time-frequency and Poincare
nonlinear analyses to extract HRV features from ultra-
short-term HRV data. They extracted features from different
segments of the HRV signals at successive 1min ultra-short-
term HRV intervals (i.e., at the first, second, third, and fourth
minute before the event). They used the multilayer percep-
tron and K-nearest neighbor algorithms to classify healthy
subjects and patients with VTA [10]. Finally, they compared
the accuracies for predicting the occurrence of VTA by
employing various time-series forecasting models with a
fixed data length (1min).

Although several studies have attempted to use ultra-
short-term HRV data, the optimal data length and forecast
time period have yet to be determined. Therefore, in this
study, multiple combinations of different HRV data lengths
and forecast time periods were investigated to obtain the opti-
mal HRV data and forecast time interval for our data set. The
objective of this study was to investigate the optimal HRV data
lengths and forecast time periods for VF prediction, by com-
paring the performance in VF prediction of various HRV data
lengths and forecast time periods. We evaluated nine different
forecast times (from 0 to 80 s at 10 s intervals) and seven differ-
ent HRV data lengths (from 10 to 70 s at 10 s intervals). All
combinations of different HRV data lengths and forecast time
periods were assessed based on the prediction accuracies
obtained using the ANN algorithm.

2. Materials and Methods

2.1. Database. We used the following databases from Physi-
oNet [11]: Creighton University VTA database (CUDB)
[12], spontaneous VTA database (MVTDB) [13], normal
data sets from the paroxysmal atrial fibrillation prediction chal-
lenge database (PAFDB) [14], and the Massachusetts Institute
of Technology-Beth Israel Hospital normal sinus rhythm data-
base (NSRDB) [11]. We selected 29 VF subjects from CUDB,
29 VF and 30 control subjects from MVTDB, and 30 control
subjects from PAFDB and NSRDB (12 and 18 subjects, respec-
tively), resulting in a total of 58 VF subjects and 60 control sub-
jects. The sampling rates were 250Hz for CUDB, 1000Hz for
MVTDB, and 128Hz for the other two data sets.

2.2. Preprocessing. RR intervals were collected from the Phy-
sioBank Automated Teller Machine, a web service that con-
tains waveforms annotated by cardiologists, for the data
used in this study. Figure 1 shows the procedure used to orga-
nize the data sets using different data lengths and forecast
time periods. Based on the 150 s HRV signal before the
occurrence of VF, we considered nine different forecast time
periods ranging from 0 to 80 s at intervals of 10 s. Each fore-
cast time contains seven different HRV data lengths from 10
to 70 s at intervals of 10 s, resulting in 63 combinations. The
HRV data length represents the time period used for feature

extraction, shown as a gray line in Figure 1. The forecast time
is the time period before the VF onset (Figure 1).

2.3. Feature Extraction. The features listed in Table 1 were cal-
culated for each HRV data length denoted by the gray segments
in Figure 1. These features consist of fiveHRV features (two fea-
tures in the time-domain analysis and three features obtained
using Poincare nonlinear analysis), which were extracted from
each of the 58 VF and 60 control data sets. All HRV features
were computed from successive RR intervals.

2.3.1. Time-Domain Features. The time-domain features can
be characterized by (1) the mean RR intervals (mean NN
[RR]) and (2) the square root of the mean squared difference
of the successive NN (RR) interval (RMSSD), which can be
defined as follows:

MeanNN = 1
N
〠RR ið Þ, ð1Þ

RMSSD =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N
〠 RR i + 1ð Þ − RR ið Þð Þ2

r

: ð2Þ

2.3.2. Poincare Nonlinear Features. The features were a dis-
persion of the points perpendicular to and along the axis of
the identity. Here, SD1, which represents the standard devia-
tion of the points perpendicular to the axis of the line of iden-
tity, and SD2, which represents the standard deviation of the
points along the axis of identity, were both calculated using
Equations (3) and (4). The ratio of SD1 to SD2 was also cal-
culated.

SD1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Figure 1: Representation of the seven data lengths from 10 s to 70 s
in an interval of 10 s and nine forecast time periods from 0 s to 80 s
in an interval of 10 s selected from the total period 150 s.
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2.4. Proposed Methods. We implemented a fully connected
ANN with three layers: an input layer containing input fea-
tures to the network, a hidden layer capturing the nonlinear-
ity of the data, and an output layer representing the
dependent variable (Figure 2) [15, 16]. Rectified linear unit
[17] activation functions were used in the input and hidden
layers, and a sigmoid activation function [18] was used in
the output layer. Through trial and error, six neurons were
selected for the hidden layer. All features in the frequency-
domain analysis and a few features in the time-domain anal-
ysis require a longer recording period to be considered reli-
able features [8]. Thus, we considered only five such
features in this study. The input features were standardized
and shuffled before they were used in the ANN. We used a
10-fold cross-validation to avoid overfitting of the classifica-
tion. The data set was randomly divided into approximately
10 groups: 1 group was used as the testing data set and the
remaining 9 groups were used as the training data set. The
cross-validation was repeated 10 times to obtain unbiased
prediction accuracy. Thus, the final prediction accuracies
were determined by estimating the mean and standard devi-
ation of the 10 × 10-fold cross-validation results.

