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Significant differences may exist among different descents, but the current studies are mainly based on European populations. In the
present study, we analyzed the population-specific differences of coronary artery disease (CAD) between European and East Asian
descents. In stage 1, we identified CAD susceptibility genes by gene-based tests in European and East Asian populations. We
identified two novel susceptibility genes for CAD, namely, CUX2 and OAS3. In stage 2, we carried out meta-analyses for the
population-specific variants. rs599839 (PSRC1) represented a protective variant for CAD in East Asian populations
(ORASN = 0:72. 95% CI: 0.63-0.81) but a risk factor in European populations (OREUR = 1:13, 95% CI: 0.93-1.36). In stage 3, we
enriched the risk genes and explored the population-specific differences in Gene Ontology (GO), Kyoto Encyclopedia of Genes
and Genomes (KEGG), regulatory element, tissues, and cell types. In stage 4, in order to predict genes that showed
pleiotropic/potentially causal association with CAD, we integrated summary-level data from independent genome-wide
association studies (GWAS) and expression quantitative trait loci (eQTLs) by using summary data-based Mendelian
randomization (SMR). The results showed that NBEAL1 and FGD6 were population-specific pleiotropic/causal genes. Although
some potential mutations and risk genes of CAD are shared, it is still of great significance to elucidate the genetic differences
among different populations. Our analysis provides a better understanding of the pathogenic mechanisms and potential
therapeutic targets for CAD.

1. Introduction

Coronary artery disease (CAD) remains one of the leading
causes of mortality worldwide [1, 2]. Although many efforts
have been made to prevent and treat CAD, there is still a long
way to go to curb the development of CAD, especially in
underdeveloped countries and regions [3]. Epidemiological
studies have shown that the occurrence of CAD is caused
by both genetic and environmental factors, with gender,
age, smoking, drinking, hypertension, dyslipidemia, diabetes,
obesity, and mental stress being its potential risk factors [4].

Thanks to genome-wide association studies (GWAS),
more than one hundred and sixty CAD susceptibility loci
have been identified [5–8]. However, some drawbacks exist
using GWAS to identify susceptibility loci. First of all, GWAS
only reported the genetic variants significantly correlated

with the trait (P < 5E − 08) but seldom considered the vari-
ants moderately correlated or uncorrelated with the trait.
Secondly, more than 90% of the variants identified by GWAS
are located in noncoding regions (introns or intergenic
regions) [9, 10]. The function of variants in the regulatory
region is still unclear. Thirdly, due to the complex linkage
disequilibrium (LD) between pathogenic mutation sites and
other SNPs, the genes closest to the leadSNPs in thephysical dis-
tance are not necessarily the most likely causal genes [11–13].
Finally, GWAS explain only a modest fraction of the missing
heritability of human diseases [14, 15]. Therefore, it is far from
enough to analyze the risk loci from lead SNPs alone.

Furthermore, significant differences have been found in
the risk of CAD among different descents, but the current
GWAS is mainly based on European populations [16]. A dee-
per understanding of the genetic structure of other ethnic
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groups will lead to the development of drugs for population-
specific targets and the precise treatment of patients. Previ-
ous studies have used the polygenic risk score (PRS) to
assess the differences in clinical risk factors for CAD
between Japanese and European populations and found
several novel loci [17, 18]. However, European ancestry
GWAS from the CARDIoGRAMplusC4D 1000 Genomes
meta-analysis of previous studies contains some Asian,
Hispanic, and African ancestry, which may confuse
population-specific loci [8, 18].

In this study, we used two large-scale GWAS which were
made up entirely of European and Japanese ancestry, respec-
tively, to identify risk loci by gene-based tests. By integrating
GWAS and eQTL datasets, we comprehensively analyzed
population-specific differences of susceptibility loci, genetic
variants, tissue, cell lines, regulatory elements, and metabolic
pathways. Our study provides new insights into the heteroge-
neity of CAD in the stratification of different populations.

