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Accurate risk assessment of high-risk patients is essential in clinical practice. However, there is no practical method to predict or
monitor the prognosis of patients with ST-segment elevation myocardial infarction (STEMI) complicated by hyperuricemia. We
aimed to evaluate the performance of different machine learning models for the prediction of 1-year mortality in STEMI
patients with hyperuricemia. We compared five machine learning models (logistic regression, k-nearest neighbor, CatBoost,
random forest, and XGBoost) with the traditional global (GRACE) risk score for acute coronary event registrations. We
registered patients aged >18 years diagnosed with STEMI and hyperuricemia at the Affiliated Hospital of Zunyi Medical
University between January 2016 and January 2020. Overall, 656 patients were enrolled (average age, 62:5 ± 13:6 years; 83.6%,
male). All patients underwent emergency percutaneous coronary intervention. We evaluated the performance of five machine
learning classifiers and the GRACE risk model in predicting 1-year mortality. The area under the curve (AUC) of the six
models, including the GRACE risk model, ranged from 0.75 to 0.88. Among all the models, CatBoost had the highest predictive
accuracy (0.89), AUC (0.87), precision (0.84), and F1 value (0.44). After hybrid sampling technique optimization, CatBoost had
the highest accuracy (0.96), AUC (0.99), precision (0.95), and F1 value (0.97). Machine learning algorithms, especially the
CatBoost model, can accurately predict the mortality associated with STEMI complicated by hyperuricemia after a 1-year
follow-up.

1. Introduction

The most common cardiovascular diseases currently include
hypertension, heart failure, coronary atherosclerosis, and
myocardial infarction (MI); there is widespread interest in
these conditions, as they are associated with high morbidity
and mortality. In recent years, the incidence and death rate
associated with MI have increased in China. The incidence
of MI, though not strongly associated with the regions in
China, has been found to increase with age [1]. Research
has shown that MI typically starts to develop in young and
middle-aged people. Therefore, the prevention, detection,

and treatment of MI have become an area of interest among
medical experts and scholars. In recent years, uric acid (UA)
has been increasingly recognized as a well-known cardiovas-
cular risk factor, along with hypertension, diabetes, chronic
kidney disease (CKD), and obesity [2–7]. Although it is
unclear whether UA is an independent predictor of cardio-
vascular disease, recent retrospective studies have demon-
strated that hyperuricemia is an independent predictor of
short- and long-term mortality in patients with AMI [8–
10]. Machine learning is a multidisciplinary field involving
artificial intelligence, computational complexity theory,
probability and statistics, cybernetics, information theory,
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philosophy, physiology, neurobiology, and other disciplines
that can be characterized by system self-improvement.
Machine learning was developed from the research method
based on neuron models and function approximation theory;
rule learning and decision tree learning were then incorpo-
rated based on symbolic calculus [11]. Furthermore, machine
learning plays an essential role in clinical practice and cardi-
ology. Each machine learning algorithm has its advantages in
different fields. Previous studies have found that machine
learning has good predictive power in predicting intrahospi-
tal mortality and short-term prognosis in acute MI. However,
imbalanced data distribution and quality of deaths and survi-
vors, that may lead to misclassification, are great challenges
in machine learning. If the model evaluation places excessive
emphasis on the area under the curve (AUC) index, it may
ignore the weakness of truly predicting actual deaths. At
present, there has been no research for developing a more
comprehensive machine learning prediction model for the
prognosis of ST-segment elevation myocardial infarction
(STEMI) patients with hyperuricemia. Therefore, in this
study, we evaluated multiple performance indicators for pre-
dicting 1-year mortality in STEMI patients with hyperurice-
mia, by using different machine learning models including
logistic regression (LR), k-nearest neighbor (KNN), Cat-
Boost, random forest (RF), and XGBoost. We then compared
these models with the traditional GRACE risk score. To
improve the prediction accuracy of imbalanced learning, we
used SMOTEENN, a hybrid sampling algorithm of synthetic
minority oversampling technique (SMOTE), and edited
nearest neighbor (ENN) algorithms to oversample the
minority class by creating synthetic samples.

