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In March 2020, the World Health Organization announced the COVID-19 pandemic, its dangers, and its rapid spread throughout
the world. In March 2021, the second wave of the pandemic began with a new strain of COVID-19, which was more dangerous for
some countries, including India, recording 400,000 new cases daily and more than 4,000 deaths per day. This pandemic has
overloaded the medical sector, especially radiology. Deep-learning techniques have been used to reduce the burden on
hospitals and assist physicians for accurate diagnoses. In our study, two models of deep learning, ResNet-50 and AlexNet, were
introduced to diagnose X-ray datasets collected from many sources. Each network diagnosed a multiclass (four classes) and a
two-class dataset. The images were processed to remove noise, and a data augmentation technique was applied to the minority
classes to create a balance between the classes. The features extracted by convolutional neural network (CNN) models were
combined with traditional Gray-level Cooccurrence Matrix (GLCM) and Local Binary Pattern (LBP) algorithms in a 1-D
vector of each image, which produced more representative features for each disease. Network parameters were tuned for
optimum performance. The ResNet-50 network reached accuracy, sensitivity, specificity, and Area Under the Curve (AUC) of
95%, 94.5%, 98%, and 97.10%, respectively, with the multiclasses (COVID-19, viral pneumonia, lung opacity, and normal),
while it reached accuracy, sensitivity, specificity, and AUC of 99%, 98%, 98%, and 97.51%, respectively, with the binary classes
(COVID-19 and normal).

1. Introduction

COVID-19 began to appear and spread from the city of
Wuhan, China, in December 2019 around the world very
quickly. In March 2020, the World Health Organization
declared it a global pandemic that caused the closure of air-
ports, restricted internal and external movements, and para-
lyzed the global economy. By May 13, 2021, the total
number of global cases reached about 161,596,640 people,
and the number of active cases reached 17,782,865 people,
while the number of deaths reached 3,352,620 people, and
serious critical cases reached 104,362 people; the number is

still increasing daily [1]. The virus spreads through saliva
droplets or nasal swabs. The symptoms a person has are high
fever, dry cough, headaches, muscle aches, tingling, sneezing, a
sore throat, and respiratory diseases frommild tomoderate. In
addition, 97% of people with COVID-19 suffer from mild
symptoms, and 3% suffer from critical cases. However, the
elderly and those with chronic diseases such as asthma, pneu-
monia, heart disease, and diabetes are likely to die from
COVID-19.

Two methods for detecting COVID-19 are available, one
of which is taking a sample of nasopharyngeal swabs [2],
called real-time reverse-transcriptase PCR (rRT-PCR). The
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other method is chest imaging using X-rays and chest-
computed tomography (CCT) [3, 4]. There is a fear of diag-
nosing using swabs due to contact with surfaces and gloves,
and this has caused danger to the medical sector, so diagnos-
ing using CCT is considered safer for medical workers. The
CCT method is also considered more accurate in diagnosis
because it helps detect hazy white spots in the lungs that
are signs of COVID-19. Further, CCT imaging is better than
X-ray imaging because the former has high resolution and
3D imaging at 360° angles, while X-ray imaging provides
only 2D images. Thus, experiments by some researchers
showed that CCT detected 97% of COVID-19, while the
swab method achieved a diagnostic accuracy of 52% [5].
Due to the increasing number of cases on a daily basis,
which causes a burden on hospitals, doctors, and radiolo-
gists, it is necessary to make a diagnosis quickly and in a
timely manner, so researchers have worked to introduce
artificial intelligence techniques to diagnose CCT and X-
ray images of COVID-19 to distinguish COVID-19 from
infections, such as pneumonia or even normal conditions.
CNN deep-learning techniques are some of the most impor-
tant artificial intelligence techniques that help doctors and
radiologists diagnose medical images, including lung images.
In this study, we used X-ray images to diagnose COVID-19
and distinguish it from viral pneumonia, lung opacity, and
normal diseases to reduce the burden on hospitals and
doctors.

