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Tumor recurrence and metastasis often occur in HCC patients after surgery, and the prognosis is not optimistic. Hence,
searching effective biomarkers for prognosis of is of great importance. Firstly, HCC-related data was acquired from the
TCGA and GEO databases. Based on GEO data, 256 differentially expressed genes (DEGs) were obtained firstly.
Subsequently, to clarify function of DEGs, clusterProfiler package was used to conduct functional enrichment analyses on
DEGs. Protein-protein interaction (PPI) network analysis screened 20 key genes. The key genes were filtered via GEPIA
database, by which 11 hub genes (F9, CYP3A4, ASPM, AURKA, CDC20, CDCA5, NCAP, PRC1, PTTG1, TOP2A, and
KIFC1) were screened out. Then, univariate Cox analysis was applied to construct a prognostic model, followed by a
prediction performance validation. With the risk score calculated by the model and common clinical features, univariate
and multivariate analyses were carried out to assess whether the prognostic model could be used independently for
prognostic prediction. In conclusion, the current study screened HCC prognostic gene signature based on public databases.

1. Introduction

Liver cancer ranks sixth of most frequent cancers and fourth
of primary causes of cancer death throughout the world [1].
Hepatocellular carcinoma (HCC) (accounting for 75%-85%)
is involved in primary liver cancer [2]. Hepatectomy,
radiofrequency ablation, transcatheter arterial chemoembo-
lization, liver transplantation, chemotherapy, and other
strategies were applied on HCC, but its prognosis is still
not optimistic [3]. About 70% of HCC patients present
tumor metastasis or recurrence within 5 years after surgery
[4]. Histological grade, regional invasion, distant metastasis,
and other independent risk factors are closely related to
recurrence and poor prognosis of HCC [5]. Nevertheless,
the continuous improvement of tumor heterogeneity and
molecular mechanism research have discovered more and
more molecular markers of HCC, which will offer new strat-
egies for HCC treatment.

Microarray technology and bioinformatics methods have
been extensively applied to screen differentially expressed

genes (DEGs) at the genomic level to help us identify
HCC-related DEGs and functional pathways. In addition,
gene chips can quickly detect DEGs, generate slice data,
and store them in public databases, which is a reliable tech-
nique [6]. Therefore, a large number of valuable evidences
can be mined for new researches based on these data. For
example, more and more potential biomarkers can be mined
by using public databases [7–9]. For instance, a study of
Wang et al. used RNA sequencing (RNA-seq) data of clear
cell renal cell carcinoma from the TCGA database to identify
DEGs and 15 hub genes were found to be important in
predicting the prognosis and progression of ccRCC [10].
The study of Huang et al. identified the module most related
to high-level prostate cancer and revealed the hub genes
within the module [11]. For HCC, the top 25% DEGs from
the GSE62232 dataset were selected by Kong et al. to screen
modules related to prognosis, and a protein-protein
interaction (PPI) network was made to screened out 5 candi-
date genes including PCNA, RFC4, PTTG1, H2AFZ, and
RRM1 [12].
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Here, two mRNA microarray datasets and a seq dataset
were obtained from the GEO and TCGA databases; then,
DEGs were obtained after analysis. Later, Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Protein interac-
tion (KEGG) enrichment analyses were used to predict the
DEGs involved biological functions and pathways. PPI net-
work and Cox analysis were introduced for screening prog-
nostic gene signature.

2. Materials and Methods

2.1. Data Download and Processing. GSE36376 (normal 193,
tumor 240) and GSE76427 (normal 52, tumor 115) datasets
were selected from the GEO database (https://www.ncbi.nlm
.nih.gov/geo/). The platform of the both datasets was

GPL10558Illumina HumanHT-12 V4.0 chip. Gene expres-
sion matrix and clinical data of HCC were accessed from
the TCGA database for further validation. Differential
expression analysis (∣logFC ∣ >1, FDR < 0:05) was conducted
by Limma package [13].

2.2. Enrichment Analyses of DEGs and PPI Construction. GO
and KEGG enrichment analyses were carried out on DEGs
using the clusterProfiler package [14] of R software. GO
enrichment analysis is used to study biological significance
of DEGs. KEGG pathway enrichment analysis seeks for key
pathways closely related to DEGs. Thresholds are as follows:
FDR < 0:05 and P value < 0.05.