2. Materials and Methods

2.1. Patients. This investigation followed the Transparent
Reporting of a Multivariable Prediction Model for Individual
Prognosis or Diagnosis (TRIPOD) reporting guidelines for
cohort studies [12]. We enrolled consecutive patients aged
>18 years diagnosed with STEMI at the Affiliated Hospital
of Zunyi Medical University between January 2016 to Janu-
ary 2020 (Figure 1). The inclusion criteria were as follows:
(1) increase or occurrence of ischemic chest discomfort at
rest; (2) elevation of ST − segment ≥ 0:1mV; (3) elevation
of ST-segment in two consecutive leads; (4) elevated cardiac
troponin I (≥0.03μg/L) or cardiac troponin T levels (≥42
ng/L); (5) diagnosed with hyperuricemia on admission; (6)
no history of recent nephrotoxic drug intake; and (7) receipt
of emergency percutaneous coronary intervention (PCI)
treatment. The use of drugs was based on the treatment stan-
dards recommended by the published guidelines. Research
approval was obtained from the Ethics Committee of the
Affiliated Hospital of Zunyi Medical University (approval
No. KLL [2020]0144). The need for written informed consent
was waived owing to the retrospective nature of the study.

2.2. Outcomes. The primary outcome was defined as cardiac
and sudden deaths during the 1-year clinical follow-up after
discharge. Patients who had died during hospital admission
were excluded from the analysis; the follow-up period ended

in January 2021. All eligible patients enrolled in this study
were followed up through telephone interviews or outpatient
visits.

2.3. Candidate Predictors. Data on demographic characteris-
tics, disease, electrocardiographic findings, laboratory
parameters on admission, and in-hospital events were
obtained from the patient’s medical records. Data on baseline
characteristics, demographics (age and gender), risk factors
(hypertension, diabetes, current smoking, family history),
nonweekday admission (NWDS), delay (defined as patient
FMC > 12 hours), medical history (previous stroke, previous
CKD), and electrocardiography (ECG) findings (inferior,
anterior, right ventricular, and other) were all obtained from
our electronic database. Hyperuricemia was defined by
serum UA levels of >7mg/dL (417mmol/L) in men and >6
mg/dL (357mmol/L) in women at admission. The patient
data collected included demographic information, baseline
characteristics at admission, diagnosis and treatment during
hospitalization, diseased vessel identified during procedure,
diagnosis at discharge and drug treatment, and comorbidi-
ties, such as hypertension, diabetes, and renal disease; in
total, 41 characteristics were analyzed. Based on TRIPOD
reporting guidelines, the rule of thumb for sample size is to
have at least 10 outcome events per variable (EPV).

2.4. Data Collection. In our data source, all attributes that can
be subdivided are categorized into independent classes, and
each class generates a new attribute. The new attribute is
encoded with the one-hot encoding rule. The data were sus-
ceptible to incorrect notation by the researcher; data cleans-
ing and editing, consisting of removing typographical
errors, and reviewing data quality in data reporting, were per-
formed by a second researcher to avoid a flawed model train-
ing process. Assessment of predictors in our study has been
performed without knowledge of the participant’s outcome.
A single investigator assessed all demographic information
and clinical data and was blinded to the outcome of mortal-
ity. Additionally, a different researcher assessed the plausibil-
ity of the results regarding the outcome of mortality.

2.5. Missing Values. Complete case data were collected from
the electronic health records (EHRs) and analyzed; all vari-
ables can be queried in the EHRs. Some patients were
excluded as they refused to undergo the candidate predictor
laboratory test or failed to comply with 1-year follow-up.

2.6. Statistical Analysis. Continuous variables are presented
as the mean ± standard deviation, and classified variables
are indicated by counts and percentages. Differences in base-
line characteristics between groups were analyzed using the
independent sample t-test. The Mann–Whitney U test was
used for continuous variables, and the chi-square test or Fish-
er’s exact test was used for categorical variables. The previ-
ously described GRACE risk score was used to analyze
mortality, and it was calculated according to the published
formula [13]. Five machine learning classifiers (LR, KNN,
CatBoost, RF, and XGBoost) and the ensemble model were
used as the supervised machine learning methods to predict
survival status after 1-year follow-up. In order to solve the
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problem of imbalanced data classification owing to medical
diagnosis, we used SMOTEENN, a hybrid sampling algo-
rithm of SMOTE and ENN algorithms; this helped to over-
sample the minority (death cases) class by creating
synthetic samples, followed by cleaning the mislabeled
instances. Supervised learning aims to establish a concise
model of outcome type distribution (called label in machine
learning), based on predictor parameters [14]. All models
were validated by 10-fold crossvalidation. In feature engi-
neering, all classification features were transformed by one-
hot encoding, and the missing values were provided by the
missForest method. Compared with the traditional chain
multifilling method, this method results in significant perfor-
mance improvement [14–16]. The following indicators were
used to define model performance: AUC, recall, precision,
and F1 value. Python (version 3.7, https://www.python.org/
) was used for all statistical analyses.