2. Materials and Methods

2.1. Data Sources. Two large-scale GWAS and 54 eQTLs were
used in this study. European ancestry GWAS was obtained
from a meta-analysis of 14 GWAS of CAD comprising
22,233 cases and 64,762 controls by the CARDIoGRAM-
plusC4D Consortium [6]. East Asian ancestry GWAS was
obtained from the GWAS Catalog which included 2,808
cases and 7,261 controls [18, 19]. Both of them were each
made up of a single population. The corresponding SNPs,
effect allele, other allele, effect allele frequency (EAF), beta
coefficients (β), standard errors (se), P value, and sample
numbers were obtained from the above two datasets. We
selected 54 eQTL summary data from the Genotype-Tissue
Expression (GTEx, version 7) [13, 20, 21]. The donors were
of multiple descents including European (85.3%), African
(12.3%), and Asian (1.4%) [21]. All data used in this study
are allowed to be available in the public database.

2.2. Identification of Susceptibility Genes. Gene-based associ-
ation analyses were used to identify risk genes [22]. Com-
pared with the traditional approach based on genome-wide
association (P < 5E − 08), the gene-based approach considers
the association of traits with all SNPs. Several SNPs in a gene
may not be highly associated with traits but may play an
important role in traits together. Herein, we defined gene
boundaries in this case as ±50 kb of 5′ and 3′UTRs and used
VEGAS to calculate the risk statistics of CAD for each gene in
GWAS [23]. VEGAS combined information from a full set
of SNPs (markers) within a gene and accounts for LD
between SNPs by using simulations from the multivariate
normal distribution [23].

2.3. Meta-Analysis of Population-Specific Genetic Variants.
Polymorphisms of genetic variants were associated with
CAD risk. In order to explore population-specific variants,
we pooled the published population-specific variants from
CAD GWAS with the variants we used the gene-based test
to identify. We then reviewed above susceptibility variants
in CAD case-control studies in NCBI PubMed. Finally, we

carried out meta-analysis and sensitivity tests. Considering
the heterogeneity between studies, the I2 statistic was used
to evaluate the heterogeneity, and the magnitude of the vari-
ation was determined using τ2 [24]. In cases where I2 is
greater than 50% and funnel plots were asymmetric, we
tended to use random-effects models to combine effect
values. The criteria for selecting study variants were that
the total number of studies at the variant was greater than
five and that β (OR), se, P value, and genetic models were dis-
closed clearly. The details of studies that met the criteria for
meta-analysis are shown in Supplementary Table 1 and
Supplementary Table 2.

2.4. Pathway, Regulatory Element, Tissue, and Cell-Type
Enrichment Analyses. For susceptibility loci that passed the
risk statistics threshold (P < 0:01), we first used hypergeo-
metric distribution test to evaluate whether CAD risk genes
(protein-coding genes) were significantly enriched in GO
terms and the KEGG pathway [25]. Secondly, in order to test
the relationship between highly expressed genes and genetic
associations in a specific tissue, gene-property analysis was
performed using the average expression of genes per tissue
type by MAGMA [26–28]. Thirdly, a gene expression heat
map was used to indicate the expression of susceptibility loci
in 54 human tissues of GTEx, and the SciPy package of
Python helped with displaying hierarchical clustering [21,
28]. Finally, we used GARFIELD (GWAS Analysis of Regula-
tory or Functional Information Enrichment with LD correc-
tion) to enrich the elements in the regulatory region [29]. We
assessed the enrichment of association analysis signals in
1005 features extracted from ENCODE, GENCODE, and
Roadmap Epigenomics projects, including histone modifica-
tions, DNase I hypersensitive sites (DHSs), and transcription
factor binding sites [9, 10, 29, 30].