The main contributions of this paper are as follows:

(i) Building deep-learning models to reduce the bur-
dens on hospitals with the outbreak of COVID-
19 and helping physicians to improve the accuracy
of diagnosing COVID-19 through X-ray images

(ii) Combining features extracted by CNN models with
conventional GLCM and LBP algorithms

(iii) Extracting radial texture patterns, such as pulmo-
nary consolidations, patchy glass opacities, and ret-
inal opacities, to distinguish each disease

(iv) Using a dataset from many sources. Data augmenta-
tion was used to create a balance between classes, as
it was applied to the minority classes and ignored
the majority classes

The rest of the present paper is organized as follows: Sec-
tion 2 describes the related work. The Section 3 describes the
materials and methods applied in this paper, and Section 4
reviews an analysis of the results. Section 5 presents a com-
parison and discussion of the results with existing systems,
and the conclusions are included in Section 6.

2. Literature Review

Several deep-learning techniques have been proposed to diag-
nose COVID-19 through CCT or X-ray images. Loey et al.
presented a generative adversarial network (GAN) algorithm
with deep learning to diagnose COVID-19 through X-ray
images [6]. Toğaçar et al. diagnosed a dataset of COVID-19,

pneumonia, and normal images. All images were preprocessed
using the fuzzy color technique. The dataset was trained with
twomodels: MobileNetV2 and SqueezeNet. Social mimic opti-
mization was applied for feature processing, and features were
fed into the Support Vector Machine (SVM) classifier to clas-
sify each image [7]. Tabik et al. created COVIDGR-1.0, which
is a homogeneous and balanced dataset that includes all levels
of severity to demystify the sensitivity achieved by deep-
learning techniques. They presented the COVID-SDNet
approach to diagnose COVID-19 with high accuracy [8]. Ni
et al. applied MVP-Net and 3D U-Net to CCT scanning of
96 COVID-19 patients from three hospitals in China for the
purpose of segmenting and detecting lesions.

Furthermore, algorithms have proven their efficiency in
helping specialists diagnose COVID-19 faster and with high
accuracy [9]. Ko et al. developed a system called a fast-track
COVID-19 classification network (FCONet) to diagnose
COVID-19 through CCT images. They trained the dataset
with four deep-network models: ResNet-50, Xception,
VGG16, and Inception-V3. ResNet-50 achieved the best per-
formance in diagnosing COVID-19 [10].Wang et al. proposed
a DeCovNet to diagnose 3D CT images for localization and
classification of COVID-19. A pretrained UNet was applied
to segment the lesion region. Then, the segmented lesion
region was passed into a deep 3D network to predict
COVID-19 [11]. Sun et al. applied an adaptive feature selec-
tion guided deep forest (AFS-DF) to diagnose COVID-19.
They extracted the most important representative features
from the CT images. To avoid feature duplication, they used
a feature-selection technique based on a pretrained deep for-
est. The algorithms achieved accuracy, sensitivity, and speci-
ficity of 91.79%, 93.05%, and 89.95%, respectively [12].
Apostolopoulos et al. presented aMobileNet v2model to diag-
nose COVID-19 through X-ray imaging. They proved that
training the model from scratch outperformed mesh when
applying transfer learning. The network achieved satisfactory
results for the diagnosis of COVID-19 [13].

Marques et al. developed CNN through EfficientNet
Engineering. EfficientNet was applied to a binary classifica-
tion between COVID-19 and normal person, as well as to
diagnose several classes of COVID-19, pneumonia, and nor-
mal [14]. Bahadur Chandra et al. presented an automatic
COVID-19 screening system (ACoS) that uses radiographic
texture features through chest X-ray (CXR) images to distin-
guish suspected persons from normal [15]. Wang et al. pre-
sented the FGCNet system to detect COVID-19 from CCT
images. As the networks worked to extract the distinctive
individual features of each image, representations were also
obtained from a graph convolutional network (GCN). The
deeper features were fused between the individual features
and the relation-aware features [16].

3. Material and Methods

The motivation behind this work was to help doctors and
radiologists detect patients with COVID-19 using deep-
learning techniques. Two pretrained deep-learning modeling
algorithms, namely, ResNet-50 and AlexNet, were used to
extract the most important distinguishing features from X-
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ray images. Further, feature extraction uses conventional
GLCM and LBP algorithms and hybrids all features into a
1-D feature vector. Figure 1 describes the methodology used
to diagnose COVID-19.