3. Results and Discussion

Between January 2016 and January 2020, a total of 738
STEMI patients registered in the database met the inclusion
criteria. After excluding those who were lost to follow-up
(n = 82), 656 patients were enrolled in this study. The
patients’ average age was 62.5 years (±13.6 years), and
83.6% were male. All patients underwent emergency PCI.
The median follow-up duration was 25 months, and 91
patients died within 1 year of admission, resulting in a mor-
tality rate of 13.8%. Table 1 summarizes the differences in
demographic information, admission baseline characteris-
tics, and diseased vessels between the patients who survived
and those who died. Considering the imbalance of classifica-
tion data among samples ðdeath cases : survival cases = 91
: 565Þ, five machine learning algorithms (logistic regression,
KNN, RF, XGBoost, and CatBoost) were developed to predict
the 1-year mortality rate with all available features. RF
(accuracy = 0:89, AUC = 0:88) and CatBoost
(accuracy = 0:89, AUC = 0:87) provided similar AUC values

in our study, and the predicted performance was higher than
that of the traditional GRACE score. As a traditional risk
assessment tool, GRACE (accuracy = 0:84, AUC = 0:80) also
showed good discriminatory ability in our study (Table 2).
The RF classifier outperformed the other models in terms
of the AUC crossvalidation results (Figure 2). This study used
SMOTEENN to further optimize the models; thus, the per-
formance of all machine learning models was improved sig-
nificantly (Table 2, Figure 3). After using SMOTEENN to
generate more minority class samples, the CatBoost model
(accuracy = 0:96, AUC = 0:99, recall = 0:98, precision = 0:95
, F1 value = 0:97) demonstrated the highest performance
(Figure 4). We investigated the possibility of combining dif-
ferent models to improve performance. In particular, we
tried several ensembles and combination methods, including
training of the above classifiers and combining their predic-
tions to check whether combination is better than any single
classifier (Table 3). The CatBoost was separately integrated
with Bagging and Boosting. Further, when the prediction
probability of each model was used as the combination rule
through the combination of LR, KNN, and XGBoost models
after 10-fold crossvalidation, the performance of some
models partially improved (recall from 0.33 to 0.53; F1 value
from 0.44 to 0.58) compared with that of a single model. This
shows that different models can be regarded as partially com-
plementary. When the other abovementioned models were
included in the integration method according to different
combinations, very similar results were obtained.

Owing to the recent widespread development of chest
pain centers in China, 70.8% of patients with acute STEMI
were admitted to the hospital within 12 hours of onset and
received prompt reperfusion treatment. Hospital mortality
rates have therefore decreased significantly. Timely and effec-
tive revascularization treatment is key for the reduction of
mortality and improved prognosis following AMI. The res-
cue system based on chest pain centers has played an essen-
tial role in improving the timeliness of revascularization in
AMI patients and in reducing mortality.

N = 2580 STEMI patients
enrolled in ZMU between
January 2016 to May 2020 Excluded:

N = 1556 STEMI patients
without hyperuricemia on

admission
N = 174 STEMI patients
with missing laboratory

data on admission.
N = 62 STEMI patients
with unclear diagnoses.

788 STEMI patients meeting
the guideline criteria for PCI 

Excluded:
N = 50 STEMI patients

in-hospital death. 
738 STEMI patients

included follow-up research 

Excluded:
N = 82 STEMI patients
failed 1-year follow up 

STEMI patient after discharge 
at 1-year follow-up

N= 656(Survival:565, Death:91)

Figure 1: A flow diagram showing the study process.
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Table 1: Comparison of characteristics of patients with and without mortality in the cohort.