2.5. Identification of Causal Gene Targets. In order to identify
genes that showed pleiotropic/causal association with CAD,
we integrated summary-level data from independent GWAS
and eQTLs to perform summary data-based Mendelian ran-
domization (SMR) [13]. SMR was based on the framework of
Mendelian randomization (MR), which could determine
whether gene expression (exposure) was related to traits
(outcome) [13, 31, 32]. Therefore, the effect of gene expres-
sion (x) on trait (y) can be expressed as the ratio of the
least-square estimates of y and x on a genetic variant (z),
respectively, namely,

cbxy =
cbzy
cβzx

: ð1Þ

In order to test the significance of bxy, the T statistic was
designed as

TSMR =
cb2xy

var cbxy
� � , ð2Þ

where var ðcbxy Þ was the sampling variance of the two-
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step least-square (2SLS) estimate of bxy and TSMR was a
statistic of the approximate χ2 test. For the variants that
passed the test threshold, three possible explanations for the
association between a trait and gene expression existed,
including pleiotropy, causality, and linkage. Since the biolog-
ical significance of linkage genes might lack value, we used
heterogeneity in dependent instruments (HEIDI) to distin-
guish functional association from linkage subsequently [13].
Rejection of the null hypothesis (PHEIDI < 0:05) indicated that
the observed association might be due to two distinct genetic
variants in high LD [33]. For each probe in eQTLs, only the
top associated cis-eQTL was used as the instrument for the
SMR test. Eventually, we analyzed common and specific
CAD gene targets in different populations and pinpointed
functionally relevant genes adjacent to it on the chromosome.

3. Results

3.1. Novel Susceptibility Loci for CAD. In contrast to the 1000
Genome Project (1KGP) reference panels, LD between SNPs
were calculated [34]. By carrying out a gene-based test, 12
and 42 susceptibility genes for CAD passed the FDR threshold
(0.05/gene numbers) in the European and East Asian popula-
tions, respectively (Supplementary Table 3). Only six of them
were shared in different populations (Supplementary
Figure 1). The Q −Q plot of the gene-based tests is shown in
Supplementary Figure 2. Importantly, we identified a novel
locus in the European population (CUX2) and two loci in the
East Asian population (CUX2 and OAS3) (Table 1 and
Figure 1). CUX2, located on chromosome 12q23.13,
participates in the proliferation and differentiation of higher
vertebrates [35]. CUX2 is usually expressed in the nervous
system, whose disturbance is associated with the occurrence
of many neurological diseases [36]. Sinner et al. have shown
that CUX2 contributes to atrial fibrillation, which confirms
the association between neurological diseases and
cardiovascular diseases [37]. In addition to CUX2, which is a
shared susceptibility locus in different populations, OAS3
shows its East Asian population specificity (Table 1). OAS3 is
one of the key antiviral factors induced by IFN, but it is also
related to some characteristic factors of cardiovascular disease
[38, 39]. This would help us better understand the complex
relationship between CAD and other human diseases.

3.2. rs599839 Was a Population-Specific Variant of CAD. We
integrated the previously published GWAS and our gene-
based calculation of Eurasian-specific risk loci, and rs599839
(PSRC1), rs17465637 (MIA3), rs4977574 (CDKN2A/B,
ANRIL), and rs1746048 (CXCL12) met the meta-analysis
criteria (Supplementary Table 1). We used a total of 28
independent studies from 23 published literatures, all of

which tried to use additive models to evaluate the odds ratio
(OR) of genetic variants on CAD to minimize heterogeneity.
Of the four genetic variants, only rs599839 (PSRC1) showed
significant variation among different populations by
random-effects models. rs599839 (PSRC1) was a protective
variant of CAD in East Asian populations (ORASN = 0:72,
95% CI: 0.63-0.81) but a risk factor for CAD in European
populations (OREUR = 1:13, 95% CI: 0.93-1.36) (Figure 2).
We found no unacceptable publication bias and
heterogeneity through the funnel plot (Supplementary
Figure 3). However, the polymorphisms of other variants are
positively correlated with the risk of CAD in any population
(Supplementary Figure 4, Supplementary Figure 5, and
Supplementary Figure 6).