PPI networks were constructed for DEGs by using the
STRING database, respectively [15]. Then, interaction
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Figure 1: Identifying significant DEGs. (a, b) Volcano plots of the identified DEGs from GSE36376 and GSE76427. Black dots for
nondifferentially expressed genes, and green dots along with red dots for downregulated and upregulated genes, respectively. (c, d)
Intersection of upregulated and downregulated DEGs of GSE36376 and GSE76427 datasets.
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Figure 2: Continued.
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Figure 2: Enrichment analyses for significant DEGs. (a, b) GO and KEGG enrichment analyses for upregulated DEGs. (c, d) GO and KEGG
enrichment analyses for downregulated DEGs.
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score > 0:4 was used to construct PPI networks. Cytoscape
3.7.0 was used to visualize the genes in PPI networks and
to exhibit connectivity degree between genes in networks.
After that, top ten genes of the number of connection nodes
were selected to construct a PPI network diagram separately.

2.3. Prognostic Model Construction and Evaluation. Cox
regression analysis was applied to construct prognostic
model with “survival” R package [16]. The principal compo-
nent analysis (PCA) was used to determine whether samples
could be divided into different clusters based on risk score by
the factoextra R package [17]. The ROC curve was plotted by
the timeROC package [18].

2.4. Survival Analysis of DEGs. The GEPIA database can be
used for individual analysis. In this study, the confirmation
of expressions, overall survival (OS) analysis, and disease-
free survival (DFS) analysis of the above key genes were per-
formed using the GEPIA database, and log-rank tests were
used to measure statistical significance. Survival R package
[16] was used for plotting the survival curve between the
high- and low-risk groups.

3. Results

3.1. Screening of Important DEGs in HCC. Two datasets
(GSE36376 and GSE76427) related to HCC in the GEO data-
base were selected. Subsequently, differential analysis was con-
ducted on the datasets with ∣logFC ∣ >1 and FDR < 0:05. There
were 446 DEGs in the GSE36376 dataset (83 upregulated
DEGs, 363 downregulated DEGs) (Figure 1(a)), while 437
DEGs were in the GSE76427 dataset (70 upregulated DEGs,
367 downregulated DEGs) (Figure 1(b)). Next, DEGs of the
two datasets were intersected to obtain the shared DEGs. As
shown in Figures 1(c) and 1(d), there were 24 genes of high
expression and 232 genes of low expression in common. These
important DEGs were selected for subsequent analysis.

3.2. Functional Analyses. GO analysis results revealed that 24
intersected upregulating genes were mainly concentrated in
nuclear division, chromosome segregation, mitotic nuclear
division, spindle organization, sister chromatid segregation,
and other pathways (Figure 2(a)). KEGG analysis exhibited
that these genes were mainly gathered in signaling pathways
such as oocyte meiosis, cell cycle, and human T-cell virus 1
infection (Figure 2(b)). Intersected downregulating genes
were mainly concentrated in small molecule catabolic process,
organic acid biosynthetic process, lipid localization, lipid
transport, acute inflammatory response pathway, and protein
activation cascade (Figure 2(c)). These genes were in the
chemical carcinogenesis, retinol metabolism, metabolism of
xenobiotics by cytochrome P450, chemical carcinogenesis,
complement and coagulation cascades, drug metabolism-
cytochrome P450, and carbon metabolism signaling pathways
(Figure 2(d)). Therefore, these DEGs may influence the
progression of HCC by influencing these pathways.

3.3. Establishment and Analysis of PPI Networks. PPI net-
works were constructed, and node degree was calculated.
The corresponding node degrees of top 10 hub genes were

exhibited in Table 1. In Figures 3(a) and 3(b), PPI networks
with upregulated and downregulated significant bias were,
respectively, constructed. For better visualization, Cytoscape
was used to construct the interaction diagrams of 10 highly
expressed and 10 lowly expressed hub genes. It could be
observed that there were interactions between these genes,
indicating that the interactions may be associated with
development of HCC (inhibiting or promoting the develop-
ment of HCC). In addition, TOP2A and FTCD were located
in the center of the diagram, so it was considered that they
could be used as targets to further explore their role in HCC.