Variables Total (n = 656) Survival (n = 565) Death (n = 91) P value

Demographic characteristics

Sex, n (%) 0.008

Female 107 (16) 83 (15) 24 (26)

Male 549 (84) 482 (85) 67 (74)

Age, y 64.00 (52, 74) 63.00 (51, 73) 70.00 (59, 78) <0.001
Smoking, n (%) 453 (69) 396 (70) 57 (63) 0.192

Weekend on admission, n (%) 248 (38) 205 (36) 43 (47) 0.059

Delay, n (%) 167 (25) 133 (24) 34 (37) 0.007

Vascular risk factors

Hypertension, n (%) 380 (58) 326 (58) 54 (59) 0.857

Diabetes mellitus, n (%) 121 (18) 98 (17) 23 (25) 0.096

Prior-stroke, n (%) 35 (5) 30 (5) 5 (5) 1

CKD, n (%) 152 (23) 122 (22) 30 (33) 0.024

Clinical data

HR, beats/min 80 (72, 92) 80.00 (72, 91) 85 (73, 106) 0.003

SBP, mmHg 124 (108, 140) 127 (110, 143) 111 (92, 129) <0.001
DBP, mmHg 80 (68, 91) 80 (70, 92) 74 (58, 85) <0.001
Shock_index 0.65 (0.55, 0.77) 0.64 (0.54, 0.75) 0.75 (0.61, 1.04) <0.001

Electrocardiographic data

Inferior, n (%) 300 (46) 263 (47) 37 (41) 0.351

Anterior, n (%) 322 (49) 276 (49) 46 (51) 0.851

Other, n (%) 21 (3) 16 (3) 5 (5) 0.194

Right ventricular, n (%) 7 (1) 6 (1) 1 (1) 1

Laboratory examinations on admission

WBC, ∗109/L 11.27 (8.60, 14.19) 10.97 (8.34, 13.57) 13.92 (10.56, 19.51) <0.001
Neutrophil count, ∗109/L 8.85 (6.34, 11.83) 8.46 (6.11, 11.19) 11.40 (8.43, 16.26) <0.001
NLR 6.65 (3.89, 10.77) 6.25 (3.78, 9.85) 9.74 (5.89, 14.93) <0.001
PLR 149.03 (104.31, 224.60) 148.96 (107.43, 220.27) 151.40 (81.96, 250.07) 0.518

MLR 0.54 (0.37, 0.82) 0.51 (0.36, 0.76) 0.75 (0.41, 1.12) <0.001
SIRI 4.51 (2.63, 8.44) 4.19 (2.47, 7.39) 8.41 (4.38, 15.27) <0.001
SII 1285.43 (746.84, 2247.28) 1233.05 (735.30, 2139.17) 1923.99 (894.50, 2898.80) 0.003

HB, g/L 139.00 (123.00, 154.00) 140.00 (124.00, 155.00) 128.00 (115.00, 147.00) 0.001

RBC, ∗1012/L 4.54 (3.98, 5.01) 4.58 (4.05, 5.02) 4.21 (3.71, 4.88) 0.006

PLT, ∗109/L 205.00 (161.00, 249.25) 207.00 (164.00, 250.00) 196.00 (138.00, 246.50) 0.113

ALT, U/L 33.00 (23.00, 56.00) 32.00 (22.25, 51.75) 56.00 (30.00, 193.00) <0.001
AST, U/L 72.00 (36.50, 169.5) 67.00 (35.00, 143.00) 225.00 (73.50, 456.00) <0.001
GGT, U/L 44.00 (27.00, 75.00) 43.00 (27.00, 72.75) 61.00 (29.00, 104.00) 0.007

BUN, mmol/L 6.72 (5.25, 9.37) 6.38 (5.09, 8.50) 10.33 (7.45, 13.15) <0.001
Creatinine, umol/L 101.00 (82.00, 128.00) 98.00 (81.00, 119.00) 134.00 (109.00, 174.50) <0.001
Uric acid, umol/L 484.00 (449.00, 542.00) 481.00 (447.00, 535.00) 523.00 (461.00, 637.00) <0.001
Cystatin C, mg/L 1.22 (0.97, 1.58) 1.17 (0.95, 1.49) 1.65 (1.32, 2.18) <0.001
CK, U/L 507.00 (186.00, 1368.75) 463.50 (172.00, 1322.50) 745.00 (303.25, 2012.50) 0.002

CKMB, U/L 52.00 (25.00, 127.00) 48.00 (24.00, 117.25) 86.00 (33.00, 190.00) <0.001
LDH, U/L 375.00 (266.25, 639.75) 350.50 (255.25, 556.75) 695.50 (407.75, 1229.75) <0.001
α-HBDH, U/L 259.00 (173.00, 475.00) 240.00 (165.00, 427.50) 490.50 (273.75, 773.00) <0.001
CTnT, ng/L 1014.00 (213.50, 3480.00) 786.95 (185.97, 3069.00) 3077.00 (1133.00, 6711.00) <0.001
BNP, pg/mL 1022.50 (255.15, 3860.75) 884.90 (204.85, 2713.00) 5349.00 (2058.00, 15267.00) <0.001
Glucose, mmol/L 6.66 (5.56, 8.66) 6.52 (5.44, 8.19) 8.47 (6.41, 11.60) <0.001
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Previous studies have confirmed that baseline renal dys-
function and acute kidney injury are strong predictors of
in-hospital and long-term adverse cardiovascular outcomes
after STEMI complicated by cardiogenic shock [17].
STEMI-related mortality is considerably higher in those
who have had unsuccessful invasive procedures or those with
diabetes, chronic kidney failure, or high serum lactate or glu-
cose levels [17, 18].