3.3. Cholesterol Metabolism Contributed to CAD in Both
Populations. We enriched CAD-related genes in the GO
and KEGG pathway and found the evidence of differences
among different populations from biological process, cellular
component, and molecular function. The CAD-related genes
of the European population were mainly enriched in plasma
lipoprotein and serine activity pathways, while the East Asian
population in triglyceride-rich lipoprotein particle pathways
(Figure 3). Only cholesterol metabolism contributed to
CAD in both populations (Figure 3). High total cholesterol
in the blood, high low-density lipoprotein cholesterol (LDL-
C), and low high-density lipoprotein cholesterol (HDL-C)
were considered to be important risk factors for CAD [40].
For the tissue-specific expression analysis (TSEA), risk genes
of the East Asian population were significantly expressed in
cervix uteri (Supplementary Figure 7 and Supplementary
Figure 8). No specific distributions were enriched in the
European population, and the top three were the heart,
blood vessel, and brain (Supplementary Figure 7).

3.4. Regulatory Element Enrichment Analysis in Noncoding
Regions. In order to explore how noncoding region variants
regulated the occurrence of CAD in different populations,
we performed the enrichment of regulatory elements in
DHSs, histone modifications, and transcription factor bind-
ing sites (Figure 4) [29]. We found that CAD susceptibility
sites (P < 0:001) were significantly enriched in DHS of blood
cells (OREUR = 2:69, PEUR = 0:036; ORASN = 1:38, PASN = 4:5
E − 04) and blood vessels (OREUR = 3:05, PEUR = 0:016;
ORASN = 1:40, PASN = 4:8E − 04) in different lineages
(Figure 3). Surprisingly, DHSs in skin tissues also seemed
to play an important role in the pathogenesis of CAD
(OREUR = 6:05, PEUR = 8:0E − 05; ORASN = 1:34, PASN = 4:3
E − 04). It was a novel view building a connection between
skin and CAD.

Table 1: New loci identified by gene-based test.

Population Chr Gene nSNPs Test Top-SNP Ref Alt EAF Beta P value

European 12 CUX2 113 1051.29 rs4766453 C T 0.74 0.080 1.80E-06

East Asian
12 CUX2 360 6077.64 rs79105258 A C 0.75 0.269 6.55E-32

12 OAS3 336 4020.37 rs3937435 A G 0.65 -0.138 2.04E-12
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Besides DHSs, blood was also rich in transcription factor
binding sites (Supplementary Figure 9). However, other
regulatory elements had significant population-specific
differences. Genetic annotations showed that CAD variants
in the European population were mainly enriched in 3′
UTR and 5′UTR, while those in the East Asian population
were significantly enriched in exons (Supplementary
Figure 10). Generally, the significance of enrichment (P
value) in the East Asian population was higher than that in
the European population (Supplementary Figure 11). More
details were presented in the Supplementary Table 4-5.

3.5. Population-Specific Differences of Causal Genes. We
selected five related eQTLs, including artery coronary
(22950 probes), artery aorta (22366 probes), blood (19432
probes), heart atrial appendage (21733 probes), and heart left
ventricle (20155 probes) tissues, for SMR analysis in the
European and East Asian populations. We mapped all the
susceptibility loci to eQTL target genes in cis-regions and
then linked them to CAD. Manhattan plots of SMR tests
for association between gene expression and CAD could be
found in Supplementary Figure Figure 12. In order to test
the significance of each probe, the FDR threshold was set to
0.05/probe numbers. In the above 10 studies, only NBEAL1
(PSMR = 8:42E − 06, PHEIDI = 0:53) in the European
population and FGD6 (PSMR = 5:70E − 06, PHEIDI = 0:20) in
the Asian population passed the threshold of the χ2 test
and HEIDI test (Figure 5 and Table 2). In other words,
NBEAL1 and FGD6 were population-specific
pleiotropic/causal genes of CAD (regional plots for them
are shown in Figure 1). In addition, PHACTR1, ADAMTS7,
RPH3A, ABO, RP11-378J18.8, and RP1-257A7.5 were
linkage genes (two distinct causal variants in top-
associated cis-eQTL concurrently, one affecting gene
expression and the other affecting trait variation).

