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Laryngeal squamous cell carcinoma (LSCC) is an aggressive type of head and neck squamous cell carcinoma (HNSCC) with a
relatively high rate of morbidity and mortality. An altered miR-144-3p level in LSCC with a small number of patients has been
previously reported. However, the clinical implication of miR-144-3p and its involved mechanism underlying this disease is not
clearly elucidated. In this work, we aimed to confirm the expression of miR-144-3p with larger samples and also to identify
target genes for the investigation of the underlying mechanism of miR-144-3p in LSCC. The levels of miR-144-3p were
downregulated in 155 samples of LSCC tissues as compared to 26 non-LSCC samples (SMD: -0.78; 95% confidence interval
(CI): -1.23, -0.32). The AUC of 0.90 in the summarized ROC curve also indicated a potential ability to differentiate LSCC from
non-LSCC tissues, with a sensitivity of 0.78 and a specificity of 0.88. With respect to the molecular mechanism, we predicted the
potential targets from online-based prediction, peer-reviewed publications, and RNA-seq and microarray data. In particular, the
genes influenced by transfection with miR-144-3p in the LSCC FaDu cell line were collected from the microarray GSE56243.
Lastly, 12 novel targets for miR-144-3p in LSCC were obtained by different algorithms. In conclusion, our study confirmed the
loss or downregulation of miR-144-3p in LSCC, which might contribute to the LSCC tumorigenesis and progression via
regulation of the 12 novel targets, such as IL24, ITGA6, and CEP55. In the future, further investigations are required to validate
the present results.

1. Introduction

Laryngeal squamous cell carcinoma (LSCC) is the most com-
mon type (>95%) of laryngeal cancer and has a relatively
high rate of morbidity and mortality [1]. Multiple factors,
such as excessive alcohol and smoking, have been associated
with the aetiology of carcinogenesis and the progression of
LSCC [2]. In the past decades, although researchers have

made some progress regarding the early diagnosis and thera-
peutic strategy of LSCC, numerous LSCC patients still face
unfavourable clinical outcomes [2]. Therefore, further inves-
tigation on the mechanism of LSCC remains crucial.

MicroRNAs are crucial endogenous regulatory factors that
usually exert a potent influence in various pathological
processes of tumorigenesis and progression of human tumors
by targeting sequence-specific genes [3]. Several microRNAs,
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such as miR-196b and miR-17-5p, have been considered
markers for the early diagnosis and prognosis of LSCC
patients [4–6]. Furthermore, miR-144-3p has also recently
gained much attention for its distant alteration in various
human cancers [7–9]. Chen et al. confirmed a marked loss
or downregulation of miR-144-3p in lung malignancy [10].
Additionally, another study also demonstrated a lower miR-
144-3p level in cervical cancer samples compared to a normal
sample [11]. As for LSCC, downregulated miR-144-3p has
been reported as performing a tumor-suppressive role by
targeting insulin receptor substrate 1 (IRS1) and E26 transfor-
mation specific-1 (ETS1) [12, 13]. However, only a small
sample size was tested to show the expression level of miR-
144-3p in LSCC, and the molecular mechanism involved in
miR-144-3p remains unknown due to the fact that altered
miRNA influences a series of downstream genes amid the evo-
lution of malignancy. Thus, this paper is aimed at confirming
the expression of miR-144-3p in LSCC with 155 samples of
LSCC tissues and 25 samples of non-LSCC mucosa and at
further identifying additional target genes to investigate the
underlying mechanism of miR-144-3p in LSCC.

2. Materials and Methods

2.1. Screening of Microarrays for miR-144-3p Expression and
Its Targets. To investigate the miR-144-3p levels in LSCC and
its potential targets, we searched for available data in public
databases (Sequence Read Archive (SRA), ArrayExpress,
and Gene Expression Omnibus (GEO)) as follows: (laryngeal
OR pharyngeal OR “head AND neck” OR LSCC OR
HNSCC) AND (RNA OR miRNA OR microRNA) AND
(tumor OR cancer OR carcinoma OR neoplas∗ OR malig-
nan∗). The features of the microarrays were as follows: (1)
the datasets were based on human LCSS and normal mucosa
tissues, and (2) there were more than three cases of tissues in
both the LSCC and non-LSCC groups. [14]. In addition to
microarrays, the RNA-sequencing data from the TCGA pro-
ject were also utilized to evaluate the differences of miR-144-
3p expression between LSCC and non-LSCC mucosa.