UA is the final product of purine metabolism and is
metabolized by xanthine oxidase. Hyperuricemia can lead
to gout and nephrolithiasis; it has also been implicated as
an indicator for diseases, such as the metabolic syndrome,
diabetes mellitus, cardiovascular disease, and chronic renal
disease. Previous studies have suggested that hyperuricemia
with STEMI is associated with a poor prognosis and a high
incidence of death and major adverse cardiovascular events
(MACEs) [19]. Although the pathophysiological mecha-
nisms of adverse reactions to hyperuricemia have not been
fully elucidated, it appears to be multifactorial. In the light
of the experimental evidence, hyperuricemia was linked to a
variety of proatherogenic processes, including increased oxi-

dative stress, inhibition of endothelial nitric oxide, activation
of the renin-angiotensin system, and increase in the micro-
vascular damage via endothelial dysfunction and vascular
smooth muscle cell proliferation [20–23].

There is currently no effective evaluation method to pre-
dict the long-term prognosis of these patients. GRACE risk
scores can be used to estimate follow-up results after acute
coronary syndrome. Although Asian populations were not
included during the development of the model, the use of
GRACE revealed a good discriminatory accuracy in predict-
ing both short-term and long-term MACEs in Asian patients
with MI [24]. Our cohort had a median follow-up duration of
25 months, similar to those of previously published studies
(accuracy = 0:84, AUC = 0:8). However, the statistical
methods in these traditional assessment tools include the
Cox proportional hazard regression model. Researchers
make presumptions and employ subjective feature selection
before model fitting, potentially leading to loss of informa-
tion [15]. As we enter the era of precision medicine, the
demand for risk assessment tools has gained importance. In
cases where the research goal is to generate a model that

Table 1: Continued.

Variables Total (n = 656) Survival (n = 565) Death (n = 91) P value

Myoglobin, ng/mL 341.10 (104.50, 910.40) 308.95 (95.96, 820.28) 615.00 (203.50, 2251.00) <0.001
Diseased vessel identified during procedure

LM, n (%) 13 (2) 13 (2) 0 (0) 0.233

LAD, n (%) 213 (33) 185 (33) 28 (31) 0.836

LCX, n (%) 70 (11) 62 (11) 8 (9) 0.674

RCA, n (%) 157 (24) 134 (24) 23 (26) 0.819

Risk assessment

GRACE, score 125.00 (102.00, 154.00) 121.00 (101.00, 146.00) 178.00 (140.00, 206.50) <0.001
Values are expressed as medians with interquartile ranges for continuous data. Other values are presented as numbers and percentages. Shock index: ratio of HR
to SBP; SIRI: systemic inflammatory response index; SII: systemic inflammatory reaction index; PLR: ratio of platelets to lymphocytes; NLR: the ratio of
neutrophils to lymphocytes; MLR: ratio of monocytes to lymphocytes; OHCA: out-of-hospital cardiac arrest; GRACE: Global Registry of Acute Coronary
Events score; α-HBDH: α-hydroxybutyrate dehydrogenase; BNP: B-type natriuretic peptides.

Table 2: Comparison of validation results of machine learning models.

Models Accuracy AUC Recall Precision F1 value

CatBoost 0.89 0.87 0.33 0.78 0.44

RF 0.89 0.88 0.26 0.82 0.38

XGBoost 0.90 0.83 0.41 0.81 0.51

LR 0.89 0.82 0.38 0.63 0.46

KNN 0.88 0.75 0.21 0.61 0.31

Model with oversampling (SMOTEENN)