NBEAL1 was known as a susceptibility locus of CAD,
which was highly expressed in the heart and artery [41]. It
affected cholesterol metabolism and LDL uptake by regulat-

ing the activity of SREBP2 in cells and then affected the
pathogenesis of CAD afterwards [42]. However, FGD6might
be a novel CAD susceptibility locus, which regulated the
proangiogenic activity in vitro. For NBEAL1 and FGD6, the
significant population-specific genes, we further analyzed
their regulation mechanism on CAD. Functionally relevant
genes and regulatory genes adjacent to it were pinpointed
on the chromosome (Supplementary Figure 13). The effect
sizes of SNPs showed that the overexpression of NBEAL1
was associated with the increased risk of CAD, while
overexpression of FGD6 was associated with decreased
CAD level (Supplementary Figure 14). It was worth noting
that the top SNP of NBEAL1 (rs2351524) failed to pass the
genome-wide association level (P < 5E − 08). Thus, we lent
support to the theory that genetic variants and genes with
low associations with traits might affect traits as well.

4. Discussion

In this study, the population-specific differences of CAD were
revealed from various aspects, including susceptibility loci, risk
genetic variants, biological pathways, and regulatory elements
in the noncoding region. The differences in CAD between the
European population and the East Asian populationwere obvi-
ous from every aspect. We provided new insights from the
perspective of coding and noncoding regions at the same time,
which were more novel than previous studies.

Sex and ancestry were the potential causes of CAD
differences [18, 43–45]. However, previous studies were
limited to small sample sizes, which made it difficult to
overcome the defects of heterogeneity. Therefore, our study
had many advantages. First of all, we selected two
summary-level data from independent GWAS, both of
which were each composed of the same ancestry. Mixing
different lineages together for meta-analysis might blur the
differences among different populations. Secondly, we used
a gene-based test to obtain the risk loci effectively that were
often overlooked in GWAS (P > 5E − 08) and identified two
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novel susceptibility loci for CAD (CUX2, OAS3). Finally, we
fully revealed the population-specific differences of CAD
from various perspectives.

However, our study also had certain limitations. The lack
of large-scale GWAS in East Asia led to only the Japanese
ancestry being used to replace the East Asian ancestry. In addi-
tion, the donors of the GTEx project were of multiple descents
including European (85.3%), African (12.3%), and Asian

(1.4%) [21]. We expect more non-European eQTL studies to
complement our deficiencies. Secondly, little evidence showed
that the two novel susceptibility loci (CUX2 and OAS3) con-
tributed to CAD in previous studies, so further biological
experiment verification was necessary. Finally, SMR analysis
had difficulty in distinguishing causal genes from pleiotropic
genes. NBEAL1 and FGD6, the population-specific pleiotro-
pic/causal genes for CAD, needed further exploration.
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Figure 2: Meta-analysis of the association between rs599839 (PSRC1) and CAD.
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Figure 5: The experimental process of SMR. SMR analyses were performed between 5 eQTLs and GWAS from European and Asian
populations, respectively. The probes were screened by significance test and HEIDI analysis.
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5. Conclusions

In this study, we integrated multiple-omics data to mine the
population-specific differences for CAD. We provided a new
insight into the genetic mechanism of nonwhite and genetic
evidence for CAD precision medicine in different popula-
tions. We call for more large-scale GWAS research on CAD
with different lineages to achieve accurate treatment of spe-
cific gene targets, especially those of non-European lineages
that have been previously neglected.
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