3.1. Dataset Description. The database of chest X-ray images
was compiled by a team of researchers from Qatar Univer-
sity in Doha and Dhaka University in Bangladesh and col-
laborators from Malaysia and Pakistan. The dataset
consists of 21,165 X-ray images divided into four diseases
as follows: 3,616 X-ray images of COVID-19-positive cases
collected from several sources [17–23], 1,345 images of viral
pneumonia collected from sources [24], 10,192 images of
normal patients collected from sources [24, 25], and 6,012
images of lung opacity (non-COVID-19) collected from
the CXR dataset at the Radiological Society of North Amer-
ica (RSNA) [25]. Figure 2 describes the samples from the
dataset used in this study.

3.2. Preprocessing. X-ray images contain noise due to differ-
ent contrasts, light reflections, and patient movements while
taking the X-ray. This noise causes computational complica-

tions and reduces the diagnostic accuracy of CNNs, so pre-
processing was applied to all images before the training
and testing process [26]. Further, the dataset was collected
from several sources. Thus, there is a difference in the inten-
sity of imaging from one X-ray device to another, which
necessitates the application of normalization to reduce the
intensity of homogeneity. The X-ray images were enhanced
by calculating the mean for the RGB color channels, and
then, scaling was calculated for color constancy. Finally, an
average filter was applied to enhance the X-ray images by
replacing each pixel with the average value of its neighbors.
All images were also resized for CNN models; each image
was resized to 224 × 224 pixels for the ResNet-50 model
and to 227 × 227 pixels for the AlexNet model [27, 28].

3.3. Data Augmentation. The data augmentation technique
improves the performance of deep-learning networks by
duplicating existing data rather than looking for new data
due to the scarcity of medical images [29]. Data augmenta-
tion is an important process because it leads to data diversity
during the training phase of the model, thereby solving the
problem of unbalanced data. The augmentation method
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Figure 1: Methodology for diagnosing COVID-19.
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increases the images in the dataset, which leads to reduced
overfitting. In this study, the dataset size was 21,165 images
distributed into four unbalanced classes: 3,616 images of
COVID-19, 1,345 images of viral pneumonia, 10,192 images
of normal patients, and 6,012 images of lung opacity (non-
COVID-19). Where we noticed a lack of balance between
the classes, the augmentation technique needed to be applied
to the dataset to create balance. The dataset was augmented
using a variety of methods, such as rotation, horizontal and
vertical shift, padding, horizontal and vertical flipping, and
cropping [30]. Augmentation was applied to three classes,
COVID-19, viral pneumonia, and lung opacity, while the
method was not applied to the normal class because it con-
tained 10,192 images. Table 1 describes the number of
images before and after applying the data augmentation
technique.

3.4. Feature Extraction. In this study, texture, shape, and
color features were extracted by both convolutional neural
networks through convolutional layers and conventional

algorithms through the GLCM and LBP algorithms. Then,
all the extracted features were combined into a 1-D vector
feature of each image.

3.4.1. Convolutional and Pooling Layers. X-rays of COVID-
19 patients show features of radial texture patterns, such as
pulmonary consolidations, patchy glass opacities, and reti-
nal opacities. CNNs extract these features through filters
in the convolutional layers [31]. CNN implements several
convolutional layers and pooling to extract the most repre-
sentative features of COVID-19. Figure 3(a) describes how
the filters operate in convolutional layers to extract features,
depending on the step value, where 9,216 features are
extracted for each image. Then, a max pooling layer is applied
to reduce the spatial size of the features extracted from the
convolutional layers [32], where the extracted features are
reduced to 2,048 features of each image. Figure 3(b) describes
the process of implementing a max pooling layer with a filter
size of two and a stride of one. A rectified linear unit (ReLU)
is applied to learn the complex maps between the inputs and

Table 1: Number of images of the training dataset before and after the augmentation technique.