CatBoost 0.96 0.99 0.98 0.95 0.97

RF 0.95 0.99 0.98 0.94 0.96

XGBoost 0.94 0.98 0.98 0.92 0.95

LR 0.91 0.95 0.92 0.92 0.92

KNN 0.92 0.96 0.98 0.88 0.93

Tradition risk score model

GRACE score 0.84 0.80 0.46 0.59 0.51

AUC and F1 score: the higher, the better. XGBoost: Extreme Gradient Boosting; RF: random forest; LR: logistic regression; KNN: K-nearest neighbors.
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can predict the results most accurately, machine learning
algorithms may be more advantageous compared to tradi-
tional regression methods. First, machine learning methods
can compute multiple related predictions, nonlinear relation-
ships, and the internal interaction between predictors and
end events in large datasets. Second, as a critical component
of the TRIPOD original declaration report [25], the model

should be verified after establishment. In cases where the
machine learning method is used, model performance is
more robust after external verification. In this study, we com-
pared several standard machine learning methods and per-
formed 10-fold crossinternal verification of the dataset in
the absence of external data to ensure model robustness.
However, in the traditional regression model, internal valida-
tion is not necessary, because one (ideally) posits an analytic
model before fitting it to the data [15]. Considering the differ-
ent effects of each machine learning method in solving med-
ical professional problems, this study compares the efficiency
and robustness of various machine learning methods with
that of the traditional risk score to obtain more cautious
results.

In previous studies, machine learning methods showed a
better ability to predict short-term mortality after STEMI,
while XGBoost showed better predictive ability than other
machine learning models in patients with anterior wall
STEMI [14]. Gradient boosted tree (GBT) methods, such as
XGBoost, RF, and CatBoost, provided similar AUC values
in our study. However, after model optimization, the Cat-
Boost model showed more accurate prediction ability. The
CatBoost algorithm, which was released in 2017, LightGBM,
and XGBoost are the three mainstream machine learning
methods for GBT. The CatBoost algorithm is a GBT frame-
work based on an asymmetrical decision tree (oblivious
trees) algorithm, with only a few parameters; it supports class
variables and has high accuracy. It mainly addresses the issue
of dealing with category features efficiently and reasonably.

Furthermore, to improve the algorithm’s accuracy and
generalization ability, a new method was proposed to
account for gradient deviation (gradient bias) and prediction
partial (prediction shift) problems. As a new algorithm
released in 2017, this method can account for category fea-
tures in clinical practice and can effectively prevent overfit-
ting; its high training accuracy has provoked widespread
interest. Our study also demonstrated the high accuracy of
the model. Interestingly, under the premise of the imbalance
of clinical samples, the machine learning method with the
oversampling technique SMOTEENN could significantly
improve performance. SMOTEENN is a hybrid sampling
technique of SMOTE and ENN algorithms, that is often
employed to oversample the minority class by creating syn-
thetic samples, followed by cleaning of mislabeled instances
[26]. It is essential to be aware of the dramatic effects of these
synthetic sampling techniques on machine learning models.

Our research has several limitations. Owing to the retro-
spective design of this study, the process of patient data col-
lection may have been accompanied by a risk of bias.
Further, this was a single-center study, including only Chi-
nese patients. Under the premise of the imbalance of clinical
samples, the machine learning method based on clinical data
alone could not obtain a higher AUC value; even the over-
sampling technique could not significantly improve perfor-
mance. Second, although the machine model based on
hybrid sampling technology has achieved excellent perfor-
mance in this study, the samples in hybrid sampling technol-
ogy are computer-generated samples and not real patients;
thus, making a more accurate assessment of the prognosis
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of STEMI patients with hyperuricemia using big clinical data
requires further analysis using a more extensive dataset.
Despite the abovementioned limitations, our study also has
some strengths. The results provide an effective and robust
method for predicting 1-year mortality in patients with
STEMI complicated by hyperuricemia, through the crossvali-
dation of machine learning models. Further study requires
the combination of social factors, environmental parameters,
and phenotypic information (such as genome or proteomics
data) in MI for prognostic prediction.

4. Conclusion

In conclusion, the predictive ability of machine learning
methods is significantly higher than that of the traditional
statistical scoring model. The machine learning model will
be helpful for the prediction and early detection of MACEs
in patients with STEMI complicated by hyperuricemia. In
addition, in cases of clinically unbalanced samples, the over-
sampling technology can significantly improve model perfor-
mance and ability; however, it is essential to be aware of the
dramatic effects of the synthetic sampling techniques on
models. There is still uncharted territory in clinical medicine,
and methods for accurately predicting the occurrence of
some diseases or adverse events will remain the enduring
focus of clinical research. Although machine learning pres-
ently appears to have good predictive effect, further reason-
able and scientific verification is required.
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