2.2. Statistical Analysis. All expression data were possessed
with a normalization of log2ðx + 1Þ scale. Student’s t-test
was used to measure the differences between two groups in
GraphPad Prism 8, and one-way ANOVA analysis was per-
formed for the differences among three or more groups. In
Stata 12.0, a random effects model was calculated to estimate
the overall expression of miR-144-3p when heterogeneity >
50%; otherwise, the fixed effects model was used. Moreover,

in combination with a summary receiver operating charac-
teristic (SROC) curve, the sensitivity and specificity forest
plots as well as positive and negative diagnostic likelihood
ratio (DLR) were used to measure the potential of miR-
144-3p in diagnosing LSCC. The results were recognized as
statistically significant when p < 0:05. [15]

2.3. Acquisition of Targets of miR-144-3p. To determine the
putative targets of miR-144-3p, a computerized-based pre-
diction was conducted using miRWalk 2.0, which included
12 software programs: miRDB, TargetScan, miRWalk,
Miranda, miRBridge, PicTar, RNA22, Microt4, miRNAMap,
PITA, RNAhybrid, and miRMap. We selected the genes that
overlapped in three prediction software programs. To ana-
lyze the genes directly influenced by miR-144-3p in LSCC,
a double-channel GSE56243 (GSM1357599) microarray
was used, and it identified the differentially expressed
genes (DEGs) after overexpressing miR-144-3p in LSCC
Fadu cell lines. From the GSE56243 microarray, the genes
with a log2 fold change ðFCÞ < −1 were selected as candi-
date targets of miR-144-3p for subsequent analysis. More-
over, we further excavated DEGs between LSCC and non-
LSCC controls from microarrays and TCGA RNA-seq data
using the limma package and edgeR of the R language pro-
gram, respectively. The genes that were differentially
expressed in at least three datasets were recorded. Finally,
the DEGs appearing for the aforementioned prediction
methods were selected as the putative target genes of miR-
144-3p in LSCC [16].

2.4. Molecular Mechanism for the Targets of miR-144-3p.
After the acquisition of targets for miR-144-3p, gene ontol-
ogy (GO) annotation in combination with pathway analysis
based on the KEGG and Reactome pathway databases was
performed to investigate the mechanism underlying LSCC
[17]. The protein levels for these genes in LSCC were further
verified by immunohistochemistry (IHC) according to the
Human Protein Atlas (HPA). Considering few studies for
IL24 in LSCC, in-house IHC experiments were performed to
validate IL24 protein levels using 30 cases of LSCC tissues
and 15 non-LSCC squamous epithelium. This research related
to human tissues had been approved by the Ethics Committee
of the Liuzhou People’s Hospital of Guangxi (Liuzhou, China).
The results of IHC staining were assessed by the percentage of
positive cells and staining intensity as previously described
[18]. And the protein levels of IL24 between LSCC and non-
LSCC tissues were calculated Student’s t-test.

Table 1: Details of the included studies for miR-144-3p expression in LSCC.

Study Year HNSCC/non-HNSCC Cancer types Exp. mean ± SD Con. mean ± SD
GSE62819 2017 5/5 LSCC 1:524 ± 0:170 1:587 ± 0:210
GSE73171 2016 3/3 LSCC 1:334 ± 0:152 1:415 ± 0:094
GSE124678 2019 32/5 LSCC −8:427 ± 0:9115 −8:086 ± 2:432
TCGA 2017 115/12 LSCC 2:913 ± 1:522 4:662 ± 2:045
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Figure 1: The expression of miR-144-3p and its clinical significance in LSCC and non-LSCC samples. (a) The expression differences of miR-
144-3p in each study; (b) the pooled level of miR-144-3p in LSCC evaluated by random effects model; (c) Begg’s test for the publication bias of
included studies; (d) ROC curves indicating the potential ability of miR-144-3p in distinguishing LSCC from non-LSCC samples based on
each study; (e) and summarized ROC curve indicating the potential ability of miR-144-3p in distinguishing LSCC from non-LSCC
samples by integrating four studies.
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3. Results

3.1. miR-144-3p Was Lowly Expressed in the LSCC. A total of
four datasets were eligible for this study, and they are com-
prised of 155 samples of LSCC tissues and 26 samples of
non-LSCC mucosa (Fig. S1, Table 1). As depicted in
Figure 1(a), the downregulation or loss of miR-144-3p in
LSCC was clearly observed in comparison with non-LSCC
tissues from RNA-seq data. Furthermore, consistent results
were obtained from the fixed effects model, indicating that

miR-144-3p exhibited a lower expression in the LSCC tissues,
with an SMD of -0.78 (95% CI: -1.23, -0.32; I2 = 0:0%,
Figure 1(b)). Moreover, no significant publication bias was
detected by Begg’s plot, which also strengthened the accuracy
of the fixed effects model (p > 0:05, Figure 1(c)).