3.4. Hub Gene Identification and Prognostic Model
Construction in HCC. 20 key genes were analyzed by the
GEPIA database, and it was suggested that the upregulation
and downregulation of 15 genes were in accordance with
this study. Both the OS curves of 13 genes and the DFS of
14 genes had biological significance. Genes with significant
differences in expression analysis, OS analysis, and DFS
analysis were intersected, and 11 genes (ASPM, AURKA,
CDC20, CDCA5, KIFC1, NCAPG, PRC1, PTTG1, TOP2A,
CYP3A4, and F9) were finally screened out as hub genes
for subsequent verification (Figure 4(a)). To examine the
correlation between the hub genes and prognosis status, uni-
variate Cox analysis was introduced constructing a 10-gene
prognostic signature in the TCGA dataset which was
referred to as the training set (Figure 4(b)). The samples
from the TCGA database were divided into the high- and
low-risk groups based on the median value of risk score
(Figure 4(c)). Also, the expression profile and survival status

Table 1: Top 10 hub genes in PPI networks.

Gene symbol Degree

Upregulated genes

ASPM 12

AURKA 12

CCNB2 12

CDC20 12

CDCA5 12

NCAPG 12

PRC1 12

PTTG1 12

TOP2A 12

KIFC1 11

Downregulated genes

FTCD 25

C8A 23

F9 23

CYP3A4 22

GPT 21

APOA5 20

FETUB 20

MBL2 20

KLKB1 19

SPP2 19
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distribution of the samples were presented (Figures 4(d) and
4(e)). To examine the prediction performance, ROC curves
was plotted based on the training set and validation set
(GSE76427), respectively, revealing an optimal performance
in the predictions (Figures 4(f) and 4(g)). In addition, PCA
and survival analysis were employed for a further validation.
PCA indicated that the high- and low-risk groups were obvi-
ously divided into two clusters (Figure 4(h)), and for survival
analysis, patients with low risk shared a relatively optimal
survival status (Figure 4(i)). To identify whether risk score
could be used as an independent risk indicator, univariate
and multivariate Cox analyses were conducted on the com-
mon clinical features and risk score. As the results illustrated,
the prognostic model presented a robust independency
(Figures 5(a) and 5(b)). Moreover, a nomogram based on
the clinical features and risk score was designed for a compre-
hensive prediction of 1-, 3-, and 5-year-survival rates, followed
by plotting the calibration curves between actual and predicted
survival rates (Figures 5(c)–5(f)).

3.5. Examination of the Prognosis-Related Genes. To verify
the prognosis-related genes (ASPM, AURKA, CDC20,
CDCA5, KIFC1, NCAPG, PRC1, PTTG1, TOP2A, and
CYP3A4) in HCC, the expression analysis between tumor
and normal samples were presented, where we observed that
the mRNA expressions of all the genes except for CYP3A4
were significantly upregulated, while CYP3A4 presented
the opposite trend (Figure 6). Then, survival analyses
between the high and low expressions of the genes were
performed, where high expression of all the genes except
for CYP3A4 gave rise to poor prognostic performances
(Figures 7 and 8). To summarize, 10 prognosis-related genes
showed significant difference in the terms of expression and
prognostic performance.

4. Discussion

Main causes of HCC include chronic hepatitis virus infec-
tion, gene mutation, cell damage, alcoholic liver disease,
and aflatoxin poisoning. But molecular mechanism of
HCC is still less studied. An important role in HCC is cell
cycle regulator [19–21]. Our study also demonstrates that
the functional enrichment of DEGs is significantly upregu-
lated in the cell cycle pathway. Cyclin D1, c-myc, RAS
mutations, and cyclin D2 promoter hypermethylation are
associated with HCC [22, 23]. Moreover, splicing changes
of NT5E, Sulf1, and SLC39A14 were also associated with
HCC [24–26]. Most HCC patients without early detection
are not suitable for radical treatment, which may lead to
poor prognosis of patients. Hence, potential as well as
efficient markers are in urgent need. Microarray technology
helps us to investigate genetic changes in HCC and identify
novel biomarkers in other diseases.