3. Results

Figure 3 presents the prediction accuracies of all combina-
tions of data length and forecast time. All data lengths with
a 0 s forecast time have relatively higher prediction accura-
cies, indicating that the features extracted from the vicinity
of VF onset could well distinguish VF from the control. Fur-
thermore, maximum prediction accuracies of 88.18% and
88.64% were obtained with data lengths of 10 and 20 s,
respectively, at a forecast time of 0 s, whereas a minimum
prediction accuracy of 64.36% was obtained with a data
length of 70 s at a forecast time of 80 s.

Figure 4 shows the mean prediction accuracies with their
standard deviations in terms of the forecast time. The highest
mean accuracy of 88.75% was obtained when using a 0 s fore-
cast time, which was statistically higher than the accuracies of
the other forecast times (analysis of variance [ANOVA]
Tukey statistical test, F½8, 54� = 68:61, p < 0:001), whereas
no significant difference was found between the mean predic-
tion accuracies of the other forecast times (p > 0:05).

Figure 5 presents the mean prediction accuracies with
their standard deviations in terms of the data length. The
ANOVA Tukey statistical test yielded no statistical differ-
ences among the mean accuracies for different data lengths.

4. Discussion

Advanced technologies have enabled the real-time monitor-
ing of various health conditions by exchanging information
between patients and common practitioners. These technol-
ogies have inherently low memory and capacity. Therefore,
the application of ultra-short-term HRV is inevitably impor-
tant to analyze HRV in appliances and devices with low
memory and capacity [8]. Several studies have investigated
ultra-short-term HRV recordings ranging from 10 s to
2min to determine the reliability of the computed HRV
parameters [8, 19]. Although ultra-short-term HRV data
are not always reliable for analysis, previous studies have
strongly suggested that researchers should consider statistical
methods to compensate for the considerable measurement
errors caused by the very short HRV segments [19]. There-
fore, in this study, we investigated several combinations of
data lengths and forecast time periods. Features were
extracted from seven different HRV data lengths, each with
nine different forecast times, to predict the occurrence of
VF in 63 cases. We trained an ANN using these features,
and high prediction accuracies were obtained using a forecast
time of 0 s. However, the forecast time period of 80 s yielded
low prediction accuracies, as shown in Figure 4. The overall
results highlighted that features extracted from HRV signals

Table 1: Features extracted from the HRV, the QRS complex singed area, and the R-peak amplitude.

Component Analysis Feature Unit Description

HRV

Time-domain analysis
Mean NN ms Mean of normal R-peak to normal R-peak (NN) interval

RMSSD ms Square root of the mean squared differences of successive NN intervals

Poincare nonlinear analysis

SD1 ms Standard deviation of points perpendicular to the axis of the line of identity

SD2 ms Standard deviation of points along the axis of the line of identity,

SD1/SD2 Ratio of SD1 over SD2

Output layerHidden layerInput layer

Mean NN

RMSSD

SD1

SD2

SD1/SD2

Figure 2: The architecture of our artificial neural network (ANN).
The input features to the ANN are as follows: mean NN: mean
normal R-peak to normal R-peak interval; SDNN: standard
deviation of NN; RMSSD: square root of the mean squared
difference of successive NN; pNN50: proportion of the interval
differences of successive NN intervals greater than 50ms; VLF:
very low frequency; LF: low frequency; HF: high frequency; SD1:
standard deviation of the points perpendicular to the axis of the
line of identity; SD2: standard deviation of the points along the
axis of identity.
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near the VF onset have a higher probability of predicting the
occurrence of VF.

We extracted five features using two analysis methods,
namely, the time-domain and Poincare nonlinear analysis
techniques. However, the frequency-domain features were

not considered in this study, as their reliability depends on
the length of the HRV signals they are extracted from. All
features in the frequency-domain analysis and two features
(SDNN and pNN50) in the time-domain analysis require a
longer recording period to be considered reliable [8]. Thus,
we considered only five features in this study, namely, mean
NN, RMSSD, SD1, SD2, and SD1/SD2.

A limitation of this study was that only a few data sets
(119 recordings in each case) were used to train our ANN.
The ANN model must be trained using more data sets to
achieve clinical validation. Further studies involving larger
data sets should be conducted to investigate different clinical
applications. Finally, the results of this study could be used
with a patient’s implantable cardiac defibrillator for real-
time VF predictions, thus providing additional functionality
for VF detection. Predicting the occurrence of VF hours in
advance would be particularly useful; however, the data sets
used in this study were limited to the 120 s data window
and predicted VF 30 s before its occurrence.

5. Conclusions

In this study, we trained an ANN to predict VF using features
extracted from 63 HRV segments with variable combinations
of forecast time periods and data lengths. Subsequently, we
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Figure 3: Average accuracies obtained when using the same forecast times over different data lengths. The asterisk (∗) indicates a statistically
significant difference between the corresponding groups.
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determined the optimal data lengths to be 10 and 20 s with a
forecast time period of 0 s, which were used to predict the
occurrence of VF with relatively high prediction accuracies
of 88.18% and 88.64%, respectively. This study could
improve the prediction of imminent VF using very short
HRV signals.
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