3.2. Clinical Value of miR-144-3p Levels in LSCC. In terms of
diagnostic value, results suggested that miR-144-3p was a
useful indicator for distinguishing LSCC from non-LSCC
mucosa with an AUC of 0.9 detected by the SROC curve
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Figure 2: The clinical significance of miR-144-3p in LSCC. Sensitivity (a) and specificity (b) values of each included study. DLR negative (c)
and DLR positive (d) of each included study.
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(Figures 1(d) and 1(e)). The results of sensitivity, specificity,
negative DLR, and positive DLR were 0.78, 0.88, 0.25, and
6.67, respectively, which also indicated that miR-144-3p
might act as a means of diagnosing LSCC (Figure 2). How-
ever, statistical analysis did not demonstrate any significant
difference between miR-144-3p expression and clinical
features in LSCC (Figure 3).

3.3. Targets of miR-144-3p in LSCC. From the integrative
DEGs of the seven datasets (Figure 4, Table 2), 458 upregu-
lated genes overlapping in three datasets were considered to
be the candidate targets of miR-144-3p in LSCC (Figure 5).
In addition, there were 6,120 genes potentially influenced
by miR-144-3p from the online-based prediction by miR-
Walk 2.0. Furthermore, 1,231 genes were significantly down-
regulated when miR-144-3p were transfected into LSCC
Fadu cells. Eventually, 12 genes appearing at TCGA and
Affymetrix datasets, online predicting software, and microar-
ray after miR-144 transfection were regarded as the most
likely prospective targets of miR-144 (Figure 5(b)). In addi-
tion, ETS1 and IRS1 were also included for this study as a
result of previous reports [12, 13].

3.4. Gene Ontology and Pathway Analysis. For the biological
process of GO annotation (Figures 5(c)–5(e)), targets of

miR-144-3p are associated with response to stimulus, cell
communication, and metabolic processes. According to cel-
lular components, the proteins coded by these genes were
located in the membrane, nucleus, and protein-containing
complex. Regarding molecular function, targets of miR-
144-3p appeared to play roles in protein binding, iron bind-
ing, and nucleic-acid binding. With respect to KEGG and
Reactome pathway analysis (Table 3), ITGA6 and TNC were
noticeably involved in multiple pathways, such as syndecan
interactions, nonintegrin membrane-ECM interactions, and
PI3K-Akt signalling pathway.

3.5. Further Investigation for the Targets of miR-144-3p. The
mRNA expression of these 14 genes was upregulated in
LSCC tissues compared with non-LSCC tissues, among
which 9 protein expressions could be detected by IHC in
LSCC in the HPA databases (Figure 6). Besides, in-house
IHC were further performed to validate the expression of
IL24 protein. According to the evaluation of IHC staining
scores, IL24 protein levels were obliviously overexpressed in
30 cases of LSCC tissues compared with 15 non-LSCC squa-
mous epithelium (Table 4). And IHC staining results for
LSCC, papilloma, and non-LSCC epithelium are displayed
in Figure 7.
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Figure 3: The expression difference between miR-144-3p levels and clinical features in LSCC.
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Figure 4: The differently expressed genes (DEGs) between LSCC and non-LSCC samples. (a) The overview of DEGs in LSCC; and volcano
plots for GSE29330 (b), GSE51958 (c), GSE58911 (d), GSE59102 (e), GSE84957 (f), TCGA (g), and GSE10591.

Table 2: Details of studies for identification of DEGs between LSCC and non-LSCC tissues.

Accession Platform Subtype Cancer numbers Normal numbers

TCGA / LSCC 115 12

GSE29330 GPL570 LSCC 13 5

GSE51985 GPL10558 LSCC 10 10

GSE59102 GPL6480 LSCC 29 13

GSE84957 GPL17843 LSCC 9 9

GSE58911 GPL6244 LSCC 15 15

GSE107591 GPL6244 LSCC 24 23
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Figure 5: The identification for the targets of miR-144-3p and Gene Ontology (GO) analysis. (a) Microarrays and TCGA upregulating DEGs
appearing for at least three datasets; miRWalk 2.0, genes appearing for at least three prediction software; GSE56143 (GSM1357599) recorded
the information of genetic changes after transfection of miR-144-3p in LSCC cells, which was used for more accurate identification of targets
of miR-144-3p; (b) heat map for the 14 targets of miR-144-3p in LSCC and non-LSCC samples; biological process (c), cellular component (d),
and molecular function (e) of GO analysis.
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Table 3: The pathway analysis using the 14 targets of miR-144-3p in LSCC.