Name of class COVID-19 Viral pneumonia Normal Lung opacity

No. of images before augmentation 3,616 1,345 8,154 6,012

No. of images after augmentation 8,107 8,087 8,154 8,138

2 4 9 1 4
2 1 4 4 6 1 2 3 51 20
1 1 2 9 2 x –4 7 4 = 15 –2
7 3 5 1 3 2 –5 1 Feature
2 3 4 8 5 Filter

Image

(a)

20 58 36 –18 1

29 50 65 19 42 58 65 65 42
13 30 48 100 102 50 65 100 102
58 14 52 –1 105 58 52 100 105
60 56 63 75 110 60 56 75 110

Convolved feature Max pooled feature

(b)

Figure 3: (a) Convolutional process with a filter size 3 and a stride 2. (b) Performing max pooling.

Step 1. Input: the X-ray dataset for COVID-19, pneumonia, lung opacity, and normal.
Step 2. Apply a preprocessing process to enhance photos with the average filter.
Step 3. Divide the dataset into 80% for training and validation and 20% for testing.
Step 4. Apply the augmentation method to create balance in the dataset.
Step 5. Extract the most important representative features by convolution layers of two ResNet-50 and AlexNet models.
Step 6. Then, the transfer learning is applied to train the two models for the classification of COVID-19.
Step 7. The two models are trained based on enhanced hyperparameters.
Step 8. Evaluate the performance of the two models on the dataset through a set of measures (confusion matrix and ROC).
Step 9. Output: classify each image to one of the four classes (COVID-19, viral pneumonia, lung opacity, and normal).

Algorithm 1: Deep-transfer learning-based COVID-19 classification.
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response variables, so that the positive input passes and the
negative inputs are converted to zero. Equation (1) describes
obtaining feature maps.

xlj = f 〠
i∈MJ

xl−1i ∗ klij + blj

 !
, ð1Þ

where xl−1i denotes the local features obtained from the previ-
ous layer, klij denotes the adjustable filter, and blj denotes the
training bias. The benefit of using bias is to prevent overfitting
during network training [33]. MJ denotes the input map,
whereas f denotes the activation function.

As mentioned, pooling layers work with the max tech-
nique to reduce computational nodes and prevent overfitting.
Also, the pooling layer is responsible for the downsampling

of feature maps [34]. Equation (2) describes the pooling
process.

xlj = down xl−1j

� �
: ð2Þ
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Figure 4: Confusion matrix for multiclass dataset by ResNet-50 and AlexNet models.

Table 2: Options for configuring training parameters for deep-learning networks.

Class Multiclass (four classes) Binary class (two classes)
Options ResNet-50 AlexNet ResNet-50 AlexNet

Training options Adam Adam Adam Adam

Minibatch size 10 120 10 120

Max epochs 5 10 5 10

Iteration per epoch 1,354 105 883 69

Maximum iterations 6,770 1,050 4,415 690

Initial learn rate 0.0001 0.0001 0.0001 0.0001

Validation frequency 5 50 5 50

Training time 674min 32 sec 81min 5 sec 442min 58 sec 71min 50 sec

Execution environment GPU GPU GPU GPU

Table 3: Results of diagnosing diseases using deep-learning
models.

Class
Multiclass

(four classes)
Binary class
(two classes)

Measurement ResNet-50 AlexNet ResNet-50 AlexNet

Accuracy% 95.00 92.00 99.00 93.00

Sensitivity% 94.50 92.50 98.00 95.00

Specificity% 98.00 96.75 98.00 95.00

AUC% 97.10 99.63 97.51 99.61
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The downð:Þ function shows downsampling, which pro-
vides an abstract of the local features that will be presented
to the next layer.

3.4.2. GLCM and LBP Algorithms. The GLCM algorithm
extracts texture features from the region of interest. Smooth
regions have pixels close to each other, which differ from
rough regions that have pixels other. The GLCM algorithm
collects spatial and statistical information from a region of
interest. Spatial information defines the relationship between
the center and neighboring pixels in terms of distance d and
θ (0°, 45°, 90°, and 135°). In this study, 13 statistical features
were extracted: correlation, energy, mean, smoothness, kurto-
sis, contrast, standard deviation, variance, homogeneity, skew-
ness, entropy, and RMS. The LBP algorithm describes the
texture of the binary surfaces of the lesion region and extracts
features from the region of interest. The LBP algorithm deter-
mines the center pixel to be analyzed on the basis of adjacent
pixels and according to R (radius), which determines the num-
ber of neighboring pixels. In this study, 203 features were
extracted for each image. Then, the features extracted by
GLCM and LBP were combined so that each image is repre-
sented in a 1-D vector with a length of 216 features.