Herein, DEGs were obtained from two datasets. 883
DEGs include 153 highly expressed genes and 730 lowly
expressed genes. Enrichment analyses exhibited that genes
with high expression were enriched in nuclear fission,
mitosis, cell cycle, DNA packaging, oocyte meiotic division,
folic acid synthesis, and the oocyte maturation of
progesterone-mediated pathway. Lowly expressed genes
were mainly in metabolic process, main immune pathways,
and oxidation process, such as organic acid biosynthesis,
small molecule catabolism process, lipid transport and posi-
tioning, immunoglobulin-mediated immune response, B
cell-mediated response, cyclooxygenase, and P450 pathways.
Cell cycle process dysregulation and mitotic cell cycle are
vital in tumor development [23, 27, 28]. CDC20, one of
the cell cycle regulators, was reported to serve as an onco-
gene [29], and in the latest study, the tumorigenesis role
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Figure 3: Top 10 hub genes in PPI networks. (a, b) Top 10 hub genes (depending on node degree) of significant highly expressed and lowly
expressed DEGs, respectively. Node degree indicates the importance of genes (nodes) in the PPI network.
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and the molecular mechanism of CDC20 in HCC develop-
ment was pointed out as well [30]. In conclusion, GO enrich-
ment analysis indicated that changes were mainly gathered in
cell division, nuclear division, and mitosis. Changes of KEGG
were in chemical carcinogenesis, glycolysis/gluconeogenesis,
drug-cytochrome P450, complement and coagulation cascade,
carbon metabolism, PPAR, and other signaling pathways.

In the PPI network diagrams, we selected 10 highly
expressed genes and 10 lowly expressed genes as hub genes,
with node degree greater than 10. Among these hub genes,
the node degree of upregulated ASPM, AURKA, CCNB2,
CDC20, CDCA5, NCAPG, PRC1, PTTG1, and TOP2A
was 12, while the node degree of downregulated FTCD was
up to 25. In these hub genes, TOP2A is confirmed to be
related to early onset of HCC, shorter survival, microvascu-
lar invasion, chemotherapy resistance, and recurrence [31,
32]. Hence, it is considered a target for anticancer drugs
[33–35]. HER2 and TOP2A are usually coamplified in
HER2-amplified breast cancer [36]. However, the overex-
pression of TOP2A in HCC was not correlated with the
overexpression of HER2 [37]. Besides, TOP2A can be a
biomarker for diagnosis, treatment, and prognosis in lung
cancer, colon cancer, and ovarian cancer [38–40]. Some
clinical reports have indicated that overexpressing TOP2A
is remarkably associated with shorter survival time [35, 37].

Formiminotransferase cyclodeaminase (FTCD) is expressed
in every mammal, but its accumulation is highest in the liver
[41]. FTCD contains two active sites (FT and CD) in different
protein structures and catalyzes histidine degradation during
folate metabolism [42]. Furthermore, FTCD is involved in
the Golgi complex andmetabolic processes [43]. FTCD is con-
sidered a candidate tumor inhibitor in HCC, which inhibits
HCC by regulating cell apoptosis, DNA damage, and the
phosphatidylinositol 3-kinase/Akt signaling pathway. Overex-
pression of FTCD inhibits cell proliferation in HCC, resulting
in increased PTEN protein level in HCC cells but decreased
PI3K, total Akt, and phosphorylated Akt protein levels [44].
In HCC, FTCD can also serve as a useful diagnostic biomarker
to distinguish early HCC and benign tumors [45]. Herein, PPI
networks showed that both TOP2A and FTCD were in the
central position and had direct or indirect interactions with
other genes, indicating that TOP2A and FTCD played a key
role in HCC development. Later, the GEPIA database ana-
lyzed the 20 hub genes combined with expression analysis,
OS analysis, and DFS analysis, and finally, 11 genes were
selected for the prognostic model construction. Most of them
are involved in the development of HCC and can be used as
prognostic markers of HCC. An example is that upregulation
of CDC20 may predict decreased OS and DFS in HCC
patients [46], which is in accordance with our findings. Above
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Figure 6: Expression status of the prognosis-related genes.

Figure 7: OS survival analysis depending on the expression of prognosis-related genes.
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studies fully demonstrate the importance of these hub genes in
HCC progression.

To extract prognosis-related genes among the 20 genes
from PPI network, Cox regression analysis was applied,
whereby a 10-gene prognostic signature was constructed. As
followed, a validation process was conducted by ROC, K-M,
and PCA. Several studies have presented HCC prognostic
signatures following the similar strategy [47, 48]. However,
compared to the above studies, we performed a more robust
HCC prognostic model based on ROC analysis results.

In summary, combining the GEO and TCGA datasets,
we screened HCC prognosis-related genes, followed by
examination for the prognostic model. However, the corre-
sponding wet experiments which we are designing have
not been arranged yet for practical validation.

Data Availability

The data that support the findings of this research are avail-
able on reasonable request from the corresponding author.
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