Gene set Description Size p value Genes

R-HSA-3000170 Syndecan interactions 2 0.00041 ITGA6, TNC

R-HSA-3000171 Nonintegrin membrane-ECM interactions 2 0.001957 ITGA6, TNC

hsa04512 ECM-receptor interaction 2 0.003367 ITGA6, TNC

R-HSA-216083 Integrin cell surface interactions 2 0.004174 ITGA6, TNC

R-HSA-1474244 Extracellular matrix organization 3 0.004174 ITGA6, TNC, FBN2

hsa04151 PI3K-Akt signalling pathway 3 0.005336 ITGA6, TNC, IRS1

R-HSA-74713 IRS activation 1 0.005674 IRS1

hsa05206 MicroRNAs in cancer 2 0.01091 IRS1, TNC

hsa04510 Focal adhesion 2 0.01872 ITGA6, TNC

hsa04960 Aldosterone-regulated sodium reabsorption 1 0.040011 IRS1

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6: The protein levels for the targets of miR-144-3p in LSCC provided by the Human Protein Atlas. (a) TNC protein detection using
HPA004823 antibody; (b) ITGA6 protein detection using HPA012696; (c) NETO2 protein detection using HPA013180; (d) CEP55 protein
detection using HPA023430; (e) RAB3B protein detection using CAB023293; (f) PTHLH protein detection using HPA035982; (g) SLC39A14
protein detection using HPA016508; (h) IL24 protein detection using CAB025972; (i) IRS1 protein detection using CAB005261. The protein
levels of FBN2, F2RL2, ETS1, LHX2, and CLSPN were not detected by the Human Protein Atlas. Note: protein levels of non-LSCC tissues
were not detected, and these results were just used to show the potential protein levels of targets of miR-144-3p in LSCC rather than the
expression difference.

Table 4: IL24 protein levels between LSCC and non-LSCC tissues.

Terms Tissues n Mean ± SD t p value

Statistical analysis
LSCC 30 8:733 ± 1:701

15.11 <0.001
Non-LSCC 15 1:333 ± 1:175
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4. Discussion

This study investigated the downregulation of miR-144-3p
and its clinical significance in malignant LSCC using 155
samples of LSCC tissues and 26 samples of non-LSCC
mucosa. Furthermore, the putative targets of miR-144-3p
were also determined using multiple databases, followed by
an in silico analysis, including pathway and GO enrichment
analyses for the investigation of underlying mechanisms.

LSCC deriving from laryngeal epithelial cells is an aggres-
sive type of head and neck carcinoma [1]. In several studies,
miR-144-3p has been considered an accelerator that pro-
motes tumor deterioration and has been found to be overex-
pressed in head and neck carcinoma [19, 20]. However, some
studies have also suggested downregulated miR-144-3p in
LSCC in comparison with non-LSCC mucosa. A study pub-
lished in 2016 demonstrated that a lower miR-144-3p expres-

sion was exhibited in LSCC compared to non-LSCC mucosa
and that low levels of miR-144-3p inhibited cell growth and
distant migration of LSCC cells by directly targeting IRS1
[12]. In addition, downregulated miR-144-3p was reported
as having the ability to suppress tumors by overexpressing
ETS1 [13]. However, the miR-144-3p expression in these
studies was only examined by RT-qPCR and used only a
few samples. In this study, we confirmed the expression level
of miR-144-3p in LSCC with larger samples by integrating
miRNA-seq data and miRNA profiles. The pooled result
demonstrated that miR-144-3p was clearly decreased in the
155 samples of LSCC tissues as compared with the 26 non-
LSCC mucosa samples. As for the potential effectiveness of
miR-144-3p to distinguish LSCC from non-LSCC mucosa,
the present results revealed that downregulated miR-144-3p
may eventually serve as a useful marker in the diagnosis of
malignant LSCC with a summarized AUC of 0.9.