3.4.3. Combined Features Extracted. After obtaining 2,048
features by convolutional neural networks through convolu-
tional layers and GLCM and LBP algorithms, the extracted
features are then combined so that each image is represented
by a 1-D vector with a length of 2,264 features.

3.5. Transfer Learning. Deep-learning techniques classify
medical images with high diagnostic accuracy by extracting
their features. They do this through training CNN models
from scratch, using deep-learning transfer techniques
through pretrained CNN models or using a hybrid method
through transfer deep learning with tuning parameters of
specific training layers called fine-tuning [35, 36]. In our

study, we used learning transfer techniques by tuning the
parameters in specific training layers and replacing the last
classification layers in proportion to the new dataset. In the
transfer learning, models were trained on ImageNet datasets,
which were divided into more than a thousand classes, and
then, the acquired knowledge was transferred to new classi-
fication tasks to diagnose a new dataset containing COVID-
19 patients. Algorithm 1 describes the ResNet-50 and Alex-
Net models’ work.

4. Experimental Results

In this paper, two experiments were applied for each of the
two ResNet-50 and AlexNet models, the first experiment
for classifying multiclass (four diseases) and the second
experiment for binary classification (COVID-19 and nor-
mal). The parameters were tuned to the best performance,
as shown in Table 2, to classify the dataset for multi- and
binary classes.

4.1. Model Training. To train the ResNet-50 and AlexNet
deep network models, the two models were trained using
the transfer learning method with parameter tuning.
Table 2 describes the training options and implementation
times in the Matlab 2018b environment. Trained models
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Figure 5: Display performance of two models for detection of COVID-19 through multi- and binary class.

Table 4: Performance evaluation results for the COVID-19 disease
datasets.

Class
Multiclass

(four classes)
Binary class
(two classes)

Disease types ResNet-50 AlexNet ResNet-50 AlexNet

COVID-19 97.10 94.50 97.40 99.30

Lung opacity 89.60 82.50 — —

Normal 96.90 95.80 99.40 91.40

Viral pneumonia 93.70 97.40 — —
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were implemented by Cori5 Gen6 with 4G NVIDA GPU
and 8G RAM.

4.2. Results with Multiclasses. The dataset contained 21,165
images divided into four diseases, as mentioned previously.
The dataset was divided into 80% training and validation
and 20% testing (80 : 20, respectively). After the parameters
were tuned, the ResNet-50 model was trained, and it was
minibatch size 10, and the network training was completed
with a total of 6,770 iterations with an elapsed time of
674min 32 sec. Meanwhile, AlexNet was a minibatch size
120, and the network training was completed with a total
of 1,050 iterations, with an elapsed time of 81min 5 sec.

Figure 4 shows the confusion matrix for both the
ResNet-50 and AlexNet models. The confusion matrix con-
tains a set of correctly classified images called true positive
(TP) and true negative (TN) and a set of misclassified images
called false positive (FP) and false negative (FN). Through
the confusion matrix, the accuracy, sensitivity, and specific-
ity were calculated according to Equations (3), (4), and (5),
and the AUC was calculated according to Equation (6) [37].

Table 3 and Figure 5 illustrate the multi- and binary class
evaluation of both the ResNet-50 and AlexNet models. The
networks achieved promising results, as the network
ResNet-50 achieved accuracy, sensitivity, specificity, and
AUC by 95%, 94.5%, 98%, and 97.10%, respectively, while

Table 5: Comparison of the performance of our proposed system with existing system.