(a)

(b)

(c)

(d)

Figure 7: The in-house IHC staining results for IL24 protein in LSCC (a; ×100, ×200, and ×400), papilloma (b; ×100, ×200, and ×400), and
non-LSCC epithelium (c; ×100, ×200, and ×400).
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Nevertheless, more experiments based on other factors, such
as serum and saliva, are needed for confirmation of the diag-
nostic ability of miR-144-3p regarding LCSS. Furthermore, it
was rather disappointing that no evidence was found
supporting any relation between miR-144-3p and clinico-
pathological features in LSCC.

After verifying the expression of miR-144-3p in LSCC, in
silico analysis was used to elaborate the specific molecular
mechanism involved. Previous studies have reported that
downregulated miR-144-3p could influence several targets
to accelerate carcinogenesis and cancer deterioration of
LSCC [12, 13]. For example, increased miR-144-3p could
clearly suppress IRS1 levels, thereby inhibiting PI3K/AKT
pathway activation. However, additional targets of miR-
144-3p in LSCC are worth exploring. To improve the reliabil-
ity of targets, we identified the targets of miR-144-3p by inte-
grating five elements, including peer-reviewed publication,
online-based prediction, miR-144-3p transfection microar-
ray, TCGA miRNA-seq data, and GEO microarray profiles.
Notably, transfection microarray recorded the gene alter-
ation in LSCC cells after overexpressing miR-144-3p. In total,
14 genes were finally regarded as the most likely targets of
miR-144-3p in LSCC. Of these 14 genes, two (viz., ITGA6
and TNC) contributing to several pathways are worth paying
attention to. Interestingly, the findings provided by Zhu’s
study revealed that ITGA6 may be directly targeted by
miR-144-3p in cervical cancer and that lncRNA ATB pro-
moted the viability of cell proliferation and invasion through
the miR-144/ITGA6 axis [21]. Furthermore, the protein
levels of TNC in the stroma have been proven to be an excel-
lent prognostic marker in oral cancer patients, suggesting
that five-year survival rate was 88% when stromal TNC was
negative; however, for cases with overexpression of TNC, it
decreased to 43% [22]. Furthermore, it should be mentioned
that our published study revealed that IL24 protein was
highly expressed in LSCC tissues and exerted an influence
in LSCC tumorigenesis [18]. Furthermore, some findings
based on pathway analysis suggested that targets of miR-
144-3p may be active in driving LSCC carcinogenesis and
deterioration through syndecan interactions and nonintegrin
membrane-ECM interactions pathways. As previously
reported, syndecan serves as (co)receptors to influence cell
signalling and cell behavior, which play roles in angiogenesis,
tissue regeneration, lipid metabolism, and even pathogenesis
of several diseases [23–25]. Syndecans are also involved in
human cancers [26]. Increased syndecan-1 in lung microen-
vironments accelerated the outgrowth of mammary carci-
noma metastases, whereas higher syndecan-1 levels
inhibited lung carcinogenesis by regulating exosome miR-
NAs, and lung cancer patients with higher syndecan-1 levels
were more likely have better prognoses [27, 28]. Further-
more, nuclear translocation of syndecan-1 has been also
reported to mediate TGF-β pathway activation and several
transcription factors, thereby suppressing the growth of
fibrosarcoma cells [29]. However, no research has yet
thoroughly investigated the correlations between syndecan
interactions and LSCC. The results of this study may provide
novel insights into drug discovery and clinical decision-
making regarding LSCC.

Although the results performed were generally successful,
the study included several limitations. Specifically, the targets
of miR-144-3p in this study were obtained only from in silico
methods. Regarding the targets, the focus of our study is to
provide a discovery of another 12 novel targets using differ-
ent algorithms rather than pathways that miR-144-3p might
regulate, which need to be carefully considered with in vitro
experiments. In addition, although big sample data based
on evidence-based methods were applied to explore the
expression of miR-144-3p, experiments should be performed
to investigate miR-144-3p’s molecular mechanism. More-
over, the diagnostic effectiveness and clinical utility of miR-
144-3p regarding LSCC require further exploration.

In short, this study provides more evidence for the down-
regulation of miR-144-3p in LSCC and suggests that down-
regulated miR-144-3p may serve as a useful diagnostic
indicator to differentiate LSCC from non-LSCC tissues.
Moreover, the loss or downregulation of miR-144-3p con-
tributes to LSCC tumorigenesis and progression via regula-
tion of the 12 novel targets, such as IL24, ITGA6, and
CEP55. Further future investigation is required to validate
and expand on the present results.
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