Previous studies Number of class Technique Overall accuracy (%) COVID-19 sensitivity (%)

Apostolopoulos et al. [38] 3 classes
MobileNet v2 92.80 94.00

VGGNet-19 93.50 86.00

Khan et al. [39] 3 classes Xception 90.20 89.00

Ibrahim et al. [40] 4 classes ResNet152V2+Bi-GRU 93.36 92.95

Loey et al. [6] 3 classes GoogLeNet 81.50 81.80

Wang et al. [41] 3 classes

COVID-Net 93.30 91.00

VGGNet-19 83.00 58.70

ResNet-50 90.60 83.00

Muhammad et al. [42] 3 classes
SqueezeNet 84.40 84.30

ResNet-50 90.00 87.40

Ismael et al. [43] 2 classes Fine-tuning of ResNet50 92.63 88.00

Proposed model 4 classes ResNet-50 95.00 97.10

Proposed model 2 classes ResNet-50 98.00 97.40

Proposed model 4 classes AlexNet 92.00 94.50

Proposed model 2 classes AlexNet 93.00 99.30
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Figure 6: Confusion matrix for the two-class dataset by ResNet-50 and AlexNet models.
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AlexNet achieved accuracy, sensitivity, specificity, and AUC
by 92%, 92.5%, 96.75%, and 99.63%, respectively. Table 4
shows the results that were reached for the diagnosis of each
disease, where ResNet-50 reached a diagnostic accuracy of
COVID-19 by 97.10%, and 702 of 723 images were diag-
nosed correctly, while 13 images were incorrectly diagnosed
as lung opacity, and eight images were incorrectly diagnosed
as normal. Meanwhile, AlexNet reached a diagnostic accu-
racy of COVID-19 by 94.5%, where 683 of 723 images were
correctly diagnosed, 17 images of COVID-19 were incor-
rectly diagnosed as lung opacity, 21 images of COVID-19
were diagnosed as normal, and two images of COVID-19
were diagnosed as viral pneumonia.

Accuracy = TP + TN
TP + TN + FP + FN

∗ 100%, ð3Þ

Sensitivity =
TP

TP + FN
∗ 100%, ð4Þ

Specificity =
TN

TN + FP
∗ 100%, ð5Þ

AUC =
true positive rate
false positive rate

=
sensitivity
specificity

∗ 100%: ð6Þ

4.3. Results with Binary Classes. In this experiment, the data-
set contains 13,808 images, which are divided into two clas-
ses: COVID-19, which contains 3,616 images, and a normal
class, which contains 10,129 images. The dataset was divided
into 20% for testing and 80% for training and validation.
Table 2 describes the tuned parameters of the two networks,
where the ResNet-50 model was trained, and it was mini-
batch size 10, and the network training was completed with
a total of 4,415 iterations with an elapsed time of 442min
58 sec. Meanwhile, AlexNet had a minibatch size of 120,
and the network training was completed with a total of 690
iterations with an elapsed time of 71min 50 sec.

Figure 6 illustrates the confusion matrix for classifying
COVID-19 and distinguishing it from normal images using
the ResNet-50 and AlexNet models. Table 3 shows the
results obtained for both ResNet-50 and AlexNet networks.
The networks achieved promising results, as ResNet-50

achieved accuracy, sensitivity, specificity, and AUC by 99%,
98%, 98%, and 97.51%, respectively, while AlexNet achieved
accuracy, sensitivity, specificity, and AUC by 93%, 95%,
95%, and 99.61%, respectively. Table 4 shows the results
for the diagnosis of each disease, where ResNet-50 reached
a diagnostic accuracy of COVID-19 by 97.40%, and 704 of
723 images were diagnosed correctly, while 19 images were
incorrectly diagnosed as normal. Meanwhile, AlexNet
reached a diagnostic accuracy of COVID-19 of 99.3%, where
718 of 723 images were correctly diagnosed, while five
images of COVID-19 were incorrectly diagnosed as normal.

5. Comparative Study and Discussion

The features were extracted using both deep-learning
models (ResNet-50 and AlexNet) and traditional algorithms
(GLCM and LBP). All the features were combined into a 1-D
vector feature for each image, which gave our models high
reliability and diagnostic accuracy. The dataset was divided
into 80% for training and validation and 20% for testing
(80 : 20). The extracted features were fed to the fully con-
nected layers of both the ResNet-50 and AlexNet models.
Two experiments were applied for each model, one with four
types of disease: COVID-19, viral pneumonia, normal, and
lung opacity (non-COVID-19), and the second experiment
with two diseases, COVID-19 and normal. All experiments
achieved promising results, as shown in Tables 3 and 4.
Due to the extraction of features by deep-learning and
machine-learning techniques and their combination, the
proposed system has achieved promising results compared
to existing systems.

Table 5 and Figure 7 present the results of a comparison
of the proposed performance with the existing systems,
which shows the superiority of the proposed systems over
the existing systems. The overall accuracy of the existing sys-
tems reached between 93.36% and 81.5%, while our system
achieved an (ResNet-50) overall accuracy of 95% and 98%
for the multiclass and binary class, respectively. The existing
systems achieved diagnostic accuracy of COVID-19 ranging
between 92.95% and 58.7%, while our system (ResNet-50)
achieved diagnostic accuracy for detecting COVID-19 with

100.00
80.00
60.00
40.00
20.00

0.00

3 class

Overall accuracy %

COVID-19 sensitivity %

Apostolopoulos, et al
[35]

Khan, et al
[36]

Ibrahim et
al [37]

Loey et al
[38]

Wang et al [39]

3 class 4 class 3 class 3 class 3 class

Muhammad et al [40]

2 class

Ismael et
al [41]

Proposed
model

Proposed
model

Proposed
model

Proposed
model

4 classes 2 classes 4 classes 2 classes

M
ob

ile
N

et
 v

2

VG
G

N
et

-1
9

Xc
ep

tio
n

Re
sN

et
15

2V
2+

Bi
-G

RU

G
oo

gL
eN

et

CO
V

ID
-N

et

VG
G

N
et

-1
9

Re
sN

et
-5

0

Sq
ue

ez
eN

et

Re
sN

et
-5

0

Re
sN

et
-5

0

Re
sN

et
-5

0

A
le

xN
et

A
le

xN
et

Fi
ne

-tu
ni

ng
 o

f
Re

sN
et

50

Figure 7: Comparison of models’ performance on diagnostic accuracy in COVID-19.
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an accuracy of 97.10%, and AlexNet achieved an accuracy of
detecting COVID-19 with an accuracy of 99.30%.

6. Conclusion

This work provides a robust system for classifying a dataset
collected from multiple sources that contains 21,165 X-ray
images divided into four diseases (classes): 3,616 images
of COVID-19-positive cases, 1,345 images of viral pneumo-
nia, 10,192 images of normal patients, and 6,012 images of
lung opacity (non-COVID-19). CCT and X-ray are the
most accurate methods for diagnosing COVID-19. Deep-
learning techniques reduce the burden on hospitals, doctors,
and radiologists, and they work to diagnose people with
COVID-19 with high accuracy to quickly isolate them from
others and reduce the spread of the disease. In this paper,
we conducted four experiments using ResNet-50 and Alex-
Net networks with multiclass and binary class datasets. The
dataset was divided into 80% for training and validation
and 20% for testing (80 : 20, respectively). The features
extracted by the CNN models were combined with tradi-
tional GLCM and LBP algorithms in a 1-D vector of each
image, which produced more representative features.
ResNet-50 achieved better results than AlexNet with a multi-
class and binary class dataset.

When using the multiclass dataset, ResNet-50 achieved
accuracy, sensitivity, specificity, and AUC with 95%, 94.5%,
98%, and 97.10%, respectively, while AlexNet achieved accu-
racy, sensitivity, specificity, and AUC with 92%, 92.5%,
96.75%, and 99.63%, respectively. Meanwhile, when using
the binary class dataset, the ResNet-50 network reached
accuracy, sensitivity, specificity, and AUC by 99%, 98%,
98%, and 97.51%, respectively, while AlexNet reached accu-
racy, sensitivity, specificity, and AUC by 93%, 95%, 95%, and
99.61%, respectively. ResNet-50 also achieved diagnostic
accuracy of COVID-19 by 97.10% and 97.40% with the
multi- and binary class datasets, respectively, whereas Alex-
Net reached diagnostic accuracy of COVID-19 by 94.50%
and 99.30% with the multi- and binary class datasets, respec-
tively. New deep-learning algorithms will be suggested in the
future to improve the system.

Data Availability

Dataset is available on https://www.kaggle.com/c/rsna-
pneumonia-detection-challenge/data and https://www
.kaggle.com/paultimothymooney/chest-xray-pneumonia.
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